| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- # Copyright 2025 Yakhyokhuja Valikhujaev
- # Author: Yakhyokhuja Valikhujaev
- # GitHub: https://github.com/yakhyo
- import itertools
- import math
- from typing import List, Optional, Tuple
- import cv2
- import numpy as np
- __all__ = [
- 'resize_image',
- 'generate_anchors',
- 'non_max_suppression',
- 'decode_boxes',
- 'decode_landmarks',
- 'distance2bbox',
- 'distance2kps',
- ]
- def resize_image(frame, target_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, float]:
- """
- Resize an image to fit within a target shape while keeping its aspect ratio.
- Args:
- frame (np.ndarray): Input image.
- target_shape (Tuple[int, int]): Target size (width, height). Defaults to (640, 640).
- Returns:
- Tuple[np.ndarray, float]: Resized image on a blank canvas and the resize factor.
- """
- width, height = target_shape
- # Aspect-ratio preserving resize
- im_ratio = float(frame.shape[0]) / frame.shape[1]
- model_ratio = height / width
- if im_ratio > model_ratio:
- new_height = height
- new_width = int(new_height / im_ratio)
- else:
- new_width = width
- new_height = int(new_width * im_ratio)
- resize_factor = float(new_height) / frame.shape[0]
- resized_frame = cv2.resize(frame, (new_width, new_height))
- # Create blank image and place resized image on it
- image = np.zeros((height, width, 3), dtype=np.uint8)
- image[:new_height, :new_width, :] = resized_frame
- return image, resize_factor
- def generate_anchors(image_size: Tuple[int, int] = (640, 640)) -> np.ndarray:
- """
- Generate anchor boxes for a given image size (RetinaFace specific).
- Args:
- image_size (Tuple[int, int]): Input image size (width, height). Defaults to (640, 640).
- Returns:
- np.ndarray: Anchor box coordinates as a NumPy array with shape (num_anchors, 4).
- """
- steps = [8, 16, 32]
- min_sizes = [[16, 32], [64, 128], [256, 512]]
- anchors = []
- feature_maps = [[math.ceil(image_size[0] / step), math.ceil(image_size[1] / step)] for step in steps]
- for k, (map_height, map_width) in enumerate(feature_maps):
- step = steps[k]
- for i, j in itertools.product(range(map_height), range(map_width)):
- for min_size in min_sizes[k]:
- s_kx = min_size / image_size[1]
- s_ky = min_size / image_size[0]
- dense_cx = [x * step / image_size[1] for x in [j + 0.5]]
- dense_cy = [y * step / image_size[0] for y in [i + 0.5]]
- for cy, cx in itertools.product(dense_cy, dense_cx):
- anchors += [cx, cy, s_kx, s_ky]
- output = np.array(anchors, dtype=np.float32).reshape(-1, 4)
- return output
- def non_max_suppression(dets: np.ndarray, threshold: float) -> List[int]:
- """
- Apply Non-Maximum Suppression (NMS) to reduce overlapping bounding boxes based on a threshold.
- Args:
- dets (np.ndarray): Array of detections with each row as [x1, y1, x2, y2, score].
- threshold (float): IoU threshold for suppression.
- Returns:
- List[int]: Indices of bounding boxes retained after suppression.
- """
- x1 = dets[:, 0]
- y1 = dets[:, 1]
- x2 = dets[:, 2]
- y2 = dets[:, 3]
- scores = dets[:, 4]
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= threshold)[0]
- order = order[inds + 1]
- return keep
- def decode_boxes(loc: np.ndarray, priors: np.ndarray, variances: Optional[List[float]] = None) -> np.ndarray:
- """
- Decode locations from predictions using priors to undo
- the encoding done for offset regression at train time (RetinaFace specific).
- Args:
- loc (np.ndarray): Location predictions for loc layers, shape: [num_priors, 4]
- priors (np.ndarray): Prior boxes in center-offset form, shape: [num_priors, 4]
- variances (Optional[List[float]]): Variances of prior boxes. Defaults to [0.1, 0.2].
