Browse Source

删除中控端相关内容

fanghuisheng 3 weeks ago
parent
commit
3407ce5ea2

+ 3 - 3
src/components/oa-upgrade/index.vue

@@ -54,7 +54,7 @@
       </view>
     </view>
   </view>
-  <view class="upgrade-show" v-if="isModalShow"></view>
+  <view class="upgrade-show" v-if="isModalShow" @click="handleCancel"></view>
 </template>
 <script setup>
 import { onReady, onLoad, onShow, onNavigationBarButtonTap, onPullDownRefresh, onReachBottom } from "@dcloudio/uni-app";
@@ -177,7 +177,7 @@ defineExpose({
   border-radius: 20rpx;
   box-sizing: border-box;
   border: 1px solid #eee;
-  z-index: 1200;
+  z-index: 10090;
 }
 
 .header-bg {
@@ -297,7 +297,7 @@ defineExpose({
   right: 0;
   bottom: 0;
   left: 0;
-  z-index: 1110;
+  z-index: 10085;
   background: rgba(0, 0, 0, 0.6);
 }
 </style>

+ 1 - 25
src/pages.json

@@ -73,30 +73,6 @@
                     "titleNView": false
                 }
             }
-        },
-        {
-            "path": "pages/door/index",
-            "style": {
-                "navigationBarTitleText": "门禁识别",
-                "enablePullDownRefresh": false,
-                "navigationStyle": "custom",
-                "app-plus": {
-                    "bounce": "none",
-                    "titleNView": false
-                }
-            }
-        },
-        {
-            "path": "pages/face/index",
-            "style": {
-                "navigationBarTitleText": "人脸识别",
-                "enablePullDownRefresh": false,
-                "navigationStyle": "custom",
-                "app-plus": {
-                    "bounce": "none",
-                    "titleNView": false
-                }
-            }
         }
     ],
     "subPackages": [
@@ -1060,7 +1036,7 @@
         },
         {
             "name": "门禁管理系统",
-            "root": "pages/business/doorManage/",
+            "root": "pages/business/door/",
             "pages": [
                 {
                     "path": "list/index",

+ 0 - 0
src/pages/business/doorManage/list/index.vue → src/pages/business/door/list/index.vue


+ 0 - 0
src/pages/business/doorManage/record/index.vue → src/pages/business/door/record/index.vue


+ 0 - 144
src/pages/door/index.vue

@@ -1,144 +0,0 @@
-<template>
-  <web-view v-show="!controlStore.modal.show" ref="faceView" id="faceView" class="faceView" src="/static/face/door.html" bindmessage="receiveMessage" :webview-styles="webviewStyles" @message="onMessage">
-  </web-view>
-
-  <u-modal
-    :show="controlStore.modal.show"
-    title=""
-    cancelText="退出应用"
-    confirmText="确认"
-    :zoom="false"
-    :showConfirmButton="true"
-    :showCancelButton="true"
-    :closeOnClickOverlay="true"
-    @confirm="controlStore.modalConfirm()"
-    @cancel="controlStore.modalCancel()"
-    @close="controlStore.modalClose()"
-  >
-    <view class="slot-content">
-      <u-subsection class="mb20" :list="controlStore.subsection.list" :current="controlStore.subsection.value" @change="controlStore.sectionChange"></u-subsection>
-
-      <view v-if="controlStore.subsection.value == 0">
-        <view class="mb10 required">服务器地址</view>
-        <view class="mb20">
-          <u-input v-model="controlStore.form.linkUrl" placeholder="服务器地址(必填)" border="bottom" style="padding: 6px 0px" />
-        </view>
-
-        <view class="mb10">服务器端口</view>
-        <view class="mb20">
-          <u-input v-model="controlStore.form.port" placeholder="服务器端口(非必填)" border="bottom" style="padding: 6px 0px" />
-        </view>
-      </view>
-
-      <view v-if="controlStore.subsection.value == 1">
-        <view class="mb10">绑定门禁</view>
-        <view>
-          <u-input
-            v-model="controlStore.form.doorName"
-            placeholder="门禁(必选)"
-            suffixIcon="arrow-right"
-            suffixIconStyle="color: #909399"
-            border="none"
-            disabledColor="transparent"
-            disabled
-            @click="controlStore.handlePicker('绑定门禁')"
-          />
-        </view>
-      </view>
-    </view>
-  </u-modal>
-
-  <u-picker
-    :show="controlStore.picker.show"
-    :columns="controlStore.picker.list"
-    :title="'请选择' + controlStore.picker.title"
-    keyName="name"
-    visibleItemCount="6"
-    :defaultIndex="[controlStore.picker.defaultIndex]"
-    :closeOnClickOverlay="true"
-    @close="controlStore.picker.show = false"
-    @cancel="controlStore.picker.show = false"
-    @confirm="controlStore.pickerConfirm"
-  ></u-picker>
-</template>
-<script setup>
-/*----------------------------------依赖引入-----------------------------------*/
-import { onLoad, onShow, onReady, onHide, onLaunch, onUnload, onNavigationBarButtonTap, onPageScroll } from "@dcloudio/uni-app";
-import { ref, reactive, computed, getCurrentInstance, toRefs, inject, nextTick, watch } from "vue";
-/*----------------------------------接口引入-----------------------------------*/
-/*----------------------------------组件引入-----------------------------------*/
-/*----------------------------------store引入-----------------------------------*/
-import { controlStores } from "@/store/modules/index";
-/*----------------------------------公共方法引入-----------------------------------*/
-const controlStore = controlStores();
-/*----------------------------------公共变量-----------------------------------*/
-const state = reactive({
-  webviewStyles: {
-    width: "100%",
-    height: "100%",
-  },
-});
-const { webviewStyles } = toRefs(state);
-
-// 初始化
-function init() {
-  controlStore.pageFunction = ["门禁"];
-  controlStore.initCamera();
-  controlStore.initNfc();
-  controlStore.initData();
-
-  controlStore.handleChildren({
-    funcName: "初始化数据",
-    data: JSON.stringify(controlStore.form),
-  });
-}
-
-/**
- * @接收子页面传过来的值
- */
-function onMessage(e) {
-  controlStore.analysisData(e.detail.data[0]);
-}
-// #ifdef H5
-window.onmessage = function (event) {
-  controlStore.analysisData(event.data);
-};
-// #endif
-
-onLoad((options) => {
-  setTimeout(() => {
-    init();
-  }, 500);
-});
-
-onShow(() => {});
-
-onUnload(() => {});
-</script>
-<style>
-.faceView {
-  width: 100% !important;
-  height: 100% !important;
-}
-
-iframe {
-  width: 100% !important;
-  height: 100% !important;
-  border-width: 0;
-}
-</style>
-<style lang="scss" scoped>
-:deep() {
-  .u-modal {
-    width: 20rem !important;
-
-    &__title {
-      font-size: 18px !important;
-    }
-    .slot-content {
-      font-size: 16px;
-      width: 100%;
-    }
-  }
-}
-</style>

+ 0 - 373
src/pages/face/index.vue

@@ -1,373 +0,0 @@
-<template>
-  <web-view
-    v-show="!controlStore.modal.show"
-    ref="faceView"
-    id="faceView"
-    class="faceView"
-    src="/static/face/meeting.html"
-    bindmessage="receiveMessage"
-    :webview-styles="webviewStyles"
-    @message="onMessage"
-  >
-  </web-view>
-
-  <u-modal
-    :show="controlStore.modal.show"
-    title="配置服务器"
-    :cancelText="'退出应用'"
-    :zoom="false"
-    :showConfirmButton="true"
-    :showCancelButton="true"
-    :closeOnClickOverlay="true"
-    @confirm="controlStore.modalConfirm(), getMeetingRoomReservationList()"
-    @cancel="controlStore.modalCancel()"
-    @close="controlStore.modalClose()"
-  >
-    <view class="slot-content">
-      <u-subsection class="mb20" :list="controlStore.subsection.list" :current="controlStore.subsection.value" @change="controlStore.sectionChange"></u-subsection>
-
-      <view v-if="controlStore.subsection.value == 0">
-        <view class="mb10 required">服务器地址</view>
-        <view class="mb20">
-          <u-input v-model="controlStore.form.linkUrl" placeholder="服务器地址(必填)" border="bottom" style="padding: 6px 0px" />
-        </view>
-
-        <view class="mb10">服务器端口</view>
-        <view class="mb20">
-          <u-input v-model="controlStore.form.port" placeholder="服务器端口(非必填)" border="bottom" style="padding: 6px 0px" />
-        </view>
-      </view>
-
-      <view v-if="controlStore.subsection.value == 1">
-        <view class="mb10 required">绑定会议室</view>
-        <view class="mb20">
-          <u-input
-            v-model="controlStore.form.meetingName"
-            placeholder="会议室(必选)"
-            suffixIcon="arrow-right"
-            suffixIconStyle="color: #909399"
-            border="bottom"
-            style="padding: 6px 0px"
-            disabledColor="transparent"
-            disabled
-            @click="controlStore.handlePicker('绑定会议室')"
-          />
-        </view>
-
-        <view class="mb10 required">绑定门禁</view>
-        <view>
-          <u-input
-            v-model="controlStore.form.doorName"
-            placeholder="门禁(必选)"
-            suffixIcon="arrow-right"
-            suffixIconStyle="color: #909399"
-            border="none"
-            disabledColor="transparent"
-            disabled
-            @click="controlStore.handlePicker('绑定门禁')"
-          />
-        </view>
-
-        <view class="mb10 required" @click="handleButton()">开启灯光</view>
-      </view>
-    </view>
-  </u-modal>
-
-  <u-picker
-    :show="controlStore.picker.show"
-    :columns="controlStore.picker.list"
-    :title="'请选择' + controlStore.picker.title"
-    keyName="name"
-    visibleItemCount="6"
-    :defaultIndex="[controlStore.picker.defaultIndex]"
-    :closeOnClickOverlay="true"
-    @close="controlStore.picker.show = false"
-    @cancel="controlStore.picker.show = false"
-    @confirm="controlStore.pickerConfirm"
-  ></u-picker>
-</template>
-<script setup>
-/*----------------------------------依赖引入-----------------------------------*/
-import config from "@/config";
-import { onLoad, onShow, onReady, onHide, onLaunch, onUnload, onNavigationBarButtonTap, onPageScroll } from "@dcloudio/uni-app";
-import { ref, reactive, computed, getCurrentInstance, toRefs, inject, nextTick, watch } from "vue";
-/*----------------------------------接口引入-----------------------------------*/
-import { meetingApi, signOnOut } from "@/api/business/meeting.js";
-/*----------------------------------组件引入-----------------------------------*/
-/*----------------------------------store引入-----------------------------------*/
-import { controlStores } from "@/store/modules/index";
-/*----------------------------------公共方法引入-----------------------------------*/
-const { proxy } = getCurrentInstance();
-const controlStore = controlStores();
-/*----------------------------------公共变量-----------------------------------*/
-const state = reactive({
-  webviewStyles: {
-    width: "100%",
-    height: "100%",
-  },
-  inter: {
-    interMeeting: null,
-  },
-});
-const { webviewStyles, meetingRoomList, modal, picker, form, inter } = toRefs(state);
-
-// 初始化
-function init() {
-  controlStore.pageFunction = ["门禁", "会议"];
-  controlStore.initCamera();
-  controlStore.initNfc();
-  controlStore.initData();
-
-  // if (!inter.interMeeting) {
-  //   getMeetingRoomReservationList();
-  //   inter.interMeeting = setInterval(() => {
-  //     getMeetingRoomReservationList();
-  //   }, 1000 * 5);
-  // }
-}
-
-/**
- * @会议室详情列表
- */
-function getMeetingRoomReservationList() {
-  controlStore.meetingTimeList = [];
-  controlStore.meetingReservaList.thisVenueData = [];
-  controlStore.meetingReservaList.thisVenueTime = {};
-  controlStore.meetingReservaList.nextSceneData = [];
-  controlStore.meetingReservaList.nextSceneTime = {};
-
-  for (let i = 0; i <= 23.5; i += 0.5) {
-    var time = "";
-    if (i % 1 === 0.5) {
-      if (i < 10) {
-        time = "0" + (i - 0.5) + ":30";
-      } else {
-        time = i - 0.5 + ":30";
-      }
-    } else {
-      if (i < 10) {
-        time = "0" + i + ":00";
-      } else {
-        time = i + ":00";
-      }
-    }
-
-    controlStore.meetingTimeList.push({
-      startTime: time,
-      endTime: time,
-      isEnd: 0,
-      isHave: 0,
-      isReservation: 0,
-    });
-  }
-
-  meetingApi()
-    .GetMeetingRoomReservationList({
-      domain: controlStore.form.domain,
-      meetingRoomId: controlStore.form.meetingId,
-      date: proxy.$dayjs().format("YYYY-MM-DD") + " 00:00:00",
-    })
-    .then((requset) => {
-      if (requset.data.length > 0) {
-        controlStore.meetingReservaList.dataAll = requset.data[0];
-        controlStore.meetingReservaList.dataAll.dmMeetingList.forEach((e, index) => {
-          //判断开始时间和结束时间是否包含当前时间
-          if (proxy.$dayjs().isBetween(e.startDate, e.endDate, null, "[]")) {
-            controlStore.meetingReservaList.thisVenueData.push(e);
-            controlStore.meetingReservaList.thisVenueTime = proxy.$time.timeRestructuring(controlStore.meetingReservaList.dataAll.meetingRoomUsage[index]);
-          }
-          //判断当前时间是否相同或在其之前
-          if (proxy.$dayjs().isSameOrBefore(e.startDate) && controlStore.meetingReservaList.nextSceneData.length < 1) {
-            controlStore.meetingReservaList.nextSceneData.push(e);
-            controlStore.meetingReservaList.nextSceneTime = proxy.$time.timeRestructuring(controlStore.meetingReservaList.dataAll.meetingRoomUsage[index]);
-          }
-        });
-
-        controlStore.meetingReservaList.timeList = showTimeSegments(controlStore.meetingTimeList);
-        controlStore.handleChildren({
-          funcName: "初始化数据",
-          data: JSON.stringify(controlStore.meetingReservaList),
-        });
-      } else {
-        controlStore.meetingReservaList.timeList = controlStore.meetingTimeList;
-        controlStore.handleChildren({
-          funcName: "初始化数据",
-          data: JSON.stringify(controlStore.meetingReservaList),
-        });
-      }
-    })
-    .catch((err) => {});
-}
-
-// 显示时间段的函数
-function showTimeSegments(times) {
-  const timesXleList = JSON.parse(JSON.stringify(times));
-
-  for (var i = 0; i < timesXleList.length; i++) {
-    const timeValue = new Date(`${proxy.$dayjs().format("YYYY-MM-DD")}T${timesXleList[i].startTime}`);
-
-    controlStore.meetingReservaList.dataAll.meetingRoomUsage.forEach((item) => {
-      const timeList = proxy.$time.timeRestructuring(item);
-      const startValue = new Date(`${proxy.$dayjs().format("YYYY-MM-DD")}T${timeList.startTime}`);
-      const endValue = new Date(`${proxy.$dayjs().format("YYYY-MM-DD")}T${timeList.endTime}`);
-
-      if (timeValue.getTime() >= startValue.getTime() && timeValue.getTime() < endValue.getTime()) {
-        timesXleList.splice(i--, 1);
-      }
-    });
-  }
-
-  controlStore.meetingReservaList.dataAll.meetingRoomUsage.forEach((item) => {
-    const timeList = proxy.$time.timeRestructuring(item);
-    const startValue = new Date(`${proxy.$dayjs().format("YYYY-MM-DD")}T${timeList.startTime}`);
-    const endValue = new Date(`${proxy.$dayjs().format("YYYY-MM-DD")}T${timeList.endTime}`);
-
-    if (proxy.$dayjs().isBetween(startValue, endValue, null, "[]")) {
-      timesXleList.push({
-        ...timeList,
-        isEnd: 0,
-        isHave: 1,
-        isReservation: 0,
-      });
-    } else {
-      if (proxy.$dayjs().isSameOrAfter(startValue)) {
-        timesXleList.push({
-          ...timeList,
-          isEnd: 1,
-          isHave: 0,
-          isReservation: 0,
-        });
-      }
-      if (proxy.$dayjs().isSameOrBefore(startValue)) {
-        timesXleList.push({
-          ...timeList,
-          isEnd: 0,
-          isHave: 0,
-          isReservation: 1,
-        });
-      }
-    }
-  });
-
-  var newTimesXleList = proxy.$common
-    .uniq(timesXleList, "startTime")
-    .sort((a, b) => new Date(`${proxy.$dayjs().format("YYYY-MM-DD")}T${a.startTime}`) - new Date(`${proxy.$dayjs().format("YYYY-MM-DD")}T${b.startTime}`));
-  return newTimesXleList;
-}
-
-/**
- * @接收子页面传过来的值
- */
-function onMessage(e) {
-  controlStore.analysisData(e.detail.data[0]);
-}
-// #ifdef H5
-window.onmessage = function (event) {
-  controlStore.analysisData(event.data);
-};
-// #endif
-
-function testAsyncFunc(imgUrl, index) {
-  // 调用异步方法
-  testModule.testAsyncFunc(
-    {
-      imgUrl: imgUrl,
-    },
-    (ret) => {
-      console.log(ret);
-    }
-  );
-}
-
-const device = uni.requireNativePlugin("device");
-function handleButton(){
-  device.setLed("绿色");
-}
-
-onLoad((options) => {
-  setTimeout(() => {
-    init();
-  }, 500);
-
-  // const plugin = uni.requireNativePlugin("temp_plugin");
-  // console.log(plugin);
-
-  // console.log("设备名称:", plugin.getDeviceName());
-
-  // plugin.showToast("我是原生插件Toast");
-
-
-  console.log(device);
-
-  console.log("IP地址:", device.getIpAddress());
-
-  
-
-  // device.invoke1();
-
-  // console.log("序列号:", device.getSerialno());
-
-  // console.log("分区信息:", device.getDeviceCustom(16));
-  // device.setLed("蓝色");
-
-  // 假设你已经配置好了uniapp的Android插件
-  const main = plus.android.runtimeMainActivity();
-  const Intent = plus.android.importClass("android.content.Intent");
-  const MyActivity = plus.android.importClass("com.example.device.test"); // 替换为你的包名和Activity名
-
-  // 创建一个Intent来启动你的Activity
-  const intent = new Intent(main, MyActivity);
-
-  // 添加需要的额外数据到intent
-  intent.putExtra("com.example.device.test.setLed", "绿色");
-
-  // 启动Activity
-  main.sendBroadcast(intent);
-
-  // var testModule = uni.requireNativePlugin("opencv_plugin");
-
-  // console.log(testModule);
-
-  // testModule.testAsyncFunc(
-  //   {
-  //     imgUrl: "https://img0.baidu.com/it/u=3389607,2584865022&fm=253&fmt=auto&app=138&f=PNG?w=449&h=645",
-  //   },
-  //   (ret) => {
-  //     console.log(ret);
-  //   }
-  // );
-});
-
-onShow(() => {});
-
-onUnload(() => {
-  clearInterval(inter.interMeeting); //销毁之前定时器
-});
-</script>
-<style>
-.faceView {
-  width: 100% !important;
-  height: 100% !important;
-}
-
-iframe {
-  width: 100% !important;
-  height: 100% !important;
-  border-width: 0;
-}
-</style>
-<style lang="scss" scoped>
-:deep() {
-  .u-modal {
-    width: 30rem !important;
-
-    &__title {
-      font-size: 18px !important;
-    }
-    .slot-content {
-      font-size: 16px;
-      width: 100%;
-    }
-  }
-}
-</style>

