|
|
@@ -0,0 +1,243 @@
|
|
|
+# Copyright 2025 Yakhyokhuja Valikhujaev
|
|
|
+# Author: Yakhyokhuja Valikhujaev
|
|
|
+# GitHub: https://github.com/yakhyo
|
|
|
+
|
|
|
+import itertools
|
|
|
+import math
|
|
|
+from typing import List, Optional, Tuple
|
|
|
+
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+__all__ = [
|
|
|
+ 'resize_image',
|
|
|
+ 'generate_anchors',
|
|
|
+ 'non_max_suppression',
|
|
|
+ 'decode_boxes',
|
|
|
+ 'decode_landmarks',
|
|
|
+ 'distance2bbox',
|
|
|
+ 'distance2kps',
|
|
|
+]
|
|
|
+
|
|
|
+
|
|
|
+def resize_image(frame, target_shape: Tuple[int, int] = (640, 640)) -> Tuple[np.ndarray, float]:
|
|
|
+ """
|
|
|
+ Resize an image to fit within a target shape while keeping its aspect ratio.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ frame (np.ndarray): Input image.
|
|
|
+ target_shape (Tuple[int, int]): Target size (width, height). Defaults to (640, 640).
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ Tuple[np.ndarray, float]: Resized image on a blank canvas and the resize factor.
|
|
|
+ """
|
|
|
+ width, height = target_shape
|
|
|
+
|
|
|
+ # Aspect-ratio preserving resize
|
|
|
+ im_ratio = float(frame.shape[0]) / frame.shape[1]
|
|
|
+ model_ratio = height / width
|
|
|
+ if im_ratio > model_ratio:
|
|
|
+ new_height = height
|
|
|
+ new_width = int(new_height / im_ratio)
|
|
|
+ else:
|
|
|
+ new_width = width
|
|
|
+ new_height = int(new_width * im_ratio)
|
|
|
+
|
|
|
+ resize_factor = float(new_height) / frame.shape[0]
|
|
|
+ resized_frame = cv2.resize(frame, (new_width, new_height))
|
|
|
+
|
|
|
+ # Create blank image and place resized image on it
|
|
|
+ image = np.zeros((height, width, 3), dtype=np.uint8)
|
|
|
+ image[:new_height, :new_width, :] = resized_frame
|
|
|
+
|
|
|
+ return image, resize_factor
|
|
|
+
|
|
|
+
|
|
|
+def generate_anchors(image_size: Tuple[int, int] = (640, 640)) -> np.ndarray:
|
|
|
+ """
|
|
|
+ Generate anchor boxes for a given image size (RetinaFace specific).
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_size (Tuple[int, int]): Input image size (width, height). Defaults to (640, 640).
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ np.ndarray: Anchor box coordinates as a NumPy array with shape (num_anchors, 4).
|
|
|
+ """
|
|
|
+ steps = [8, 16, 32]
|
|
|
+ min_sizes = [[16, 32], [64, 128], [256, 512]]
|
|
|
+
|
|
|
+ anchors = []
|
|
|
+ feature_maps = [[math.ceil(image_size[0] / step), math.ceil(image_size[1] / step)] for step in steps]
|
|
|
+
|
|
|
+ for k, (map_height, map_width) in enumerate(feature_maps):
|
|
|
+ step = steps[k]
|
|
|
+ for i, j in itertools.product(range(map_height), range(map_width)):
|
|
|
+ for min_size in min_sizes[k]:
|
|
|
+ s_kx = min_size / image_size[1]
|
|
|
+ s_ky = min_size / image_size[0]
|
|
|
+
|
|
|
+ dense_cx = [x * step / image_size[1] for x in [j + 0.5]]
|
|
|
+ dense_cy = [y * step / image_size[0] for y in [i + 0.5]]
|
|
|
+ for cy, cx in itertools.product(dense_cy, dense_cx):
|
|
|
+ anchors += [cx, cy, s_kx, s_ky]
|
|
|
+
|
|
|
+ output = np.array(anchors, dtype=np.float32).reshape(-1, 4)
|
|
|
+ return output
|
|
|
+
|
|
|
+
|
|
|
+def non_max_suppression(dets: np.ndarray, threshold: float) -> List[int]:
|
|
|
+ """
|
|
|
+ Apply Non-Maximum Suppression (NMS) to reduce overlapping bounding boxes based on a threshold.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ dets (np.ndarray): Array of detections with each row as [x1, y1, x2, y2, score].