- Returns:
- np.ndarray: Decoded bounding box predictions with shape [num_priors, 4]
- """
- if variances is None:
- variances = [0.1, 0.2]
- # Compute centers of predicted boxes
- cxcy = priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:]
- # Compute widths and heights of predicted boxes
- wh = priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])
- # Convert center, size to corner coordinates
- boxes = np.zeros_like(loc)
- boxes[:, :2] = cxcy - wh / 2 # xmin, ymin
- boxes[:, 2:] = cxcy + wh / 2 # xmax, ymax
- return boxes
- def decode_landmarks(
- predictions: np.ndarray, priors: np.ndarray, variances: Optional[List[float]] = None
- ) -> np.ndarray:
- """
- Decode landmark predictions using prior boxes (RetinaFace specific).
- Args:
- predictions (np.ndarray): Landmark predictions, shape: [num_priors, 10]
- priors (np.ndarray): Prior boxes, shape: [num_priors, 4]
- variances (Optional[List[float]]): Scaling factors for landmark offsets. Defaults to [0.1, 0.2].
- Returns:
- np.ndarray: Decoded landmarks, shape: [num_priors, 10]
- """
- if variances is None:
- variances = [0.1, 0.2]
- # Reshape predictions to [num_priors, 5, 2] to process landmark points
- predictions = predictions.reshape(predictions.shape[0], 5, 2)
- # Expand priors to match (num_priors, 5, 2)
- priors_xy = np.repeat(priors[:, :2][:, np.newaxis, :], 5, axis=1) # (num_priors, 5, 2)
- priors_wh = np.repeat(priors[:, 2:][:, np.newaxis, :], 5, axis=1) # (num_priors, 5, 2)
- # Compute absolute landmark positions
- landmarks = priors_xy + predictions * variances[0] * priors_wh
- # Flatten back to [num_priors, 10]
- landmarks = landmarks.reshape(landmarks.shape[0], -1)
- return landmarks
- def distance2bbox(points: np.ndarray, distance: np.ndarray, max_shape: Optional[Tuple[int, int]] = None) -> np.ndarray:
- """
- Decode distance prediction to bounding box (SCRFD specific).
- Args:
- points (np.ndarray): Anchor points with shape (n, 2), [x, y].
- distance (np.ndarray): Distance from the given point to 4
- boundaries (left, top, right, bottom) with shape (n, 4).
- max_shape (Optional[Tuple[int, int]]): Shape of the image (height, width) for clipping.
- Returns:
- np.ndarray: Decoded bounding boxes with shape (n, 4) as [x1, y1, x2, y2].
- """
- x1 = points[:, 0] - distance[:, 0]
- y1 = points[:, 1] - distance[:, 1]
- x2 = points[:, 0] + distance[:, 2]
- y2 = points[:, 1] + distance[:, 3]
- if max_shape is not None:
- x1 = np.clip(x1, 0, max_shape[1])
- y1 = np.clip(y1, 0, max_shape[0])
- x2 = np.clip(x2, 0, max_shape[1])
- y2 = np.clip(y2, 0, max_shape[0])
- else:
- x1 = np.maximum(x1, 0)
- y1 = np.maximum(y1, 0)
- x2 = np.maximum(x2, 0)
- y2 = np.maximum(y2, 0)
- return np.stack([x1, y1, x2, y2], axis=-1)
- def distance2kps(points: np.ndarray, distance: np.ndarray, max_shape: Optional[Tuple[int, int]] = None) -> np.ndarray:
- """
- Decode distance prediction to keypoints (SCRFD specific).
- Args:
- points (np.ndarray): Anchor points with shape (n, 2), [x, y].
- distance (np.ndarray): Distance from the given point to keypoints with shape (n, 2k).
- max_shape (Optional[Tuple[int, int]]): Shape of the image (height, width) for clipping.
- Returns:
- np.ndarray: Decoded keypoints with shape (n, 2k).
- """
- preds = []
- for i in range(0, distance.shape[1], 2):
- px = points[:, i % 2] + distance[:, i]
- py = points[:, i % 2 + 1] + distance[:, i + 1]
- if max_shape is not None:
- px = np.clip(px, 0, max_shape[1])
- py = np.clip(py, 0, max_shape[0])
- preds.append(px)
- preds.append(py)
- return np.stack(preds, axis=-1)
|