+ 0 - 1
src/permission.js

@@ -21,7 +21,6 @@ const whiteList = [
   "/pages/common/evaluate/record",//服务评价
   "/pages/common/NFC/index",//NFC读取
   "/pages/common/appMessage/details",//消息详情
-  "/pages/face/index",//人脸识别
 ];
 
 // 检查地址白名单

+ 4 - 4
src/plugins/constData.plugins.js

@@ -173,7 +173,7 @@ let oaApprovalTabbar = [
 // 门禁管理底部导航栏
 let doorTabbar = [
 	{
-		pagePath: "/pages/business/doorManage/list/index",
+		pagePath: "/pages/business/door/list/index",
 		iconClass: "oaIcon-tab-projectsList",
 		iconPath: "",
 		selectedIconPath: "",
@@ -181,7 +181,7 @@ let doorTabbar = [
 		dot: false,
 	},
 	{
-		pagePath: "/pages/business/doorManage/record/index",
+		pagePath: "/pages/business/door/record/index",
 		iconClass: "oaIcon-tab-reportRecord",
 		iconPath: "",
 		selectedIconPath: "",
@@ -340,6 +340,6 @@ export default {
 	xunJianList: xunJianList,
 	homeTabbar: homeTabbar,
 	projectTabbar: projectTabbar,
-	oaApprovalTabbar:oaApprovalTabbar,
-	doorTabbar:doorTabbar
+	oaApprovalTabbar: oaApprovalTabbar,
+	doorTabbar: doorTabbar
 };

+ 0 - 404
src/static/face/door.html

@@ -1,404 +0,0 @@
-<!doctype html>
-<html>
-
-<head>
-    <meta charset="utf-8">
-    <title>人脸识别</title>
-    <script type="text/javascript" src="./js/tracking.js"></script>
-    <script type="text/javascript" src="./js/face_data/face.js"></script>
-    <script type="text/javascript" src="./js/face_data/eye.js"></script>
-    <script type="text/javascript" src="./js/face_data/mouth.js"></script>
-    <script type="text/javascript" src="./js/jquery-2.2.1.min.js"></script>
-    <!-- VUE3 的 SDK -->
-    <script type="text/javascript" src="./js/vue.global.prod.js"></script>
-    <!-- uni 的 SDK -->
-    <script type="text/javascript" src="./js/uni.webview.1.5.4.js"></script>
-    <style lang="scss">
-        html,
-        body {
-            width: 100%;
-            height: 100%;
-            margin: 0;
-            /* Safari */
-            -webkit-user-select: none;
-            /* Firefox */
-            -moz-user-select: none;
-            /* IE10+/Edge */
-            -ms-user-select: none;
-            /* Standard syntax */
-            user-select: none;
-
-            ::-webkit-scrollbar {
-                display: none;
-            }
-        }
-
-        .home-card {
-            color: #fff;
-            width: 100%;
-            height: 100%;
-            text-align: center;
-            background-color: #fff;
-
-        }
-
-        .home-card-face {
-            position: relative;
-            width: 100%;
-            height: 100%;
-            background: url(img/face_bg.png) no-repeat;
-            background-size: 100% 100%;
-        }
-
-        video,
-        canvas {
-            width: 40vh;
-            height: 40vh;
-            position: absolute;
-            top: calc(40% - 40vh / 2);
-            left: calc(50% - 40vh / 2);
-            border-radius: 100%;
-            /* 视频内容填充元素的整个内容框,保持视频的宽高比并将视频内容铺满整个内容框,如果视频的宽高比和内容框不一致,视频会被裁剪 */
-            object-fit: cover;
-        }
-
-        .specialEffects {
-            width: 40vh;
-            height: 40vh;
-            position: absolute;
-            z-index: 1007 !important;
-            transform: translate(-50%, -50%);
-            top: 40%;
-            left: 50%;
-        }
-
-        .specialEffects {
-            background: url(img/face_vef.png) no-repeat;
-            background-size: 40vh 40vh;
-        }
-
-        .home-card-footer {
-            position: absolute;
-            bottom: 0;
-            z-index: 1008;
-            display: flex;
-            width: 100%;
-            font-size: 1rem;
-            margin-bottom: 1.5rem;
-        }
-
-        .home-card-footer .date {
-            width: 50%;
-            margin-right: 10%;
-        }
-
-        .home-card-footer .date .time1 {
-            font-size: 1.5rem;
-            margin-right: 1rem;
-        }
-
-        .home-card-footer .date .title {
-            margin-top: 0.5rem;
-        }
-
-        .home-card-footer .qrCode {
-            width: 40%;
-            margin: auto 0;
-        }
-
-        .home-card-footer .qrCode .buttom {
-            width: 70%;
-            padding: 0.5rem;
-            border-radius: 5px;
-            background-color: #1A5FDE;
-        }
-
-        @media (min-width: 768px) {
-            .home-card-footer {
-                font-size: 2.5rem;
-                margin-bottom: 3rem;
-            }
-
-            .home-card-footer .date .time1 {
-                font-size: 3rem;
-                margin-right: 2rem;
-            }
-
-            .home-card-footer .date .time2 {
-                font-size: 2rem;
-            }
-
-            .home-card-footer .date .title {
-                margin-top: 1rem;
-            }
-        }
-    </style>
-</head>
-
-<body>
-    <div id="face-container" class="face-container home-card">
-
-        <div class="home-card-face" id="home-card-face">
-            <!-- height="1564" -->
-            <video id="video" width="300" height="300" style="width:40vh;height:40vh" preload autoplay loop
-                muted></video>
-            <canvas id="myCanvas" width="300" height="300" style="width:40vh;height:40vh"></canvas>
-            <!-- 人脸特效区域 -->
-            <div id="specialEffects" class="specialEffects"></div>
-        </div>
-        <!-- 底部内容区域 -->
-        <div class="home-card-footer">
-            <div class="date">
-                <span class="time1">{{ state.dateTime }}</span>
-                <span class="time2">{{ state.date }}</span>
-                <div class="title">{{ state.doorName || '未绑定会议室' }}</div>
-            </div>
-            <div class="qrCode">
-                <!-- <div class="buttom">打开二维码</div> -->
-                <div class="buttom" @click="parentMessage('点击开门')">点击开门</div>
-            </div>
-        </div>
-    </div>
-    <script>
-        // 创建Vue实例
-        Vue.createApp({
-            components: {},
-            emits: [],
-            props: {},
-            data() {
-                return {
-                    flag: true,
-                    time: 1000,
-                    tracker: null,
-                    trackerTask: null,
-                    state: {
-                        date: null,
-                        dateTime: null,
-                        interDate: null
-                    },
-                    timeOutEvent: 0,
-                };
-            },
-            computed: {},
-            methods: {
-                // 初始化数据
-                initData() { },
-                // 初始化摄像头
-                initVido() {
-                    var that = this;
-
-                    var video = document.getElementById("video");//视频dom
-                    video.style.transform = 'scaleX(-1)';//视频翻转(1.水平翻转-scaleX(-1) 2.垂直翻转-scaleY(-1))
-                    var canvas = document.getElementById('myCanvas');//画布dom
-                    canvas.style.transform = 'scaleX(-1)';//画布翻转(1.水平翻转-scaleX(-1) 2.垂直翻转-scaleY(-1))
-                    var context = canvas.getContext('2d');
-                    that.tracker = new tracking.ObjectTracker(['face']);//'face', 'eye', 'mouth'
-                    that.tracker.setInitialScale(4); //设置识别的放大比例
-                    that.tracker.setStepSize(2);//设置步长
-                    that.tracker.setEdgesDensity(0.1);//边缘密度
-                    //启动摄像头,并且识别视频内容
-                    that.trackerTask = tracking.track('#video', that.tracker, {
-                        camera: true,
-                    });
-
-                    that.tracker.on('track', function (event) {
-                        console.log(event.data.length)
-                        if (that.flag) {
-                            console.log("拍照");
-                            that.state.faceImgState = false;
-                            context.drawImage(video, 0, 0, video.width, video.height);
-                            that.saveAsLocalImage()
-                            // that.capturePartialImage(rect.x, rect.y, rect.width, rect.height);
-                            context.clearRect(0, 0, canvas.width, canvas.height);
-                            that.flag = false;
-                        } else {
-                            //console.log("冷却中");
-                        }
-
-                        if (event.data.length === 0) {
-                            // console.log('未检测到人脸')
-                            context.clearRect(0, 0, canvas.width, canvas.height);
-                        } else if (event.data.length > 1) {
-                            // console.log('检测到多张人脸')
-                            context.clearRect(0, 0, canvas.width, canvas.height);
-                        } else {
-                            context.clearRect(0, 0, canvas.width, canvas.height);
-                            event.data.forEach(function (rect) {
-                                context.strokeStyle = '#409eff';
-                                context.strokeRect(rect.x, rect.y, rect.width, rect.height);
-                                context.fillStyle = "#409eff";
-                                context.lineWidth = 1.5;
-                            });
-                        }
-                    });
-
-                    $("#specialEffects").on({
-                        touchstart: function (e) {
-                            that.timeOutEvent = setTimeout(() => {
-                                that.longPress()
-                            }, 1000);
-                            e.preventDefault();
-                        },
-                        touchmove: function () {
-                            clearTimeout(that.timeOutEvent);
-                            that.timeOutEvent = 0;
-                        },
-                        touchend: function () {
-                            clearTimeout(that.timeOutEvent);
-                            if (that.timeOutEvent != 0) {
-                                console.log("你这是点击,不是长按");
-                            }
-                            return false;
-                        }
-                    })
-                },
-                // 向父页面推送数据
-                parentMessage(type, data) {
-                    var message = {
-                        funcName: type,
-                        data: data,
-                    };
-
-                    //APP-PLUS
-                    uni.postMessage({
-                        data: message
-                    });
-
-                    //H5
-                    if (window.parent) {
-                        window.parent.postMessage(message, '*');
-                    }
-                },
-                // 当需要抓拍部分画布时
-                capturePartialImage(x, y, width, height) {
-                    // 创建一个新的canvas,用于抓拍部分画布
-                    const canvas = document.getElementById('myCanvas');//画布dom
-                    const croppedCanvas = document.createElement('canvas');
-                    croppedCanvas.width = width;
-                    croppedCanvas.height = height;
-                    const croppedCtx = croppedCanvas.getContext('2d');
-
-                    // 只抓取需要的部分
-                    croppedCtx.drawImage(canvas, x, y, width, height, 0, 0, width, height);
-                    var image = croppedCanvas.toDataURL("image/png")
-                    that.parentMessage('人脸识别', { imageBase: image })
-                },
-                // 获取图片bold
-                saveAsLocalImage() {
-                    var that = this
-                    // var myCanvas = document.getElementById("myCanvas");
-                    // var image = myCanvas.toDataURL("image/png")
-                    // that.parentMessage('人脸识别', { imageBase: image })
-
-                    // 创建一个新的canvas,用于抓拍部分画布
-                    const canvas = document.getElementById('myCanvas');//画布dom
-                    const croppedCanvas = document.createElement('canvas');
-                    croppedCanvas.width = 200;
-                    croppedCanvas.height = 200;
-                    const croppedCtx = croppedCanvas.getContext('2d');
-
-                    // 只抓取需要的部分
-                    croppedCtx.drawImage(canvas, 0, 0, 150, 150);
-                    var image = croppedCanvas.toDataURL("image/png");
-                    that.parentMessage('人脸识别', { imageBase: image })
-                },
-                // 人脸冷却
-                faceCooling() {
-                    var that = this
-                    setTimeout(() => {
-                        that.flag = true
-                        that.state.faceImgState = false;
-                    }, that.time);
-                },
-                // 解析数据
-                analysisData(event) {
-                    console.log(event.funcName)
-                    if ("funcName" in event) {
-                        if (event.funcName == "初始化数据") {
-                            this.state.doorName = JSON.parse(event.data).doorName
-                            this.initData();
-                        } else if (event.funcName == "开启摄像头") {
-                            this.initVido();//调用初始化摄像头
-                        } else if (event.funcName == "关闭摄像头") {
-                            this.closeFace();
-                        } else if (event.funcName == "人脸冷却") {
-                            this.faceCooling();
-                        }
-                    }
-                },
-                // 长按事件
-                longPress() {
-                    this.parentMessage('打开配置')
-                    this.timeOutEvent = 0
-                },
-                // 监听页面是否隐藏
-                handleVisibilityChange() {
-                    if (document.visibilityState === 'visible') {
-                        // 页面变为可见时的处理逻辑
-                        console.log('页面变为可见');
-                        this.initVido();
-                    } else if (document.visibilityState === 'hidden') {
-                        // 页面变为不可见时的处理逻辑
-                        console.log('页面变为不可见');
-                        this.closeFace();
-                    }
-                },
-                // 关闭摄像头
-                closeFace() {
-                    try {
-                        this.tracker = null
-                        // 关闭摄像头
-                        let video = document.getElementById('video')
-                        video.srcObject.getTracks()[0].stop()
-                        // 停止侦测
-                        this.trackerTask.stop()
-                    } catch (error) { }
-                },
-
-                /**
-                * @获取年月日时分
-                * @returns
-                */
-                getFormatterDate(time3) {
-                    var date = new Date(time3);
-                    var Y = date.getFullYear() + "-";
-                    var M = (date.getMonth() + 1 < 10 ? "0" + (date.getMonth() + 1) : date.getMonth() + 1) + "-";
-                    var D = (date.getDate() < 10 ? "0" + date.getDate() : date.getDate()) + " ";
-
-                    var h = (date.getHours() < 10 ? "0" + date.getHours() : date.getHours()) + ":";
-                    var m = (date.getMinutes() < 10 ? "0" + date.getMinutes() : date.getMinutes())
-                    var strDate = Y + M + D + h + m;
-
-                    return strDate;
-                },
-            },
-            created() {
-                var that = this
-                // APP-PLUS || H5(接收父页面传过来的值)
-                window.receiveData = (msg) => {
-                    that.analysisData(msg)
-                }
-                window.addEventListener("message", function (event) {
-                    that.analysisData(event.data)
-                });
-            },
-            mounted() {
-                document.addEventListener('visibilitychange', this.handleVisibilityChange);
-
-                if (!this.state.interDate) {
-                    this.state.interDate = setInterval(() => {
-                        this.state.date = this.getFormatterDate(new Date()).split(' ')[0]
-                        this.state.dateTime = this.getFormatterDate(new Date()).split(' ')[1]
-                    }, 1000);
-                }
-            },
-            beforeDestroy() {
-                // 移除window方法
-                window.receiveData = null;
-            },
-            watch: {},
-        }).mount('#face-container');
-    </script>
-</body>
-
-</html>