|
|
|
+ threshold (float): IoU threshold for suppression.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ List[int]: Indices of bounding boxes retained after suppression.
|
|
|
+ """
|
|
|
+ x1 = dets[:, 0]
|
|
|
+ y1 = dets[:, 1]
|
|
|
+ x2 = dets[:, 2]
|
|
|
+ y2 = dets[:, 3]
|
|
|
+ scores = dets[:, 4]
|
|
|
+
|
|
|
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
|
+ order = scores.argsort()[::-1]
|
|
|
+
|
|
|
+ keep = []
|
|
|
+ while order.size > 0:
|
|
|
+ i = order[0]
|
|
|
+ keep.append(i)
|
|
|
+ xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
+ yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
+ xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
+ yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
+
|
|
|
+ w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
|
+ h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
+ inter = w * h
|
|
|
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
+
|
|
|
+ inds = np.where(ovr <= threshold)[0]
|
|
|
+ order = order[inds + 1]
|
|
|
+
|
|
|
+ return keep
|
|
|
+
|
|
|
+
|
|
|
+def decode_boxes(loc: np.ndarray, priors: np.ndarray, variances: Optional[List[float]] = None) -> np.ndarray:
|
|
|
+ """
|
|
|
+ Decode locations from predictions using priors to undo
|
|
|
+ the encoding done for offset regression at train time (RetinaFace specific).
|
|
|
+
|
|
|
+ Args:
|
|
|
+ loc (np.ndarray): Location predictions for loc layers, shape: [num_priors, 4]
|
|
|
+ priors (np.ndarray): Prior boxes in center-offset form, shape: [num_priors, 4]
|
|
|
+ variances (Optional[List[float]]): Variances of prior boxes. Defaults to [0.1, 0.2].
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ np.ndarray: Decoded bounding box predictions with shape [num_priors, 4]
|
|
|
+ """
|
|
|
+ if variances is None:
|
|
|
+ variances = [0.1, 0.2]
|
|
|
+ # Compute centers of predicted boxes
|
|
|
+ cxcy = priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:]
|
|
|
+
|
|
|
+ # Compute widths and heights of predicted boxes
|
|
|
+ wh = priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])
|
|
|
+
|
|
|
+ # Convert center, size to corner coordinates
|
|
|
+ boxes = np.zeros_like(loc)
|
|
|
+ boxes[:, :2] = cxcy - wh / 2 # xmin, ymin
|
|
|
+ boxes[:, 2:] = cxcy + wh / 2 # xmax, ymax
|
|
|
+
|
|
|
+ return boxes
|
|
|
+
|
|
|
+
|
|
|
+def decode_landmarks(
|
|
|
+ predictions: np.ndarray, priors: np.ndarray, variances: Optional[List[float]] = None
|
|
|
+) -> np.ndarray:
|
|
|
+ """
|
|
|
+ Decode landmark predictions using prior boxes (RetinaFace specific).
|
|
|
+
|
|
|
+ Args:
|
|
|
+ predictions (np.ndarray): Landmark predictions, shape: [num_priors, 10]
|
|
|
+ priors (np.ndarray): Prior boxes, shape: [num_priors, 4]
|
|
|
+ variances (Optional[List[float]]): Scaling factors for landmark offsets. Defaults to [0.1, 0.2].