BIN
src/static/face/img/face.gif


BIN
src/static/face/img/face_bg.png


BIN
src/static/face/img/face_detection.gif


BIN
src/static/face/img/face_vef.png


BIN
src/static/face/img/logo.png


File diff suppressed because it is too large
+ 0 - 7
src/static/face/js/face_data/eye-min.js


File diff suppressed because it is too large
+ 0 - 7
src/static/face/js/face_data/eye.js


File diff suppressed because it is too large
+ 0 - 7
src/static/face/js/face_data/face-min.js


File diff suppressed because it is too large
+ 0 - 7
src/static/face/js/face_data/face.js


File diff suppressed because it is too large
+ 0 - 7
src/static/face/js/face_data/mouth-min.js


File diff suppressed because it is too large
+ 0 - 7
src/static/face/js/face_data/mouth.js


File diff suppressed because it is too large
+ 0 - 1
src/static/face/js/jquery-2.2.1.min.js


File diff suppressed because it is too large
+ 0 - 7
src/static/face/js/tracking-min.js


+ 0 - 3111
src/static/face/js/tracking.js

@@ -1,3111 +0,0 @@
-/**
- * tracking - A modern approach for Computer Vision on the web.
- * @author Eduardo Lundgren <edu@rdo.io>
- * @version v1.1.3
- * @link http://trackingjs.com
- * @license BSD
- */
-(function(window, undefined) {
-  window.tracking = window.tracking || {};
-
-  /**
-   * Inherit the prototype methods from one constructor into another.
-   *
-   * Usage:
-   * <pre>
-   * function ParentClass(a, b) { }
-   * ParentClass.prototype.foo = function(a) { }
-   *
-   * function ChildClass(a, b, c) {
-   *   tracking.base(this, a, b);
-   * }
-   * tracking.inherits(ChildClass, ParentClass);
-   *
-   * var child = new ChildClass('a', 'b', 'c');
-   * child.foo();
-   * </pre>
-   *
-   * @param {Function} childCtor Child class.
-   * @param {Function} parentCtor Parent class.
-   */
-  tracking.inherits = function(childCtor, parentCtor) {
-    function TempCtor() {
-    }
-    TempCtor.prototype = parentCtor.prototype;
-    childCtor.superClass_ = parentCtor.prototype;
-    childCtor.prototype = new TempCtor();
-    childCtor.prototype.constructor = childCtor;
-
-    /**
-     * Calls superclass constructor/method.
-     *
-     * This function is only available if you use tracking.inherits to express
-     * inheritance relationships between classes.
-     *
-     * @param {!object} me Should always be "this".
-     * @param {string} methodName The method name to call. Calling superclass
-     *     constructor can be done with the special string 'constructor'.
-     * @param {...*} var_args The arguments to pass to superclass
-     *     method/constructor.
-     * @return {*} The return value of the superclass method/constructor.
-     */
-    childCtor.base = function(me, methodName) {
-      var args = Array.prototype.slice.call(arguments, 2);
-      return parentCtor.prototype[methodName].apply(me, args);
-    };
-  };
-
-  /**
-   * Captures the user camera when tracking a video element and set its source
-   * to the camera stream.
-   * @param {HTMLVideoElement} element Canvas element to track.
-   * @param {object} opt_options Optional configuration to the tracker.
-   */
-  tracking.initUserMedia_ = function(element, opt_options) {
-    window.navigator.mediaDevices.getUserMedia({
-      video: true,
-      audio: (opt_options && opt_options.audio) ? true : false,
-    }).then(function(stream) {
-      element.srcObject = stream;
-    }).catch(function(err) {
-      throw Error('Cannot capture user camera.');
-    });
-  };
-
-  /**
-   * Tests whether the object is a dom node.
-   * @param {object} o Object to be tested.
-   * @return {boolean} True if the object is a dom node.
-   */
-  tracking.isNode = function(o) {
-    return o.nodeType || this.isWindow(o);
-  };
-
-  /**
-   * Tests whether the object is the `window` object.
-   * @param {object} o Object to be tested.
-   * @return {boolean} True if the object is the `window` object.
-   */
-  tracking.isWindow = function(o) {
-    return !!(o && o.alert && o.document);
-  };
-
-  /**
-   * Selects a dom node from a CSS3 selector using `document.querySelector`.
-   * @param {string} selector
-   * @param {object} opt_element The root element for the query. When not
-   *     specified `document` is used as root element.
-   * @return {HTMLElement} The first dom element that matches to the selector.
-   *     If not found, returns `null`.
-   */
-  tracking.one = function(selector, opt_element) {
-    if (this.isNode(selector)) {
-      return selector;
-    }
-    return (opt_element || document).querySelector(selector);
-  };
-
-  /**
-   * Tracks a canvas, image or video element based on the specified `tracker`
-   * instance. This method extract the pixel information of the input element
-   * to pass to the `tracker` instance. When tracking a video, the
-   * `tracker.track(pixels, width, height)` will be in a
-   * `requestAnimationFrame` loop in order to track all video frames.
-   *
-   * Example:
-   * var tracker = new tracking.ColorTracker();
-   *
-   * tracking.track('#video', tracker);
-   * or
-   * tracking.track('#video', tracker, { camera: true });
-   *
-   * tracker.on('track', function(event) {
-   *   // console.log(event.data[0].x, event.data[0].y)
-   * });
-   *
-   * @param {HTMLElement} element The element to track, canvas, image or
-   *     video.
-   * @param {tracking.Tracker} tracker The tracker instance used to track the
-   *     element.
-   * @param {object} opt_options Optional configuration to the tracker.
-   */
-  tracking.track = function(element, tracker, opt_options) {
-    element = tracking.one(element);
-    if (!element) {
-      throw new Error('Element not found, try a different element or selector.');
-    }
-    if (!tracker) {
-      throw new Error('Tracker not specified, try `tracking.track(element, new tracking.FaceTracker())`.');
-    }
-
-    switch (element.nodeName.toLowerCase()) {
-      case 'canvas':
-        return this.trackCanvas_(element, tracker, opt_options);
-      case 'img':
-        return this.trackImg_(element, tracker, opt_options);
-      case 'video':
-        if (opt_options) {
-          if (opt_options.camera) {
-            this.initUserMedia_(element, opt_options);
-          }
-        }
-        return this.trackVideo_(element, tracker, opt_options);
-      default:
-        throw new Error('Element not supported, try in a canvas, img, or video.');
-    }
-  };
-
-  /**
-   * Tracks a canvas element based on the specified `tracker` instance and
-   * returns a `TrackerTask` for this track.
-   * @param {HTMLCanvasElement} element Canvas element to track.
-   * @param {tracking.Tracker} tracker The tracker instance used to track the
-   *     element.
-   * @param {object} opt_options Optional configuration to the tracker.
-   * @return {tracking.TrackerTask}
-   * @private
-   */
-  tracking.trackCanvas_ = function(element, tracker) {
-    var self = this;
-    var task = new tracking.TrackerTask(tracker);
-    task.on('run', function() {
-      self.trackCanvasInternal_(element, tracker);
-    });
-    return task.run();
-  };
-
-  /**
-   * Tracks a canvas element based on the specified `tracker` instance. This
-   * method extract the pixel information of the input element to pass to the
-   * `tracker` instance.
-   * @param {HTMLCanvasElement} element Canvas element to track.
-   * @param {tracking.Tracker} tracker The tracker instance used to track the
-   *     element.
-   * @param {object} opt_options Optional configuration to the tracker.
-   * @private
-   */
-  tracking.trackCanvasInternal_ = function(element, tracker) {
-    var width = element.width;
-    var height = element.height;
-    var context = element.getContext('2d');
-    var imageData = context.getImageData(0, 0, width, height);
-    tracker.track(imageData.data, width, height);
-  };
-
-  /**
-   * Tracks a image element based on the specified `tracker` instance. This
-   * method extract the pixel information of the input element to pass to the
-   * `tracker` instance.
-   * @param {HTMLImageElement} element Canvas element to track.
-   * @param {tracking.Tracker} tracker The tracker instance used to track the
-   *     element.
-   * @param {object} opt_options Optional configuration to the tracker.
-   * @private
-   */
-  tracking.trackImg_ = function(element, tracker) {
-    var width = element.width;
-    var height = element.height;
-    var canvas = document.createElement('canvas');
-
-    canvas.width = width;
-    canvas.height = height;
-
-    var task = new tracking.TrackerTask(tracker);
-    task.on('run', function() {
-      tracking.Canvas.loadImage(canvas, element.src, 0, 0, width, height, function() {
-        tracking.trackCanvasInternal_(canvas, tracker);
-      });
-    });
-    return task.run();
-  };
-
-  /**
-   * Tracks a video element based on the specified `tracker` instance. This
-   * method extract the pixel information of the input element to pass to the
-   * `tracker` instance. The `tracker.track(pixels, width, height)` will be in
-   * a `requestAnimationFrame` loop in order to track all video frames.
-   * @param {HTMLVideoElement} element Canvas element to track.
-   * @param {tracking.Tracker} tracker The tracker instance used to track the
-   *     element.
-   * @param {object} opt_options Optional configuration to the tracker.
-   * @private
-   */
-  tracking.trackVideo_ = function(element, tracker) {
-    var canvas = document.createElement('canvas');
-    var context = canvas.getContext('2d');
-    var width;
-    var height;
-
-    var resizeCanvas_ = function() {
-      width = element.offsetWidth;
-      height = element.offsetHeight;
-      canvas.width = width;
-      canvas.height = height;
-    };
-    resizeCanvas_();
-    element.addEventListener('resize', resizeCanvas_);
-
-    var requestId;
-    var requestAnimationFrame_ = function() {
-      requestId = window.requestAnimationFrame(function() {
-        if (element.readyState === element.HAVE_ENOUGH_DATA) {
-          try {
-            // Firefox v~30.0 gets confused with the video readyState firing an
-            // erroneous HAVE_ENOUGH_DATA just before HAVE_CURRENT_DATA state,
-            // hence keep trying to read it until resolved.
-            context.drawImage(element, 0, 0, width, height);
-          } catch (err) {}
-          tracking.trackCanvasInternal_(canvas, tracker);
-        }
-        requestAnimationFrame_();
-      });
-    };
-
-    var task = new tracking.TrackerTask(tracker);
-    task.on('stop', function() {
-      window.cancelAnimationFrame(requestId);
-    });
-    task.on('run', function() {
-      requestAnimationFrame_();
-    });
-    return task.run();
-  };
-
-  // Browser polyfills
-  //===================
-
-  if (!window.URL) {
-    window.URL = window.URL || window.webkitURL || window.msURL || window.oURL;
-  }
-
-  if (!navigator.getUserMedia) {
-    navigator.getUserMedia = navigator.getUserMedia || navigator.webkitGetUserMedia ||
-    navigator.mozGetUserMedia || navigator.msGetUserMedia;
-  }
-}(window));
-
-(function() {
-  /**
-   * EventEmitter utility.
-   * @constructor
-   */
-  tracking.EventEmitter = function() {};
-
-  /**
-   * Holds event listeners scoped by event type.
-   * @type {object}
-   * @private
-   */
-  tracking.EventEmitter.prototype.events_ = null;
-
-  /**
-   * Adds a listener to the end of the listeners array for the specified event.
-   * @param {string} event
-   * @param {function} listener
-   * @return {object} Returns emitter, so calls can be chained.
-   */
-  tracking.EventEmitter.prototype.addListener = function(event, listener) {
-    if (typeof listener !== 'function') {
-      throw new TypeError('Listener must be a function');
-    }
-    if (!this.events_) {
-      this.events_ = {};
-    }
-
-    this.emit('newListener', event, listener);
-
-    if (!this.events_[event]) {
-      this.events_[event] = [];
-    }
-
-    this.events_[event].push(listener);
-
-    return this;
-  };
-
-  /**
-   * Returns an array of listeners for the specified event.
-   * @param {string} event
-   * @return {array} Array of listeners.
-   */
-  tracking.EventEmitter.prototype.listeners = function(event) {
-    return this.events_ && this.events_[event];
-  };
-
-  /**
-   * Execute each of the listeners in order with the supplied arguments.
-   * @param {string} event
-   * @param {*} opt_args [arg1], [arg2], [...]
-   * @return {boolean} Returns true if event had listeners, false otherwise.
-   */
-  tracking.EventEmitter.prototype.emit = function(event) {
-    var listeners = this.listeners(event);
-    if (listeners) {
-      var args = Array.prototype.slice.call(arguments, 1);
-      for (var i = 0; i < listeners.length; i++) {
-        if (listeners[i]) {
-          listeners[i].apply(this, args);
-        }
-      }
-      return true;
-    }
-    return false;
-  };
-
-  /**
-   * Adds a listener to the end of the listeners array for the specified event.
-   * @param {string} event
-   * @param {function} listener
-   * @return {object} Returns emitter, so calls can be chained.
-   */
-  tracking.EventEmitter.prototype.on = tracking.EventEmitter.prototype.addListener;
-
-  /**
-   * Adds a one time listener for the event. This listener is invoked only the
-   * next time the event is fired, after which it is removed.
-   * @param {string} event
-   * @param {function} listener
-   * @return {object} Returns emitter, so calls can be chained.
-   */
-  tracking.EventEmitter.prototype.once = function(event, listener) {
-    var self = this;
-    self.on(event, function handlerInternal() {
-      self.removeListener(event, handlerInternal);
-      listener.apply(this, arguments);
-    });
-  };
-
-  /**
-   * Removes all listeners, or those of the specified event. It's not a good
-   * idea to remove listeners that were added elsewhere in the code,
-   * especially when it's on an emitter that you didn't create.
-   * @param {string} event
-   * @return {object} Returns emitter, so calls can be chained.
-   */
-  tracking.EventEmitter.prototype.removeAllListeners = function(opt_event) {
-    if (!this.events_) {
-      return this;
-    }
-    if (opt_event) {
-      delete this.events_[opt_event];
-    } else {
-      delete this.events_;
-    }
-    return this;
-  };
-
-  /**
-   * Remove a listener from the listener array for the specified event.
-   * Caution: changes array indices in the listener array behind the listener.
-   * @param {string} event
-   * @param {function} listener
-   * @return {object} Returns emitter, so calls can be chained.
-   */
-  tracking.EventEmitter.prototype.removeListener = function(event, listener) {
-    if (typeof listener !== 'function') {
-      throw new TypeError('Listener must be a function');
-    }
-    if (!this.events_) {
-      return this;
-    }
-
-    var listeners = this.listeners(event);
-    if (Array.isArray(listeners)) {
-      var i = listeners.indexOf(listener);
-      if (i < 0) {
-        return this;
-      }
-      listeners.splice(i, 1);
-    }
-
-    return this;
-  };
-
-  /**
-   * By default EventEmitters will print a warning if more than 10 listeners
-   * are added for a particular event. This is a useful default which helps
-   * finding memory leaks. Obviously not all Emitters should be limited to 10.