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ np.ndarray: Decoded landmarks, shape: [num_priors, 10]
|
|
|
+ """
|
|
|
+ if variances is None:
|
|
|
+ variances = [0.1, 0.2]
|
|
|
+
|
|
|
+ # Reshape predictions to [num_priors, 5, 2] to process landmark points
|
|
|
+ predictions = predictions.reshape(predictions.shape[0], 5, 2)
|
|
|
+
|
|
|
+ # Expand priors to match (num_priors, 5, 2)
|
|
|
+ priors_xy = np.repeat(priors[:, :2][:, np.newaxis, :], 5, axis=1) # (num_priors, 5, 2)
|
|
|
+ priors_wh = np.repeat(priors[:, 2:][:, np.newaxis, :], 5, axis=1) # (num_priors, 5, 2)
|
|
|
+
|
|
|
+ # Compute absolute landmark positions
|
|
|
+ landmarks = priors_xy + predictions * variances[0] * priors_wh
|
|
|
+
|
|
|
+ # Flatten back to [num_priors, 10]
|
|
|
+ landmarks = landmarks.reshape(landmarks.shape[0], -1)
|
|
|
+
|
|
|
+ return landmarks
|
|
|
+
|
|
|
+
|
|
|
+def distance2bbox(points: np.ndarray, distance: np.ndarray, max_shape: Optional[Tuple[int, int]] = None) -> np.ndarray:
|
|
|
+ """
|
|
|
+ Decode distance prediction to bounding box (SCRFD specific).
|
|
|
+
|
|
|
+ Args:
|
|
|
+ points (np.ndarray): Anchor points with shape (n, 2), [x, y].
|
|
|
+ distance (np.ndarray): Distance from the given point to 4
|
|
|
+ boundaries (left, top, right, bottom) with shape (n, 4).
|
|
|
+ max_shape (Optional[Tuple[int, int]]): Shape of the image (height, width) for clipping.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ np.ndarray: Decoded bounding boxes with shape (n, 4) as [x1, y1, x2, y2].
|
|
|
+ """
|
|
|
+ x1 = points[:, 0] - distance[:, 0]
|
|
|
+ y1 = points[:, 1] - distance[:, 1]
|
|
|
+ x2 = points[:, 0] + distance[:, 2]
|
|
|
+ y2 = points[:, 1] + distance[:, 3]
|
|
|
+
|
|
|
+ if max_shape is not None:
|
|
|
+ x1 = np.clip(x1, 0, max_shape[1])
|
|
|
+ y1 = np.clip(y1, 0, max_shape[0])
|
|
|
+ x2 = np.clip(x2, 0, max_shape[1])
|
|
|
+ y2 = np.clip(y2, 0, max_shape[0])
|
|
|
+ else:
|
|
|
+ x1 = np.maximum(x1, 0)
|
|
|
+ y1 = np.maximum(y1, 0)
|
|
|
+ x2 = np.maximum(x2, 0)
|
|
|
+ y2 = np.maximum(y2, 0)
|
|
|
+
|
|
|
+ return np.stack([x1, y1, x2, y2], axis=-1)
|
|
|
+
|
|
|
+
|
|
|
+def distance2kps(points: np.ndarray, distance: np.ndarray, max_shape: Optional[Tuple[int, int]] = None) -> np.ndarray:
|
|
|
+ """
|
|
|
+ Decode distance prediction to keypoints (SCRFD specific).
|
|
|
+
|
|
|
+ Args:
|
|
|
+ points (np.ndarray): Anchor points with shape (n, 2), [x, y].
|
|
|
+ distance (np.ndarray): Distance from the given point to keypoints with shape (n, 2k).
|
|
|
+ max_shape (Optional[Tuple[int, int]]): Shape of the image (height, width) for clipping.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ np.ndarray: Decoded keypoints with shape (n, 2k).
|
|
|
+ """
|
|
|
+ preds = []
|
|
|
+ for i in range(0, distance.shape[1], 2):
|
|
|
+ px = points[:, i % 2] + distance[:, i]
|
|
|
+ py = points[:, i % 2 + 1] + distance[:, i + 1]
|
|
|
+ if max_shape is not None:
|
|
|
+ px = np.clip(px, 0, max_shape[1])
|
|
|
+ py = np.clip(py, 0, max_shape[0])
|
|
|
+ preds.append(px)
|
|
|
+ preds.append(py)
|
|
|
+ return np.stack(preds, axis=-1)
|