-   * This function allows that to be increased. Set to zero for unlimited.
-   * @param {number} n The maximum number of listeners.
-   */
-  tracking.EventEmitter.prototype.setMaxListeners = function() {
-    throw new Error('Not implemented');
-  };
-
-}());
-
-(function() {
-  /**
-   * Canvas utility.
-   * @static
-   * @constructor
-   */
-  tracking.Canvas = {};
-
-  /**
-   * Loads an image source into the canvas.
-   * @param {HTMLCanvasElement} canvas The canvas dom element.
-   * @param {string} src The image source.
-   * @param {number} x The canvas horizontal coordinate to load the image.
-   * @param {number} y The canvas vertical coordinate to load the image.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {function} opt_callback Callback that fires when the image is loaded
-   *     into the canvas.
-   * @static
-   */
-  tracking.Canvas.loadImage = function(canvas, src, x, y, width, height, opt_callback) {
-    var instance = this;
-    var img = new window.Image();
-    img.crossOrigin = '*';
-    img.onload = function() {
-      var context = canvas.getContext('2d');
-      canvas.width = width;
-      canvas.height = height;
-      context.drawImage(img, x, y, width, height);
-      if (opt_callback) {
-        opt_callback.call(instance);
-      }
-      img = null;
-    };
-    img.src = src;
-  };
-}());
-
-(function() {
-  /**
-   * DisjointSet utility with path compression. Some applications involve
-   * grouping n distinct objects into a collection of disjoint sets. Two
-   * important operations are then finding which set a given object belongs to
-   * and uniting the two sets. A disjoint set data structure maintains a
-   * collection S={ S1 , S2 ,..., Sk } of disjoint dynamic sets. Each set is
-   * identified by a representative, which usually is a member in the set.
-   * @static
-   * @constructor
-   */
-  tracking.DisjointSet = function(length) {
-    if (length === undefined) {
-      throw new Error('DisjointSet length not specified.');
-    }
-    this.length = length;
-    this.parent = new Uint32Array(length);
-    for (var i = 0; i < length; i++) {
-      this.parent[i] = i;
-    }
-  };
-
-  /**
-   * Holds the length of the internal set.
-   * @type {number}
-   */
-  tracking.DisjointSet.prototype.length = null;
-
-  /**
-   * Holds the set containing the representative values.
-   * @type {Array.<number>}
-   */
-  tracking.DisjointSet.prototype.parent = null;
-
-  /**
-   * Finds a pointer to the representative of the set containing i.
-   * @param {number} i
-   * @return {number} The representative set of i.
-   */
-  tracking.DisjointSet.prototype.find = function(i) {
-    if (this.parent[i] === i) {
-      return i;
-    } else {
-      return (this.parent[i] = this.find(this.parent[i]));
-    }
-  };
-
-  /**
-   * Unites two dynamic sets containing objects i and j, say Si and Sj, into
-   * a new set that Si ∪ Sj, assuming that Si ∩ Sj = ∅;
-   * @param {number} i
-   * @param {number} j
-   */
-  tracking.DisjointSet.prototype.union = function(i, j) {
-    var iRepresentative = this.find(i);
-    var jRepresentative = this.find(j);
-    this.parent[iRepresentative] = jRepresentative;
-  };
-
-}());
-
-(function() {
-  /**
-   * Image utility.
-   * @static
-   * @constructor
-   */
-  tracking.Image = {};
-
-  /**
-   * Computes gaussian blur. Adapted from
-   * https://github.com/kig/canvasfilters.
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {number} diameter Gaussian blur diameter, must be greater than 1.
-   * @return {array} The edge pixels in a linear [r,g,b,a,...] array.
-   */
-  tracking.Image.blur = function(pixels, width, height, diameter) {
-    diameter = Math.abs(diameter);
-    if (diameter <= 1) {
-      throw new Error('Diameter should be greater than 1.');
-    }
-    var radius = diameter / 2;
-    var len = Math.ceil(diameter) + (1 - (Math.ceil(diameter) % 2));
-    var weights = new Float32Array(len);
-    var rho = (radius + 0.5) / 3;
-    var rhoSq = rho * rho;
-    var gaussianFactor = 1 / Math.sqrt(2 * Math.PI * rhoSq);
-    var rhoFactor = -1 / (2 * rho * rho);
-    var wsum = 0;
-    var middle = Math.floor(len / 2);
-    for (var i = 0; i < len; i++) {
-      var x = i - middle;
-      var gx = gaussianFactor * Math.exp(x * x * rhoFactor);
-      weights[i] = gx;
-      wsum += gx;
-    }
-    for (var j = 0; j < weights.length; j++) {
-      weights[j] /= wsum;
-    }
-    return this.separableConvolve(pixels, width, height, weights, weights, false);
-  };
-
-  /**
-   * Computes the integral image for summed, squared, rotated and sobel pixels.
-   * @param {array} pixels The pixels in a linear [r,g,b,a,...] array to loop
-   *     through.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {array} opt_integralImage Empty array of size `width * height` to
-   *     be filled with the integral image values. If not specified compute sum
-   *     values will be skipped.
-   * @param {array} opt_integralImageSquare Empty array of size `width *
-   *     height` to be filled with the integral image squared values. If not
-   *     specified compute squared values will be skipped.
-   * @param {array} opt_tiltedIntegralImage Empty array of size `width *
-   *     height` to be filled with the rotated integral image values. If not
-   *     specified compute sum values will be skipped.
-   * @param {array} opt_integralImageSobel Empty array of size `width *
-   *     height` to be filled with the integral image of sobel values. If not
-   *     specified compute sobel filtering will be skipped.
-   * @static
-   */
-  tracking.Image.computeIntegralImage = function(pixels, width, height, opt_integralImage, opt_integralImageSquare, opt_tiltedIntegralImage, opt_integralImageSobel) {
-    if (arguments.length < 4) {
-      throw new Error('You should specify at least one output array in the order: sum, square, tilted, sobel.');
-    }
-    var pixelsSobel;
-    if (opt_integralImageSobel) {
-      pixelsSobel = tracking.Image.sobel(pixels, width, height);
-    }
-    for (var i = 0; i < height; i++) {
-      for (var j = 0; j < width; j++) {
-        var w = i * width * 4 + j * 4;
-        var pixel = ~~(pixels[w] * 0.299 + pixels[w + 1] * 0.587 + pixels[w + 2] * 0.114);
-        if (opt_integralImage) {
-          this.computePixelValueSAT_(opt_integralImage, width, i, j, pixel);
-        }
-        if (opt_integralImageSquare) {
-          this.computePixelValueSAT_(opt_integralImageSquare, width, i, j, pixel * pixel);
-        }
-        if (opt_tiltedIntegralImage) {
-          var w1 = w - width * 4;
-          var pixelAbove = ~~(pixels[w1] * 0.299 + pixels[w1 + 1] * 0.587 + pixels[w1 + 2] * 0.114);
-          this.computePixelValueRSAT_(opt_tiltedIntegralImage, width, i, j, pixel, pixelAbove || 0);
-        }
-        if (opt_integralImageSobel) {
-          this.computePixelValueSAT_(opt_integralImageSobel, width, i, j, pixelsSobel[w]);
-        }
-      }
-    }
-  };
-
-  /**
-   * Helper method to compute the rotated summed area table (RSAT) by the
-   * formula:
-   *
-   * RSAT(x, y) = RSAT(x-1, y-1) + RSAT(x+1, y-1) - RSAT(x, y-2) + I(x, y) + I(x, y-1)
-   *
-   * @param {number} width The image width.
-   * @param {array} RSAT Empty array of size `width * height` to be filled with
-   *     the integral image values. If not specified compute sum values will be
-   *     skipped.
-   * @param {number} i Vertical position of the pixel to be evaluated.
-   * @param {number} j Horizontal position of the pixel to be evaluated.
-   * @param {number} pixel Pixel value to be added to the integral image.
-   * @static
-   * @private
-   */
-  tracking.Image.computePixelValueRSAT_ = function(RSAT, width, i, j, pixel, pixelAbove) {
-    var w = i * width + j;
-    RSAT[w] = (RSAT[w - width - 1] || 0) + (RSAT[w - width + 1] || 0) - (RSAT[w - width - width] || 0) + pixel + pixelAbove;
-  };
-
-  /**
-   * Helper method to compute the summed area table (SAT) by the formula:
-   *
-   * SAT(x, y) = SAT(x, y-1) + SAT(x-1, y) + I(x, y) - SAT(x-1, y-1)
-   *
-   * @param {number} width The image width.
-   * @param {array} SAT Empty array of size `width * height` to be filled with
-   *     the integral image values. If not specified compute sum values will be
-   *     skipped.
-   * @param {number} i Vertical position of the pixel to be evaluated.
-   * @param {number} j Horizontal position of the pixel to be evaluated.
-   * @param {number} pixel Pixel value to be added to the integral image.
-   * @static
-   * @private
-   */
-  tracking.Image.computePixelValueSAT_ = function(SAT, width, i, j, pixel) {
-    var w = i * width + j;
-    SAT[w] = (SAT[w - width] || 0) + (SAT[w - 1] || 0) + pixel - (SAT[w - width - 1] || 0);
-  };
-
-  /**
-   * Converts a color from a colorspace based on an RGB color model to a
-   * grayscale representation of its luminance. The coefficients represent the
-   * measured intensity perception of typical trichromat humans, in
-   * particular, human vision is most sensitive to green and least sensitive
-   * to blue.
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {boolean} fillRGBA If the result should fill all RGBA values with the gray scale
-   *  values, instead of returning a single value per pixel.
-   * @param {Uint8ClampedArray} The grayscale pixels in a linear array ([p,p,p,a,...] if fillRGBA
-   *  is true and [p1, p2, p3, ...] if fillRGBA is false).
-   * @static
-   */
-  tracking.Image.grayscale = function(pixels, width, height, fillRGBA) {
-    var gray = new Uint8ClampedArray(fillRGBA ? pixels.length : pixels.length >> 2);
-    var p = 0;
-    var w = 0;
-    for (var i = 0; i < height; i++) {
-      for (var j = 0; j < width; j++) {
-        var value = pixels[w] * 0.299 + pixels[w + 1] * 0.587 + pixels[w + 2] * 0.114;
-        gray[p++] = value;
-
-        if (fillRGBA) {
-          gray[p++] = value;
-          gray[p++] = value;
-          gray[p++] = pixels[w + 3];
-        }
-
-        w += 4;
-      }
-    }
-    return gray;
-  };
-
-  /**
-   * Fast horizontal separable convolution. A point spread function (PSF) is
-   * said to be separable if it can be broken into two one-dimensional
-   * signals: a vertical and a horizontal projection. The convolution is
-   * performed by sliding the kernel over the image, generally starting at the
-   * top left corner, so as to move the kernel through all the positions where
-   * the kernel fits entirely within the boundaries of the image. Adapted from
-   * https://github.com/kig/canvasfilters.
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {array} weightsVector The weighting vector, e.g [-1,0,1].
-   * @param {number} opaque
-   * @return {array} The convoluted pixels in a linear [r,g,b,a,...] array.
-   */
-  tracking.Image.horizontalConvolve = function(pixels, width, height, weightsVector, opaque) {
-    var side = weightsVector.length;
-    var halfSide = Math.floor(side / 2);
-    var output = new Float32Array(width * height * 4);
-    var alphaFac = opaque ? 1 : 0;
-
-    for (var y = 0; y < height; y++) {
-      for (var x = 0; x < width; x++) {
-        var sy = y;
-        var sx = x;
-        var offset = (y * width + x) * 4;
-        var r = 0;
-        var g = 0;
-        var b = 0;
-        var a = 0;
-        for (var cx = 0; cx < side; cx++) {
-          var scy = sy;
-          var scx = Math.min(width - 1, Math.max(0, sx + cx - halfSide));
-          var poffset = (scy * width + scx) * 4;
-          var wt = weightsVector[cx];
-          r += pixels[poffset] * wt;
-          g += pixels[poffset + 1] * wt;
-          b += pixels[poffset + 2] * wt;
-          a += pixels[poffset + 3] * wt;
-        }
-        output[offset] = r;
-        output[offset + 1] = g;
-        output[offset + 2] = b;
-        output[offset + 3] = a + alphaFac * (255 - a);
-      }
-    }
-    return output;
-  };
-
-  /**
-   * Fast vertical separable convolution. A point spread function (PSF) is
-   * said to be separable if it can be broken into two one-dimensional
-   * signals: a vertical and a horizontal projection. The convolution is
-   * performed by sliding the kernel over the image, generally starting at the
-   * top left corner, so as to move the kernel through all the positions where
-   * the kernel fits entirely within the boundaries of the image. Adapted from
-   * https://github.com/kig/canvasfilters.
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {array} weightsVector The weighting vector, e.g [-1,0,1].
-   * @param {number} opaque
-   * @return {array} The convoluted pixels in a linear [r,g,b,a,...] array.
-   */
-  tracking.Image.verticalConvolve = function(pixels, width, height, weightsVector, opaque) {
-    var side = weightsVector.length;
-    var halfSide = Math.floor(side / 2);
-    var output = new Float32Array(width * height * 4);
-    var alphaFac = opaque ? 1 : 0;
-
-    for (var y = 0; y < height; y++) {
-      for (var x = 0; x < width; x++) {
-        var sy = y;
-        var sx = x;
-        var offset = (y * width + x) * 4;
-        var r = 0;
-        var g = 0;
-        var b = 0;
-        var a = 0;
-        for (var cy = 0; cy < side; cy++) {
-          var scy = Math.min(height - 1, Math.max(0, sy + cy - halfSide));
-          var scx = sx;
-          var poffset = (scy * width + scx) * 4;
-          var wt = weightsVector[cy];
-          r += pixels[poffset] * wt;
-          g += pixels[poffset + 1] * wt;
-          b += pixels[poffset + 2] * wt;
-          a += pixels[poffset + 3] * wt;
-        }
-        output[offset] = r;
-        output[offset + 1] = g;
-        output[offset + 2] = b;
-        output[offset + 3] = a + alphaFac * (255 - a);
-      }
-    }
-    return output;
-  };
-
-  /**
-   * Fast separable convolution. A point spread function (PSF) is said to be
-   * separable if it can be broken into two one-dimensional signals: a
-   * vertical and a horizontal projection. The convolution is performed by
-   * sliding the kernel over the image, generally starting at the top left
-   * corner, so as to move the kernel through all the positions where the
-   * kernel fits entirely within the boundaries of the image. Adapted from
-   * https://github.com/kig/canvasfilters.
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {array} horizWeights The horizontal weighting vector, e.g [-1,0,1].
-   * @param {array} vertWeights The vertical vector, e.g [-1,0,1].
-   * @param {number} opaque
-   * @return {array} The convoluted pixels in a linear [r,g,b,a,...] array.
-   */
-  tracking.Image.separableConvolve = function(pixels, width, height, horizWeights, vertWeights, opaque) {
-    var vertical = this.verticalConvolve(pixels, width, height, vertWeights, opaque);
-    return this.horizontalConvolve(vertical, width, height, horizWeights, opaque);
-  };
-
-  /**
-   * Compute image edges using Sobel operator. Computes the vertical and
-   * horizontal gradients of the image and combines the computed images to
-   * find edges in the image. The way we implement the Sobel filter here is by
-   * first grayscaling the image, then taking the horizontal and vertical
-   * gradients and finally combining the gradient images to make up the final
-   * image. Adapted from https://github.com/kig/canvasfilters.
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @return {array} The edge pixels in a linear [r,g,b,a,...] array.
-   */
-  tracking.Image.sobel = function(pixels, width, height) {
-    pixels = this.grayscale(pixels, width, height, true);
-    var output = new Float32Array(width * height * 4);
-    var sobelSignVector = new Float32Array([-1, 0, 1]);
-    var sobelScaleVector = new Float32Array([1, 2, 1]);
-    var vertical = this.separableConvolve(pixels, width, height, sobelSignVector, sobelScaleVector);
-    var horizontal = this.separableConvolve(pixels, width, height, sobelScaleVector, sobelSignVector);
-
-    for (var i = 0; i < output.length; i += 4) {
-      var v = vertical[i];
-      var h = horizontal[i];
-      var p = Math.sqrt(h * h + v * v);
-      output[i] = p;
-      output[i + 1] = p;
-      output[i + 2] = p;
-      output[i + 3] = 255;
-    }
-
-    return output;
-  };
-
-  /**
-   * Equalizes the histogram of a grayscale image, normalizing the
-   * brightness and increasing the contrast of the image.
-   * @param {pixels} pixels The grayscale pixels in a linear array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @return {array} The equalized grayscale pixels in a linear array.
-   */
-  tracking.Image.equalizeHist = function(pixels, width, height){
-    var equalized = new Uint8ClampedArray(pixels.length);
-
-    var histogram = new Array(256);
-    for(var i=0; i < 256; i++) histogram[i] = 0;
-
-    for(var i=0; i < pixels.length; i++){
-      equalized[i] = pixels[i];
-      histogram[pixels[i]]++;
-    }
-
-    var prev = histogram[0];
-    for(var i=0; i < 256; i++){
-      histogram[i] += prev;
-      prev = histogram[i];
-    }
-
-    var norm = 255 / pixels.length;
-    for(var i=0; i < pixels.length; i++)
-      equalized[i] = (histogram[pixels[i]] * norm + 0.5) | 0;
-
-    return equalized;
-  }
-
-}());
-
-(function() {
-  /**
-   * ViolaJones utility.
-   * @static
-   * @constructor
-   */
-  tracking.ViolaJones = {};
-
-  /**
-   * Holds the minimum area of intersection that defines when a rectangle is
-   * from the same group. Often when a face is matched multiple rectangles are
-   * classified as possible rectangles to represent the face, when they
-   * intersects they are grouped as one face.
-   * @type {number}
-   * @default 0.5
-   * @static
-   */
-  tracking.ViolaJones.REGIONS_OVERLAP = 0.5;
-
-  /**
-   * Holds the HAAR cascade classifiers converted from OpenCV training.
-   * @type {array}
-   * @static
-   */
-  tracking.ViolaJones.classifiers = {};
-
-  /**
-   * Detects through the HAAR cascade data rectangles matches.
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {number} initialScale The initial scale to start the block
-   *     scaling.
-   * @param {number} scaleFactor The scale factor to scale the feature block.
-   * @param {number} stepSize The block step size.
-   * @param {number} edgesDensity Percentage density edges inside the
-   *     classifier block. Value from [0.0, 1.0], defaults to 0.2. If specified
-   *     edge detection will be applied to the image to prune dead areas of the
-   *     image, this can improve significantly performance.
-   * @param {number} data The HAAR cascade data.
-   * @return {array} Found rectangles.
-   * @static
-   */
-  tracking.ViolaJones.detect = function(pixels, width, height, initialScale, scaleFactor, stepSize, edgesDensity, data) {
-    var total = 0;
-    var rects = [];
-    var integralImage = new Int32Array(width * height);
-    var integralImageSquare = new Int32Array(width * height);
-    var tiltedIntegralImage = new Int32Array(width * height);
-
-    var integralImageSobel;
-    if (edgesDensity > 0) {
-      integralImageSobel = new Int32Array(width * height);
-    }
-
-    tracking.Image.computeIntegralImage(pixels, width, height, integralImage, integralImageSquare, tiltedIntegralImage, integralImageSobel);
-
-    var minWidth = data[0];
-    var minHeight = data[1];
-    var scale = initialScale * scaleFactor;
-    var blockWidth = (scale * minWidth) | 0;
-    var blockHeight = (scale * minHeight) | 0;
-
-    while (blockWidth < width && blockHeight < height) {
-      var step = (scale * stepSize + 0.5) | 0;
-      for (var i = 0; i < (height - blockHeight); i += step) {
-        for (var j = 0; j < (width - blockWidth); j += step) {
-
-          if (edgesDensity > 0) {
-            if (this.isTriviallyExcluded(edgesDensity, integralImageSobel, i, j, width, blockWidth, blockHeight)) {
-              continue;
-            }
-          }
-
-          if (this.evalStages_(data, integralImage, integralImageSquare, tiltedIntegralImage, i, j, width, blockWidth, blockHeight, scale)) {
-            rects[total++] = {
-              width: blockWidth,
-              height: blockHeight,
-              x: j,
-              y: i
-            };
-          }
-        }
-      }
-
-      scale *= scaleFactor;
-      blockWidth = (scale * minWidth) | 0;
-      blockHeight = (scale * minHeight) | 0;
-    }
-    return this.mergeRectangles_(rects);
-  };
-
-  /**
-   * Fast check to test whether the edges density inside the block is greater
-   * than a threshold, if true it tests the stages. This can improve
-   * significantly performance.
-   * @param {number} edgesDensity Percentage density edges inside the
-   *     classifier block.
-   * @param {array} integralImageSobel The integral image of a sobel image.
-   * @param {number} i Vertical position of the pixel to be evaluated.
-   * @param {number} j Horizontal position of the pixel to be evaluated.
-   * @param {number} width The image width.
-   * @return {boolean} True whether the block at position i,j can be skipped,
-   *     false otherwise.
-   * @static
-   * @protected
-   */
-  tracking.ViolaJones.isTriviallyExcluded = function(edgesDensity, integralImageSobel, i, j, width, blockWidth, blockHeight) {
-    var wbA = i * width + j;
-    var wbB = wbA + blockWidth;
-    var wbD = wbA + blockHeight * width;
-    var wbC = wbD + blockWidth;
-    var blockEdgesDensity = (integralImageSobel[wbA] - integralImageSobel[wbB] - integralImageSobel[wbD] + integralImageSobel[wbC]) / (blockWidth * blockHeight * 255);
-    if (blockEdgesDensity < edgesDensity) {
-      return true;
-    }
-    return false;
-  };
-
-  /**
-   * Evaluates if the block size on i,j position is a valid HAAR cascade
-   * stage.
-   * @param {number} data The HAAR cascade data.
-   * @param {number} i Vertical position of the pixel to be evaluated.
-   * @param {number} j Horizontal position of the pixel to be evaluated.
-   * @param {number} width The image width.
-   * @param {number} blockSize The block size.
-   * @param {number} scale The scale factor of the block size and its original
-   *     size.
-   * @param {number} inverseArea The inverse area of the block size.
-   * @return {boolean} Whether the region passes all the stage tests.
-   * @private
-   * @static
-   */
-  tracking.ViolaJones.evalStages_ = function(data, integralImage, integralImageSquare, tiltedIntegralImage, i, j, width, blockWidth, blockHeight, scale) {
-    var inverseArea = 1.0 / (blockWidth * blockHeight);
-    var wbA = i * width + j;
-    var wbB = wbA + blockWidth;
-    var wbD = wbA + blockHeight * width;
-    var wbC = wbD + blockWidth;
-    var mean = (integralImage[wbA] - integralImage[wbB] - integralImage[wbD] + integralImage[wbC]) * inverseArea;
-    var variance = (integralImageSquare[wbA] - integralImageSquare[wbB] - integralImageSquare[wbD] + integralImageSquare[wbC]) * inverseArea - mean * mean;
-
-    var standardDeviation = 1;
-    if (variance > 0) {
-      standardDeviation = Math.sqrt(variance);
-    }
-
-    var length = data.length;
-
-    for (var w = 2; w < length; ) {
-      var stageSum = 0;
-      var stageThreshold = data[w++];
-      var nodeLength = data[w++];
-
-      while (nodeLength--) {
-        var rectsSum = 0;
-        var tilted = data[w++];
-        var rectsLength = data[w++];
-
-        for (var r = 0; r < rectsLength; r++) {
-          var rectLeft = (j + data[w++] * scale + 0.5) | 0;
-          var rectTop = (i + data[w++] * scale + 0.5) | 0;
-          var rectWidth = (data[w++] * scale + 0.5) | 0;
-          var rectHeight = (data[w++] * scale + 0.5) | 0;
-          var rectWeight = data[w++];
-
-          var w1;
-          var w2;
-          var w3;
-          var w4;
-          if (tilted) {
-            // RectSum(r) = RSAT(x-h+w, y+w+h-1) + RSAT(x, y-1) - RSAT(x-h, y+h-1) - RSAT(x+w, y+w-1)
-            w1 = (rectLeft - rectHeight + rectWidth) + (rectTop + rectWidth + rectHeight - 1) * width;
-            w2 = rectLeft + (rectTop - 1) * width;
-            w3 = (rectLeft - rectHeight) + (rectTop + rectHeight - 1) * width;
-            w4 = (rectLeft + rectWidth) + (rectTop + rectWidth - 1) * width;
-            rectsSum += (tiltedIntegralImage[w1] + tiltedIntegralImage[w2] - tiltedIntegralImage[w3] - tiltedIntegralImage[w4]) * rectWeight;
-          } else {
-            // RectSum(r) = SAT(x-1, y-1) + SAT(x+w-1, y+h-1) - SAT(x-1, y+h-1) - SAT(x+w-1, y-1)
-            w1 = rectTop * width + rectLeft;
-            w2 = w1 + rectWidth;
-            w3 = w1 + rectHeight * width;
-            w4 = w3 + rectWidth;
-            rectsSum += (integralImage[w1] - integralImage[w2] - integralImage[w3] + integralImage[w4]) * rectWeight;
-            // TODO: Review the code below to analyze performance when using it instead.
-            // w1 = (rectLeft - 1) + (rectTop - 1) * width;
-            // w2 = (rectLeft + rectWidth - 1) + (rectTop + rectHeight - 1) * width;
-            // w3 = (rectLeft - 1) + (rectTop + rectHeight - 1) * width;
-            // w4 = (rectLeft + rectWidth - 1) + (rectTop - 1) * width;
-            // rectsSum += (integralImage[w1] + integralImage[w2] - integralImage[w3] - integralImage[w4]) * rectWeight;
-          }
-        }
-
-        var nodeThreshold = data[w++];
-        var nodeLeft = data[w++];
-        var nodeRight = data[w++];
-
-        if (rectsSum * inverseArea < nodeThreshold * standardDeviation) {
-          stageSum += nodeLeft;
-        } else {
-          stageSum += nodeRight;
-        }
-      }
-
-      if (stageSum < stageThreshold) {
-        return false;
-      }
-    }
-    return true;
-  };
-
-  /**
-   * Postprocess the detected sub-windows in order to combine overlapping
-   * detections into a single detection.
-   * @param {array} rects
-   * @return {array}
-   * @private
-   * @static
-   */
-  tracking.ViolaJones.mergeRectangles_ = function(rects) {
-    var disjointSet = new tracking.DisjointSet(rects.length);
-
-    for (var i = 0; i < rects.length; i++) {
-      var r1 = rects[i];
-      for (var j = 0; j < rects.length; j++) {
-        var r2 = rects[j];
-        if (tracking.Math.intersectRect(r1.x, r1.y, r1.x + r1.width, r1.y + r1.height, r2.x, r2.y, r2.x + r2.width, r2.y + r2.height)) {
-          var x1 = Math.max(r1.x, r2.x);
-          var y1 = Math.max(r1.y, r2.y);
-          var x2 = Math.min(r1.x + r1.width, r2.x + r2.width);
-          var y2 = Math.min(r1.y + r1.height, r2.y + r2.height);
-          var overlap = (x1 - x2) * (y1 - y2);
-          var area1 = (r1.width * r1.height);
-          var area2 = (r2.width * r2.height);
-
-          if ((overlap / (area1 * (area1 / area2)) >= this.REGIONS_OVERLAP) &&
-            (overlap / (area2 * (area1 / area2)) >= this.REGIONS_OVERLAP)) {
-            disjointSet.union(i, j);
-          }
-        }
-      }
-    }
-
-    var map = {};
-    for (var k = 0; k < disjointSet.length; k++) {
-      var rep = disjointSet.find(k);
-      if (!map[rep]) {
-        map[rep] = {
-          total: 1,
-          width: rects[k].width,
-          height: rects[k].height,
-          x: rects[k].x,
-          y: rects[k].y
-        };
-        continue;
-      }
-      map[rep].total++;
-      map[rep].width += rects[k].width;
-      map[rep].height += rects[k].height;
-      map[rep].x += rects[k].x;
-      map[rep].y += rects[k].y;
-    }
-
-    var result = [];
-    Object.keys(map).forEach(function(key) {
-      var rect = map[key];
-      result.push({
-        total: rect.total,
-        width: (rect.width / rect.total + 0.5) | 0,
-        height: (rect.height / rect.total + 0.5) | 0,
-        x: (rect.x / rect.total + 0.5) | 0,
-        y: (rect.y / rect.total + 0.5) | 0
-      });
-    });
-
-    return result;
-  };
-
-}());
-
-(function() {
-  /**
-   * Brief intends for "Binary Robust Independent Elementary Features".This
-   * method generates a binary string for each keypoint found by an extractor
-   * method.
-   * @static
-   * @constructor
-   */
-  tracking.Brief = {};
-
-  /**
-   * The set of binary tests is defined by the nd (x,y)-location pairs
-   * uniquely chosen during the initialization. Values could vary between N =
-   * 128,256,512. N=128 yield good compromises between speed, storage
-   * efficiency, and recognition rate.
-   * @type {number}
-   */
-  tracking.Brief.N = 512;
-
-  /**
-   * Caches coordinates values of (x,y)-location pairs uniquely chosen during
-   * the initialization.
-   * @type {Object.<number, Int32Array>}
-   * @private
-   * @static
-   */
-  tracking.Brief.randomImageOffsets_ = {};
-
-  /**
-   * Caches delta values of (x,y)-location pairs uniquely chosen during
-   * the initialization.
-   * @type {Int32Array}
-   * @private
-   * @static
-   */
-  tracking.Brief.randomWindowOffsets_ = null;
-
-  /**
-   * Generates a binary string for each found keypoints extracted using an
-   * extractor method.
-   * @param {array} The grayscale pixels in a linear [p1,p2,...] array.
-   * @param {number} width The image width.
-   * @param {array} keypoints
-   * @return {Int32Array} Returns an array where for each four sequence int
-   *     values represent the descriptor binary string (128 bits) necessary
-   *     to describe the corner, e.g. [0,0,0,0, 0,0,0,0, ...].
-   * @static
-   */
-  tracking.Brief.getDescriptors = function(pixels, width, keypoints) {
-    // Optimizing divide by 32 operation using binary shift
-    // (this.N >> 5) === this.N/32.
-    var descriptors = new Int32Array((keypoints.length >> 1) * (this.N >> 5));
-    var descriptorWord = 0;
-    var offsets = this.getRandomOffsets_(width);
-    var position = 0;
-
-    for (var i = 0; i < keypoints.length; i += 2) {
-      var w = width * keypoints[i + 1] + keypoints[i];
-
-      var offsetsPosition = 0;
-      for (var j = 0, n = this.N; j < n; j++) {
-        if (pixels[offsets[offsetsPosition++] + w] < pixels[offsets[offsetsPosition++] + w]) {
-          // The bit in the position `j % 32` of descriptorWord should be set to 1. We do
-          // this by making an OR operation with a binary number that only has the bit
-          // in that position set to 1. That binary number is obtained by shifting 1 left by
-          // `j % 32` (which is the same as `j & 31` left) positions.
-          descriptorWord |= 1 << (j & 31);
-        }
-
-        // If the next j is a multiple of 32, we will need to use a new descriptor word to hold
-        // the next results.
-        if (!((j + 1) & 31)) {
-          descriptors[position++] = descriptorWord;
-          descriptorWord = 0;
-        }
-      }
-    }
-
-    return descriptors;
-  };
-
-  /**
-   * Matches sets of features {mi} and {m′j} extracted from two images taken
-   * from similar, and often successive, viewpoints. A classical procedure
-   * runs as follows. For each point {mi} in the first image, search in a
-   * region of the second image around location {mi} for point {m′j}. The
-   * search is based on the similarity of the local image windows, also known
-   * as kernel windows, centered on the points, which strongly characterizes
-   * the points when the images are sufficiently close. Once each keypoint is
-   * described with its binary string, they need to be compared with the
-   * closest matching point. Distance metric is critical to the performance of
-   * in- trusion detection systems. Thus using binary strings reduces the size
-   * of the descriptor and provides an interesting data structure that is fast
-   * to operate whose similarity can be measured by the Hamming distance.
-   * @param {array} keypoints1
-   * @param {array} descriptors1
-   * @param {array} keypoints2
-   * @param {array} descriptors2
-   * @return {Int32Array} Returns an array where the index is the corner1
-   *     index coordinate, and the value is the corresponding match index of
-   *     corner2, e.g. keypoints1=[x0,y0,x1,y1,...] and
-   *     keypoints2=[x'0,y'0,x'1,y'1,...], if x0 matches x'1 and x1 matches x'0,
-   *     the return array would be [3,0].
-   * @static
-   */
-  tracking.Brief.match = function(keypoints1, descriptors1, keypoints2, descriptors2) {
-    var len1 = keypoints1.length >> 1;
-    var len2 = keypoints2.length >> 1;
-    var matches = new Array(len1);
-
-    for (var i = 0; i < len1; i++) {
-      var min = Infinity;
-      var minj = 0;
-      for (var j = 0; j < len2; j++) {
-        var dist = 0;
-        // Optimizing divide by 32 operation using binary shift
-        // (this.N >> 5) === this.N/32.
-        for (var k = 0, n = this.N >> 5; k < n; k++) {
-          dist += tracking.Math.hammingWeight(descriptors1[i * n + k] ^ descriptors2[j * n + k]);
-        }
-        if (dist < min) {
-          min = dist;
-          minj = j;
-        }
-      }
-      matches[i] = {
-        index1: i,
-        index2: minj,
-        keypoint1: [keypoints1[2 * i], keypoints1[2 * i + 1]],
-        keypoint2: [keypoints2[2 * minj], keypoints2[2 * minj + 1]],
-        confidence: 1 - min / this.N
-      };
-    }
-
-    return matches;
-  };
-
-  /**
-   * Removes matches outliers by testing matches on both directions.
-   * @param {array} keypoints1
-   * @param {array} descriptors1
-   * @param {array} keypoints2
-   * @param {array} descriptors2
-   * @return {Int32Array} Returns an array where the index is the corner1
-   *     index coordinate, and the value is the corresponding match index of
-   *     corner2, e.g. keypoints1=[x0,y0,x1,y1,...] and
-   *     keypoints2=[x'0,y'0,x'1,y'1,...], if x0 matches x'1 and x1 matches x'0,
-   *     the return array would be [3,0].
-   * @static
-   */
-  tracking.Brief.reciprocalMatch = function(keypoints1, descriptors1, keypoints2, descriptors2) {
-    var matches = [];
-    if (keypoints1.length === 0 || keypoints2.length === 0) {
-      return matches;
-    }
-
-    var matches1 = tracking.Brief.match(keypoints1, descriptors1, keypoints2, descriptors2);
-    var matches2 = tracking.Brief.match(keypoints2, descriptors2, keypoints1, descriptors1);
-    for (var i = 0; i < matches1.length; i++) {
-      if (matches2[matches1[i].index2].index2 === i) {
-        matches.push(matches1[i]);
-      }
-    }
-    return matches;
-  };
-
-  /**
-   * Gets the coordinates values of (x,y)-location pairs uniquely chosen
-   * during the initialization.
-   * @return {array} Array with the random offset values.
-   * @private
-   */
-  tracking.Brief.getRandomOffsets_ = function(width) {
-    if (!this.randomWindowOffsets_) {
-      var windowPosition = 0;
-      var windowOffsets = new Int32Array(4 * this.N);
-      for (var i = 0; i < this.N; i++) {
-        windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
-        windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
-        windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
-        windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
-      }
-      this.randomWindowOffsets_ = windowOffsets;
-    }
-
-    if (!this.randomImageOffsets_[width]) {
-      var imagePosition = 0;
-      var imageOffsets = new Int32Array(2 * this.N);
-      for (var j = 0; j < this.N; j++) {
-        imageOffsets[imagePosition++] = this.randomWindowOffsets_[4 * j] * width + this.randomWindowOffsets_[4 * j + 1];
-        imageOffsets[imagePosition++] = this.randomWindowOffsets_[4 * j + 2] * width + this.randomWindowOffsets_[4 * j + 3];
-      }
-      this.randomImageOffsets_[width] = imageOffsets;
-    }
-
-    return this.randomImageOffsets_[width];
-  };
-}());
-
-(function() {
-  /**
-   * FAST intends for "Features from Accelerated Segment Test". This method
-   * performs a point segment test corner detection. The segment test
-   * criterion operates by considering a circle of sixteen pixels around the
-   * corner candidate p. The detector classifies p as a corner if there exists
-   * a set of n contiguous pixelsin the circle which are all brighter than the
-   * intensity of the candidate pixel Ip plus a threshold t, or all darker
-   * than Ip − t.
-   *
-   *       15 00 01
-   *    14          02
-   * 13                03
-   * 12       []       04
-   * 11                05
-   *    10          06
-   *       09 08 07
-   *
-   * For more reference:
-   * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3991&rep=rep1&type=pdf
-   * @static
-   * @constructor
-   */
-  tracking.Fast = {};
-
-  /**
-   * Holds the threshold to determine whether the tested pixel is brighter or
-   * darker than the corner candidate p.
-   * @type {number}
-   * @default 40
-   * @static
-   */
-  tracking.Fast.THRESHOLD = 40;
-
-  /**
-   * Caches coordinates values of the circle surrounding the pixel candidate p.
-   * @type {Object.<number, Int32Array>}
-   * @private
-   * @static
-   */
-  tracking.Fast.circles_ = {};
-
-  /**
-   * Finds corners coordinates on the graysacaled image.
-   * @param {array} The grayscale pixels in a linear [p1,p2,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {number} threshold to determine whether the tested pixel is brighter or
-   *     darker than the corner candidate p. Default value is 40.
-   * @return {array} Array containing the coordinates of all found corners,
-   *     e.g. [x0,y0,x1,y1,...], where P(x0,y0) represents a corner coordinate.
-   * @static
-   */
-  tracking.Fast.findCorners = function(pixels, width, height, opt_threshold) {
-    var circleOffsets = this.getCircleOffsets_(width);
-    var circlePixels = new Int32Array(16);
-    var corners = [];
-
-    if (opt_threshold === undefined) {
-      opt_threshold = this.THRESHOLD;
-    }
-
-    // When looping through the image pixels, skips the first three lines from
-    // the image boundaries to constrain the surrounding circle inside the image
-    // area.
-    for (var i = 3; i < height - 3; i++) {
-      for (var j = 3; j < width - 3; j++) {
-        var w = i * width + j;
-        var p = pixels[w];
-
-        // Loops the circle offsets to read the pixel value for the sixteen
-        // surrounding pixels.
-        for (var k = 0; k < 16; k++) {
-          circlePixels[k] = pixels[w + circleOffsets[k]];
-        }
-
-        if (this.isCorner(p, circlePixels, opt_threshold)) {
-          // The pixel p is classified as a corner, as optimization increment j
-          // by the circle radius 3 to skip the neighbor pixels inside the
-          // surrounding circle. This can be removed without compromising the
-          // result.
-          corners.push(j, i);
-          j += 3;
-        }
-      }
-    }
-
-    return corners;
-  };
-
-  /**
-   * Checks if the circle pixel is brighter than the candidate pixel p by
-   * a threshold.
-   * @param {number} circlePixel The circle pixel value.
-   * @param {number} p The value of the candidate pixel p.
-   * @param {number} threshold
-   * @return {Boolean}
-   * @static
-   */
-  tracking.Fast.isBrighter = function(circlePixel, p, threshold) {
-    return circlePixel - p > threshold;
-  };
-
-  /**
-   * Checks if the circle pixel is within the corner of the candidate pixel p
-   * by a threshold.
-   * @param {number} p The value of the candidate pixel p.
-   * @param {number} circlePixel The circle pixel value.
-   * @param {number} threshold
-   * @return {Boolean}
-   * @static
-   */
-  tracking.Fast.isCorner = function(p, circlePixels, threshold) {
-    if (this.isTriviallyExcluded(circlePixels, p, threshold)) {
-      return false;
-    }
-
-    for (var x = 0; x < 16; x++) {
-      var darker = true;
-      var brighter = true;
-
-      for (var y = 0; y < 9; y++) {
-        var circlePixel = circlePixels[(x + y) & 15];
-
-        if (!this.isBrighter(p, circlePixel, threshold)) {
-          brighter = false;
-          if (darker === false) {
-            break;
-          }
-        }
-
-        if (!this.isDarker(p, circlePixel, threshold)) {
-          darker = false;
-          if (brighter === false) {
-            break;
-          }
-        }
-      }
-
-      if (brighter || darker) {
-        return true;
-      }
-    }
-
-    return false;
-  };
-
-  /**
-   * Checks if the circle pixel is darker than the candidate pixel p by
-   * a threshold.
-   * @param {number} circlePixel The circle pixel value.
-   * @param {number} p The value of the candidate pixel p.
-   * @param {number} threshold
-   * @return {Boolean}
-   * @static
-   */
-  tracking.Fast.isDarker = function(circlePixel, p, threshold) {
-    return p - circlePixel > threshold;
-  };
-
-  /**
-   * Fast check to test if the candidate pixel is a trivially excluded value.
-   * In order to be a corner, the candidate pixel value should be darker or
-   * brighter than 9-12 surrounding pixels, when at least three of the top,
-   * bottom, left and right pixels are brighter or darker it can be
-   * automatically excluded improving the performance.
-   * @param {number} circlePixel The circle pixel value.
-   * @param {number} p The value of the candidate pixel p.
-   * @param {number} threshold
-   * @return {Boolean}
-   * @static
-   * @protected
-   */
-  tracking.Fast.isTriviallyExcluded = function(circlePixels, p, threshold) {
-    var count = 0;
-    var circleBottom = circlePixels[8];
-    var circleLeft = circlePixels[12];
-    var circleRight = circlePixels[4];
-    var circleTop = circlePixels[0];
-
-    if (this.isBrighter(circleTop, p, threshold)) {
-      count++;
-    }
-    if (this.isBrighter(circleRight, p, threshold)) {
-      count++;
-    }
-    if (this.isBrighter(circleBottom, p, threshold)) {
-      count++;
-    }
-    if (this.isBrighter(circleLeft, p, threshold)) {
-      count++;
-    }
-
-    if (count < 3) {
-      count = 0;
-      if (this.isDarker(circleTop, p, threshold)) {
-        count++;
-      }
-      if (this.isDarker(circleRight, p, threshold)) {
-        count++;
-      }
-      if (this.isDarker(circleBottom, p, threshold)) {
-        count++;
-      }
-      if (this.isDarker(circleLeft, p, threshold)) {
-        count++;
-      }
-      if (count < 3) {
-        return true;
-      }
-    }
-
-    return false;
-  };
-
-  /**
-   * Gets the sixteen offset values of the circle surrounding pixel.
-   * @param {number} width The image width.
-   * @return {array} Array with the sixteen offset values of the circle
-   *     surrounding pixel.
-   * @private
-   */
-  tracking.Fast.getCircleOffsets_ = function(width) {
-    if (this.circles_[width]) {
-      return this.circles_[width];
-    }
-
-    var circle = new Int32Array(16);
-
-    circle[0] = -width - width - width;
-    circle[1] = circle[0] + 1;
-    circle[2] = circle[1] + width + 1;
-    circle[3] = circle[2] + width + 1;
-    circle[4] = circle[3] + width;
-    circle[5] = circle[4] + width;
-    circle[6] = circle[5] + width - 1;
-    circle[7] = circle[6] + width - 1;
-    circle[8] = circle[7] - 1;
-    circle[9] = circle[8] - 1;
-    circle[10] = circle[9] - width - 1;
-    circle[11] = circle[10] - width - 1;
-    circle[12] = circle[11] - width;
-    circle[13] = circle[12] - width;
-    circle[14] = circle[13] - width + 1;
-    circle[15] = circle[14] - width + 1;
-
-    this.circles_[width] = circle;
-    return circle;
-  };
-}());
-
-(function() {
-  /**
-   * Math utility.
-   * @static
-   * @constructor
-   */
-  tracking.Math = {};
-
-  /**
-   * Euclidean distance between two points P(x0, y0) and P(x1, y1).
-   * @param {number} x0 Horizontal coordinate of P0.
-   * @param {number} y0 Vertical coordinate of P0.
-   * @param {number} x1 Horizontal coordinate of P1.
-   * @param {number} y1 Vertical coordinate of P1.
-   * @return {number} The euclidean distance.
-   */
-  tracking.Math.distance = function(x0, y0, x1, y1) {
-    var dx = x1 - x0;
-    var dy = y1 - y0;
-
-    return Math.sqrt(dx * dx + dy * dy);
-  };
-
-  /**
-   * Calculates the Hamming weight of a string, which is the number of symbols that are
-   * different from the zero-symbol of the alphabet used. It is thus
-   * equivalent to the Hamming distance from the all-zero string of the same
-   * length. For the most typical case, a string of bits, this is the number
-   * of 1's in the string.
-   *
-   * Example:
-   *
-   * <pre>
-   *  Binary string     Hamming weight
-   *   11101                 4
-   *   11101010              5
-   * </pre>
-   *
-   * @param {number} i Number that holds the binary string to extract the hamming weight.
-   * @return {number} The hamming weight.
-   */
-  tracking.Math.hammingWeight = function(i) {
-    i = i - ((i >> 1) & 0x55555555);
-    i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
-
-    return ((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
-  };
-
-  /**
-   * Generates a random number between [a, b] interval.
-   * @param {number} a
-   * @param {number} b
-   * @return {number}
-   */
-  tracking.Math.uniformRandom = function(a, b) {
-    return a + Math.random() * (b - a);
-  };
-
-  /**
-   * Tests if a rectangle intersects with another.
-   *
-   *  <pre>
-   *  x0y0 --------       x2y2 --------
-   *      |       |           |       |
-   *      -------- x1y1       -------- x3y3
-   * </pre>
-   *
-   * @param {number} x0 Horizontal coordinate of P0.
-   * @param {number} y0 Vertical coordinate of P0.
-   * @param {number} x1 Horizontal coordinate of P1.
-   * @param {number} y1 Vertical coordinate of P1.
-   * @param {number} x2 Horizontal coordinate of P2.
-   * @param {number} y2 Vertical coordinate of P2.
-   * @param {number} x3 Horizontal coordinate of P3.
-   * @param {number} y3 Vertical coordinate of P3.
-   * @return {boolean}
-   */
-  tracking.Math.intersectRect = function(x0, y0, x1, y1, x2, y2, x3, y3) {
-    return !(x2 > x1 || x3 < x0 || y2 > y1 || y3 < y0);
-  };
-
-}());
-
-(function() {
-  /**
-   * Matrix utility.
-   * @static
-   * @constructor
-   */
-  tracking.Matrix = {};
-
-  /**
-   * Loops the array organized as major-row order and executes `fn` callback
-   * for each iteration. The `fn` callback receives the following parameters:
-   * `(r,g,b,a,index,i,j)`, where `r,g,b,a` represents the pixel color with
-   * alpha channel, `index` represents the position in the major-row order
-   * array and `i,j` the respective indexes positions in two dimensions.
-   * @param {array} pixels The pixels in a linear [r,g,b,a,...] array to loop
-   *     through.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {function} fn The callback function for each pixel.
-   * @param {number} opt_jump Optional jump for the iteration, by default it
-   *     is 1, hence loops all the pixels of the array.
-   * @static
-   */
-  tracking.Matrix.forEach = function(pixels, width, height, fn, opt_jump) {
-    opt_jump = opt_jump || 1;
-    for (var i = 0; i < height; i += opt_jump) {
-      for (var j = 0; j < width; j += opt_jump) {
-        var w = i * width * 4 + j * 4;
-        fn.call(this, pixels[w], pixels[w + 1], pixels[w + 2], pixels[w + 3], w, i, j);
-      }
-    }
-  };
-
-  /**
-   * Calculates the per-element subtraction of two NxM matrices and returns a 
-   * new NxM matrix as the result.
-   * @param {matrix} a The first matrix.
-   * @param {matrix} a The second matrix.
-   * @static
-   */
-  tracking.Matrix.sub = function(a, b){
-    var res = tracking.Matrix.clone(a);
-    for(var i=0; i < res.length; i++){
-      for(var j=0; j < res[i].length; j++){
-        res[i][j] -= b[i][j]; 
-      }
-    }
-    return res;
-  }
-
-  /**
-   * Calculates the per-element sum of two NxM matrices and returns a new NxM
-   * NxM matrix as the result.
-   * @param {matrix} a The first matrix.
-   * @param {matrix} a The second matrix.
-   * @static
-   */
-  tracking.Matrix.add = function(a, b){
-    var res = tracking.Matrix.clone(a);
-    for(var i=0; i < res.length; i++){
-      for(var j=0; j < res[i].length; j++){
-        res[i][j] += b[i][j]; 
-      }
-    }
-    return res;
-  }
-
-  /**
-   * Clones a matrix (or part of it) and returns a new matrix as the result.
-   * @param {matrix} src The matrix to be cloned.
-   * @param {number} width The second matrix.
-   * @static
-   */
-  tracking.Matrix.clone = function(src, width, height){
-    width = width || src[0].length;
-    height = height || src.length;
-    var temp = new Array(height);
-    var i = height;
-    while(i--){
-      temp[i] = new Array(width);
-      var j = width;
-      while(j--) temp[i][j] = src[i][j];
-    } 
-    return temp;
-  }
-
-  /**
-   * Multiply a matrix by a scalar and returns a new matrix as the result.
-   * @param {number} scalar The scalar to multiply the matrix by.
-   * @param {matrix} src The matrix to be multiplied.
-   * @static
-   */
-  tracking.Matrix.mulScalar = function(scalar, src){
-    var res = tracking.Matrix.clone(src);
-    for(var i=0; i < src.length; i++){
-      for(var j=0; j < src[i].length; j++){
-        res[i][j] *= scalar;
-      }
-    }
-    return res;
-  }
-
-  /**
-   * Transpose a matrix and returns a new matrix as the result.
-   * @param {matrix} src The matrix to be transposed.
-   * @static
-   */
-  tracking.Matrix.transpose = function(src){
-    var transpose = new Array(src[0].length);
-    for(var i=0; i < src[0].length; i++){
-      transpose[i] = new Array(src.length);
-      for(var j=0; j < src.length; j++){
-        transpose[i][j] = src[j][i];
-      }
-    }
-    return transpose;
-  }
-
-  /**
-   * Multiply an MxN matrix with an NxP matrix and returns a new MxP matrix
-   * as the result.
-   * @param {matrix} a The first matrix.
-   * @param {matrix} b The second matrix.
-   * @static
-   */
-  tracking.Matrix.mul = function(a, b) {
-    var res = new Array(a.length);
-    for (var i = 0; i < a.length; i++) {
-      res[i] = new Array(b[0].length);
-      for (var j = 0; j < b[0].length; j++) {
-        res[i][j] = 0;            
-        for (var k = 0; k < a[0].length; k++) {
-          res[i][j] += a[i][k] * b[k][j];
-        }
-      }
-    }
-    return res;
-  }
-
-  /**
-   * Calculates the absolute norm of a matrix.
-   * @param {matrix} src The matrix which norm will be calculated.
-   * @static
-   */
-  tracking.Matrix.norm = function(src){
-    var res = 0;
-    for(var i=0; i < src.length; i++){
-      for(var j=0; j < src[i].length; j++){
-        res += src[i][j]*src[i][j];
-      }
-    }
-    return Math.sqrt(res);
-  }
-
-  /**
-   * Calculates and returns the covariance matrix of a set of vectors as well
-   * as the mean of the matrix.
-   * @param {matrix} src The matrix which covariance matrix will be calculated.
-   * @static
-   */
-  tracking.Matrix.calcCovarMatrix = function(src){
-
-    var mean = new Array(src.length);
-    for(var i=0; i < src.length; i++){
-      mean[i] = [0.0];
-      for(var j=0; j < src[i].length; j++){
-        mean[i][0] += src[i][j]/src[i].length;
-      }
-    }
-
-    var deltaFull = tracking.Matrix.clone(mean);
-    for(var i=0; i < deltaFull.length; i++){
-      for(var j=0; j < src[0].length - 1; j++){
-        deltaFull[i].push(deltaFull[i][0]);
-      }
-    }
-
-    var a = tracking.Matrix.sub(src, deltaFull);
-    var b = tracking.Matrix.transpose(a);
-    var covar = tracking.Matrix.mul(b,a); 
-    return [covar, mean];
-
-  }
-
-}());
-(function() {
-  /**
-   * EPnp utility.
-   * @static
-   * @constructor
-   */
-  tracking.EPnP = {};
-
-  tracking.EPnP.solve = function(objectPoints, imagePoints, cameraMatrix) {};
-}());
-
-(function() {
-  /**
-   * Tracker utility.
-   * @constructor
-   * @extends {tracking.EventEmitter}
-   */
-  tracking.Tracker = function() {
-    tracking.Tracker.base(this, 'constructor');
-  };
-
-  tracking.inherits(tracking.Tracker, tracking.EventEmitter);
-
-  /**
-   * Tracks the pixels on the array. This method is called for each video
-   * frame in order to emit `track` event.
-   * @param {Uint8ClampedArray} pixels The pixels data to track.
-   * @param {number} width The pixels canvas width.
-   * @param {number} height The pixels canvas height.
-   */
-  tracking.Tracker.prototype.track = function() {};
-}());
-
-(function() {
-  /**
-   * TrackerTask utility.
-   * @constructor
-   * @extends {tracking.EventEmitter}
-   */
-  tracking.TrackerTask = function(tracker) {
-    tracking.TrackerTask.base(this, 'constructor');
-
-    if (!tracker) {
-      throw new Error('Tracker instance not specified.');
-    }
-
-    this.setTracker(tracker);
-  };
-
-  tracking.inherits(tracking.TrackerTask, tracking.EventEmitter);
-
-  /**
-   * Holds the tracker instance managed by this task.
-   * @type {tracking.Tracker}
-   * @private
-   */
-  tracking.TrackerTask.prototype.tracker_ = null;
-
-  /**
-   * Holds if the tracker task is in running.
-   * @type {boolean}
-   * @private
-   */
-  tracking.TrackerTask.prototype.running_ = false;
-
-  /**
-   * Gets the tracker instance managed by this task.
-   * @return {tracking.Tracker}
-   */
-  tracking.TrackerTask.prototype.getTracker = function() {
-    return this.tracker_;
-  };
-
-  /**
-   * Returns true if the tracker task is in running, false otherwise.
-   * @return {boolean}
-   * @private
-   */
-  tracking.TrackerTask.prototype.inRunning = function() {
-    return this.running_;
-  };
-
-  /**
-   * Sets if the tracker task is in running.
-   * @param {boolean} running
-   * @private
-   */
-  tracking.TrackerTask.prototype.setRunning = function(running) {
-    this.running_ = running;
-  };
-
-  /**
-   * Sets the tracker instance managed by this task.
-   * @return {tracking.Tracker}
-   */
-  tracking.TrackerTask.prototype.setTracker = function(tracker) {
-    this.tracker_ = tracker;
-  };
-
-  /**
-   * Emits a `run` event on the tracker task for the implementers to run any
-   * child action, e.g. `requestAnimationFrame`.
-   * @return {object} Returns itself, so calls can be chained.
-   */
-  tracking.TrackerTask.prototype.run = function() {
-    var self = this;
-
-    if (this.inRunning()) {
-      return;
-    }
-
-    this.setRunning(true);
-    this.reemitTrackEvent_ = function(event) {
-      self.emit('track', event);
-    };
-    this.tracker_.on('track', this.reemitTrackEvent_);
-    this.emit('run');
-    return this;
-  };
-
-  /**
-   * Emits a `stop` event on the tracker task for the implementers to stop any
-   * child action being done, e.g. `requestAnimationFrame`.
-   * @return {object} Returns itself, so calls can be chained.
-   */
-  tracking.TrackerTask.prototype.stop = function() {
-    if (!this.inRunning()) {
-      return;
-    }
-
-    this.setRunning(false);
-    this.emit('stop');
-    this.tracker_.removeListener('track', this.reemitTrackEvent_);
-    return this;
-  };
-}());
-
-(function() {
-  /**
-   * ColorTracker utility to track colored blobs in a frame using color
-   * difference evaluation.
-   * @constructor
-   * @param {string|Array.<string>} opt_colors Optional colors to track.
-   * @extends {tracking.Tracker}
-   */
-  tracking.ColorTracker = function(opt_colors) {
-    tracking.ColorTracker.base(this, 'constructor');
-
-    if (typeof opt_colors === 'string') {
-      opt_colors = [opt_colors];
-    }
-
-    if (opt_colors) {
-      opt_colors.forEach(function(color) {
-        if (!tracking.ColorTracker.getColor(color)) {
-          throw new Error('Color not valid, try `new tracking.ColorTracker("magenta")`.');
-        }
-      });
-      this.setColors(opt_colors);
-    }
-  };
-
-  tracking.inherits(tracking.ColorTracker, tracking.Tracker);
-
-  /**
-   * Holds the known colors.
-   * @type {Object.<string, function>}
-   * @private
-   * @static
-   */
-  tracking.ColorTracker.knownColors_ = {};
-
-  /**
-   * Caches coordinates values of the neighbours surrounding a pixel.
-   * @type {Object.<number, Int32Array>}
-   * @private
-   * @static
-   */
-  tracking.ColorTracker.neighbours_ = {};
-
-  /**
-   * Registers a color as known color.
-   * @param {string} name The color name.
-   * @param {function} fn The color function to test if the passed (r,g,b) is
-   *     the desired color.
-   * @static
-   */
-  tracking.ColorTracker.registerColor = function(name, fn) {
-    tracking.ColorTracker.knownColors_[name] = fn;
-  };
-
-  /**
-   * Gets the known color function that is able to test whether an (r,g,b) is
-   * the desired color.
-   * @param {string} name The color name.
-   * @return {function} The known color test function.
-   * @static
-   */
-  tracking.ColorTracker.getColor = function(name) {
-    return tracking.ColorTracker.knownColors_[name];
-  };
-
-  /**
-   * Holds the colors to be tracked by the `ColorTracker` instance.
-   * @default ['magenta']
-   * @type {Array.<string>}
-   */
-  tracking.ColorTracker.prototype.colors = ['magenta'];
-
-  /**
-   * Holds the minimum dimension to classify a rectangle.
-   * @default 20
-   * @type {number}
-   */
-  tracking.ColorTracker.prototype.minDimension = 20;
-
-  /**
-   * Holds the maximum dimension to classify a rectangle.
-   * @default Infinity
-   * @type {number}
-   */
-  tracking.ColorTracker.prototype.maxDimension = Infinity;
-
-
-  /**
-   * Holds the minimum group size to be classified as a rectangle.
-   * @default 30
-   * @type {number}
-   */
-  tracking.ColorTracker.prototype.minGroupSize = 30;
-
-  /**
-   * Calculates the central coordinate from the cloud points. The cloud points
-   * are all points that matches the desired color.
-   * @param {Array.<number>} cloud Major row order array containing all the
-   *     points from the desired color, e.g. [x1, y1, c2, y2, ...].
-   * @param {number} total Total numbers of pixels of the desired color.
-   * @return {object} Object containing the x, y and estimated z coordinate of
-   *     the blog extracted from the cloud points.
-   * @private
-   */
-  tracking.ColorTracker.prototype.calculateDimensions_ = function(cloud, total) {
-    var maxx = -1;
-    var maxy = -1;
-    var minx = Infinity;
-    var miny = Infinity;
-
-    for (var c = 0; c < total; c += 2) {
-      var x = cloud[c];
-      var y = cloud[c + 1];
-
-      if (x < minx) {
-        minx = x;
-      }
-      if (x > maxx) {
-        maxx = x;
-      }
-      if (y < miny) {
-        miny = y;
-      }
-      if (y > maxy) {
-        maxy = y;
-      }
-    }
-
-    return {
-      width: maxx - minx,
-      height: maxy - miny,
-      x: minx,
-      y: miny
-    };
-  };
-
-  /**
-   * Gets the colors being tracked by the `ColorTracker` instance.
-   * @return {Array.<string>}
-   */
-  tracking.ColorTracker.prototype.getColors = function() {
-    return this.colors;
-  };
-
-  /**
-   * Gets the minimum dimension to classify a rectangle.
-   * @return {number}
-   */
-  tracking.ColorTracker.prototype.getMinDimension = function() {
-    return this.minDimension;
-  };
-
-  /**
-   * Gets the maximum dimension to classify a rectangle.
-   * @return {number}
-   */
-  tracking.ColorTracker.prototype.getMaxDimension = function() {
-    return this.maxDimension;
-  };
-
-  /**
-   * Gets the minimum group size to be classified as a rectangle.
-   * @return {number}
-   */
-  tracking.ColorTracker.prototype.getMinGroupSize = function() {
-    return this.minGroupSize;
-  };
-
-  /**
-   * Gets the eight offset values of the neighbours surrounding a pixel.
-   * @param {number} width The image width.
-   * @return {array} Array with the eight offset values of the neighbours
-   *     surrounding a pixel.
-   * @private
-   */
-  tracking.ColorTracker.prototype.getNeighboursForWidth_ = function(width) {
-    if (tracking.ColorTracker.neighbours_[width]) {
-      return tracking.ColorTracker.neighbours_[width];
-    }
-
-    var neighbours = new Int32Array(8);
-
-    neighbours[0] = -width * 4;
-    neighbours[1] = -width * 4 + 4;
-    neighbours[2] = 4;
-    neighbours[3] = width * 4 + 4;
-    neighbours[4] = width * 4;
-    neighbours[5] = width * 4 - 4;
-    neighbours[6] = -4;
-    neighbours[7] = -width * 4 - 4;
-
-    tracking.ColorTracker.neighbours_[width] = neighbours;
-
-    return neighbours;
-  };
-
-  /**
-   * Unites groups whose bounding box intersect with each other.
-   * @param {Array.<Object>} rects
-   * @private
-   */
-  tracking.ColorTracker.prototype.mergeRectangles_ = function(rects) {
-    var intersects;
-    var results = [];
-    var minDimension = this.getMinDimension();
-    var maxDimension = this.getMaxDimension();
-
-    for (var r = 0; r < rects.length; r++) {
-      var r1 = rects[r];
-      intersects = true;
-      for (var s = r + 1; s < rects.length; s++) {
-        var r2 = rects[s];
-        if (tracking.Math.intersectRect(r1.x, r1.y, r1.x + r1.width, r1.y + r1.height, r2.x, r2.y, r2.x + r2.width, r2.y + r2.height)) {
-          intersects = false;
-          var x1 = Math.min(r1.x, r2.x);
-          var y1 = Math.min(r1.y, r2.y);
-          var x2 = Math.max(r1.x + r1.width, r2.x + r2.width);
-          var y2 = Math.max(r1.y + r1.height, r2.y + r2.height);
-          r2.height = y2 - y1;
-          r2.width = x2 - x1;
-          r2.x = x1;
-          r2.y = y1;
-          break;
-        }
-      }
-
-      if (intersects) {
-        if (r1.width >= minDimension && r1.height >= minDimension) {
-          if (r1.width <= maxDimension && r1.height <= maxDimension) {
-            results.push(r1);
-          }
-        }
-      }
-    }
-
-    return results;
-  };
-
-  /**
-   * Sets the colors to be tracked by the `ColorTracker` instance.
-   * @param {Array.<string>} colors
-   */
-  tracking.ColorTracker.prototype.setColors = function(colors) {
-    this.colors = colors;
-  };
-
-  /**
-   * Sets the minimum dimension to classify a rectangle.
-   * @param {number} minDimension
-   */
-  tracking.ColorTracker.prototype.setMinDimension = function(minDimension) {
-    this.minDimension = minDimension;
-  };
-
-  /**
-   * Sets the maximum dimension to classify a rectangle.
-   * @param {number} maxDimension
-   */
-  tracking.ColorTracker.prototype.setMaxDimension = function(maxDimension) {
-    this.maxDimension = maxDimension;
-  };
-
-  /**
-   * Sets the minimum group size to be classified as a rectangle.
-   * @param {number} minGroupSize
-   */
-  tracking.ColorTracker.prototype.setMinGroupSize = function(minGroupSize) {
-    this.minGroupSize = minGroupSize;
-  };
-
-  /**
-   * Tracks the `Video` frames. This method is called for each video frame in
-   * order to emit `track` event.
-   * @param {Uint8ClampedArray} pixels The pixels data to track.
-   * @param {number} width The pixels canvas width.
-   * @param {number} height The pixels canvas height.
-   */
-  tracking.ColorTracker.prototype.track = function(pixels, width, height) {
-    var self = this;
-    var colors = this.getColors();
-
-    if (!colors) {
-      throw new Error('Colors not specified, try `new tracking.ColorTracker("magenta")`.');
-    }
-
-    var results = [];
-
-    colors.forEach(function(color) {
-      results = results.concat(self.trackColor_(pixels, width, height, color));
-    });
-
-    this.emit('track', {
-      data: results
-    });
-  };
-
-  /**
-   * Find the given color in the given matrix of pixels using Flood fill
-   * algorithm to determines the area connected to a given node in a
-   * multi-dimensional array.
-   * @param {Uint8ClampedArray} pixels The pixels data to track.
-   * @param {number} width The pixels canvas width.
-   * @param {number} height The pixels canvas height.
-   * @param {string} color The color to be found
-   * @private
-   */
-  tracking.ColorTracker.prototype.trackColor_ = function(pixels, width, height, color) {
-    var colorFn = tracking.ColorTracker.knownColors_[color];
-    var currGroup = new Int32Array(pixels.length >> 2);
-    var currGroupSize;
-    var currI;
-    var currJ;
-    var currW;
-    var marked = new Int8Array(pixels.length);
-    var minGroupSize = this.getMinGroupSize();
-    var neighboursW = this.getNeighboursForWidth_(width);
-    var queue = new Int32Array(pixels.length);
-    var queuePosition;
-    var results = [];
-    var w = -4;
-
-    if (!colorFn) {
-      return results;
-    }
-
-    for (var i = 0; i < height; i++) {
-      for (var j = 0; j < width; j++) {
-        w += 4;
-
-        if (marked[w]) {
-          continue;
-        }
-
-        currGroupSize = 0;
-
-        queuePosition = -1;
-        queue[++queuePosition] = w;
-        queue[++queuePosition] = i;
-        queue[++queuePosition] = j;
-
-        marked[w] = 1;
-
-        while (queuePosition >= 0) {
-          currJ = queue[queuePosition--];
-          currI = queue[queuePosition--];
-          currW = queue[queuePosition--];
-
-          if (colorFn(pixels[currW], pixels[currW + 1], pixels[currW + 2], pixels[currW + 3], currW, currI, currJ)) {
-            currGroup[currGroupSize++] = currJ;
-            currGroup[currGroupSize++] = currI;
-
-            for (var k = 0; k < neighboursW.length; k++) {
-              var otherW = currW + neighboursW[k];
-              var otherI = currI + neighboursI[k];
-              var otherJ = currJ + neighboursJ[k];
-              if (!marked[otherW] && otherI >= 0 && otherI < height && otherJ >= 0 && otherJ < width) {
-                queue[++queuePosition] = otherW;
-                queue[++queuePosition] = otherI;
-                queue[++queuePosition] = otherJ;
-
-                marked[otherW] = 1;
-              }
-            }
-          }
-        }
-
-        if (currGroupSize >= minGroupSize) {
-          var data = this.calculateDimensions_(currGroup, currGroupSize);
-          if (data) {
-            data.color = color;
-            results.push(data);
-          }
-        }
-      }
-    }
-
-    return this.mergeRectangles_(results);
-  };
-
-  // Default colors
-  //===================
-
-  tracking.ColorTracker.registerColor('cyan', function(r, g, b) {
-    var thresholdGreen = 50,
-      thresholdBlue = 70,
-      dx = r - 0,
-      dy = g - 255,
-      dz = b - 255;
-
-    if ((g - r) >= thresholdGreen && (b - r) >= thresholdBlue) {
-      return true;
-    }
-    return dx * dx + dy * dy + dz * dz < 6400;
-  });
-
-  tracking.ColorTracker.registerColor('magenta', function(r, g, b) {
-    var threshold = 50,
-      dx = r - 255,
-      dy = g - 0,
-      dz = b - 255;
-
-    if ((r - g) >= threshold && (b - g) >= threshold) {
-      return true;
-    }
-    return dx * dx + dy * dy + dz * dz < 19600;
-  });
-
-  tracking.ColorTracker.registerColor('yellow', function(r, g, b) {
-    var threshold = 50,
-      dx = r - 255,
-      dy = g - 255,
-      dz = b - 0;
-
-    if ((r - b) >= threshold && (g - b) >= threshold) {
-      return true;
-    }
-    return dx * dx + dy * dy + dz * dz < 10000;
-  });
-
-
-  // Caching neighbour i/j offset values.
-  //=====================================
-  var neighboursI = new Int32Array([-1, -1, 0, 1, 1, 1, 0, -1]);
-  var neighboursJ = new Int32Array([0, 1, 1, 1, 0, -1, -1, -1]);
-}());
-
-(function() {
-  /**
-   * ObjectTracker utility.
-   * @constructor
-   * @param {string|Array.<string|Array.<number>>} opt_classifiers Optional
-   *     object classifiers to track.
-   * @extends {tracking.Tracker}
-   */
-  tracking.ObjectTracker = function(opt_classifiers) {
-    tracking.ObjectTracker.base(this, 'constructor');
-
-    if (opt_classifiers) {
-      if (!Array.isArray(opt_classifiers)) {
-        opt_classifiers = [opt_classifiers];
-      }
-
-      if (Array.isArray(opt_classifiers)) {
-        opt_classifiers.forEach(function(classifier, i) {
-          if (typeof classifier === 'string') {
-            opt_classifiers[i] = tracking.ViolaJones.classifiers[classifier];
-          }
-          if (!opt_classifiers[i]) {
-            throw new Error('Object classifier not valid, try `new tracking.ObjectTracker("face")`.');
-          }
-        });
-      }
-    }
-
-    this.setClassifiers(opt_classifiers);
-  };
-
-  tracking.inherits(tracking.ObjectTracker, tracking.Tracker);
-
-  /**
-   * Specifies the edges density of a block in order to decide whether to skip
-   * it or not.
-   * @default 0.2
-   * @type {number}
-   */
-  tracking.ObjectTracker.prototype.edgesDensity = 0.2;
-
-  /**
-   * Specifies the initial scale to start the feature block scaling.
-   * @default 1.0
-   * @type {number}
-   */
-  tracking.ObjectTracker.prototype.initialScale = 1.0;
-
-  /**
-   * Specifies the scale factor to scale the feature block.
-   * @default 1.25
-   * @type {number}
-   */
-  tracking.ObjectTracker.prototype.scaleFactor = 1.25;
-
-  /**
-   * Specifies the block step size.
-   * @default 1.5
-   * @type {number}
-   */
-  tracking.ObjectTracker.prototype.stepSize = 1.5;
-
-  /**
-   * Gets the tracker HAAR classifiers.
-   * @return {TypedArray.<number>}
-   */
-  tracking.ObjectTracker.prototype.getClassifiers = function() {
-    return this.classifiers;
-  };
-
-  /**
-   * Gets the edges density value.
-   * @return {number}
-   */
-  tracking.ObjectTracker.prototype.getEdgesDensity = function() {
-    return this.edgesDensity;
-  };
-
-  /**
-   * Gets the initial scale to start the feature block scaling.
-   * @return {number}
-   */
-  tracking.ObjectTracker.prototype.getInitialScale = function() {
-    return this.initialScale;
-  };
-
-  /**
-   * Gets the scale factor to scale the feature block.
-   * @return {number}
-   */
-  tracking.ObjectTracker.prototype.getScaleFactor = function() {
-    return this.scaleFactor;
-  };
-
-  /**
-   * Gets the block step size.
-   * @return {number}
-   */
-  tracking.ObjectTracker.prototype.getStepSize = function() {
-    return this.stepSize;
-  };
-
-  /**
-   * Tracks the `Video` frames. This method is called for each video frame in
-   * order to emit `track` event.
-   * @param {Uint8ClampedArray} pixels The pixels data to track.
-   * @param {number} width The pixels canvas width.
-   * @param {number} height The pixels canvas height.
-   */
-  tracking.ObjectTracker.prototype.track = function(pixels, width, height) {
-    var self = this;
-    var classifiers = this.getClassifiers();
-
-    if (!classifiers) {
-      throw new Error('Object classifier not specified, try `new tracking.ObjectTracker("face")`.');
-    }
-
-    var results = [];
-
-    classifiers.forEach(function(classifier) {
-      results = results.concat(tracking.ViolaJones.detect(pixels, width, height, self.getInitialScale(), self.getScaleFactor(), self.getStepSize(), self.getEdgesDensity(), classifier));
-    });
-
-    this.emit('track', {
-      data: results
-    });
-  };
-
-  /**
-   * Sets the tracker HAAR classifiers.
-   * @param {TypedArray.<number>} classifiers
-   */
-  tracking.ObjectTracker.prototype.setClassifiers = function(classifiers) {
-    this.classifiers = classifiers;
-  };
-
-  /**
-   * Sets the edges density.
-   * @param {number} edgesDensity
-   */
-  tracking.ObjectTracker.prototype.setEdgesDensity = function(edgesDensity) {
-    this.edgesDensity = edgesDensity;
-  };
-
-  /**
-   * Sets the initial scale to start the block scaling.
-   * @param {number} initialScale
-   */
-  tracking.ObjectTracker.prototype.setInitialScale = function(initialScale) {
-    this.initialScale = initialScale;
-  };
-
-  /**
-   * Sets the scale factor to scale the feature block.
-   * @param {number} scaleFactor
-   */
-  tracking.ObjectTracker.prototype.setScaleFactor = function(scaleFactor) {
-    this.scaleFactor = scaleFactor;
-  };
-
-  /**
-   * Sets the block step size.
-   * @param {number} stepSize
-   */
-  tracking.ObjectTracker.prototype.setStepSize = function(stepSize) {
-    this.stepSize = stepSize;
-  };
-
-}());
-
-(function() {
-
-
-  tracking.LandmarksTracker = function() {
-    tracking.LandmarksTracker.base(this, 'constructor');
-  }
-
-  tracking.inherits(tracking.LandmarksTracker, tracking.ObjectTracker);
-
-  tracking.LandmarksTracker.prototype.track = function(pixels, width, height) {
-	 
-    var image = {
-      'data': pixels,
-      'width': width,
-      'height': height
-    };
-
-    var classifier = tracking.ViolaJones.classifiers['face'];
-
-    var faces = tracking.ViolaJones.detect(pixels, width, height, 
-      this.getInitialScale(), this.getScaleFactor(), this.getStepSize(), 
-      this.getEdgesDensity(), classifier);
-
-    var landmarks = tracking.LBF.align(pixels, width, height, faces);
-
-    this.emit('track', {
-      'data': {
-        'faces' : faces,
-        'landmarks' : landmarks
-      }
-    });
-
-  }
-
-}());
-
-(function() {
-
-  tracking.LBF = {};
-
-  /**
-   * LBF Regressor utility.
-   * @constructor
-   */
-  tracking.LBF.Regressor = function(maxNumStages){
-    this.maxNumStages = maxNumStages;
-
-    this.rfs = new Array(maxNumStages);
-    this.models = new Array(maxNumStages);
-    for(var i=0; i < maxNumStages; i++){
-      this.rfs[i] = new tracking.LBF.RandomForest(i);
-      this.models[i] = tracking.LBF.RegressorData[i].models;
-    }
-
-    this.meanShape = tracking.LBF.LandmarksData;
-  }
-
-  /**
-   * Predicts the position of the landmarks based on the bounding box of the face.
-   * @param {pixels} pixels The grayscale pixels in a linear array.
-   * @param {number} width Width of the image.
-   * @param {number} height Height of the image.
-   * @param {object} boudingBox Bounding box of the face to be aligned.
-   * @return {matrix} A matrix with each landmark position in a row [x,y].
-   */
-  tracking.LBF.Regressor.prototype.predict = function(pixels, width, height, boundingBox) {
-
-    var images = [];
-    var currentShapes = [];
-    var boundingBoxes = [];
-
-    var meanShapeClone = tracking.Matrix.clone(this.meanShape);
-
-    images.push({
-      'data': pixels,
-      'width': width,
-      'height': height
-    });
-    boundingBoxes.push(boundingBox);
-
-    currentShapes.push(tracking.LBF.projectShapeToBoundingBox_(meanShapeClone, boundingBox));
-
-    for(var stage = 0; stage < this.maxNumStages; stage++){
-      var binaryFeatures = tracking.LBF.Regressor.deriveBinaryFeat(this.rfs[stage], images, currentShapes, boundingBoxes, meanShapeClone);
-      this.applyGlobalPrediction(binaryFeatures, this.models[stage], currentShapes, boundingBoxes);
-    }
-
-    return currentShapes[0];
-  };
-
-  /**
-   * Multiplies the binary features of the landmarks with the regression matrix
-   * to obtain the displacement for each landmark. Then applies this displacement
-   * into the landmarks shape.
-   * @param {object} binaryFeatures The binary features for the landmarks.
-   * @param {object} models The regressor models.
-   * @param {matrix} currentShapes The landmarks shapes.
-   * @param {array} boudingBoxes The bounding boxes of the faces.
-   */
-  tracking.LBF.Regressor.prototype.applyGlobalPrediction = function(binaryFeatures, models, currentShapes, 
-    boundingBoxes){
-
-    var residual = currentShapes[0].length * 2;
-
-    var rotation = [];
-    var deltashape = new Array(residual/2);
-    for(var i=0; i < residual/2; i++){
-      deltashape[i] = [0.0, 0.0];
-    }
-
-    for(var i=0; i < currentShapes.length; i++){
-      for(var j=0; j < residual; j++){
-        var tmp = 0;
-        for(var lx=0, idx=0; (idx = binaryFeatures[i][lx].index) != -1; lx++){
-          if(idx <= models[j].nr_feature){
-            tmp += models[j].data[(idx - 1)] * binaryFeatures[i][lx].value;
-          }
-        }
-        if(j < residual/2){
-          deltashape[j][0] = tmp;
-        }else{
-          deltashape[j - residual/2][1] = tmp;
-        }
-      }
-
-      var res = tracking.LBF.similarityTransform_(tracking.LBF.unprojectShapeToBoundingBox_(currentShapes[i], boundingBoxes[i]), this.meanShape);
-      var rotation = tracking.Matrix.transpose(res[0]);
-
-      var s = tracking.LBF.unprojectShapeToBoundingBox_(currentShapes[i], boundingBoxes[i]);
-      s = tracking.Matrix.add(s, deltashape);
-
-      currentShapes[i] = tracking.LBF.projectShapeToBoundingBox_(s, boundingBoxes[i]);
-
-    }
-  };
-
-  /**
-   * Derives the binary features from the image for each landmark. 
-   * @param {object} forest The random forest to search for the best binary feature match.
-   * @param {array} images The images with pixels in a grayscale linear array.
-   * @param {array} currentShapes The current landmarks shape.
-   * @param {array} boudingBoxes The bounding boxes of the faces.
-   * @param {matrix} meanShape The mean shape of the current landmarks set.
-   * @return {array} The binary features extracted from the image and matched with the
-   *     training data.
-   * @static
-   */
-  tracking.LBF.Regressor.deriveBinaryFeat = function(forest, images, currentShapes, boundingBoxes, meanShape){
-
-    var binaryFeatures = new Array(images.length);
-    for(var i=0; i < images.length; i++){
-      var t = forest.maxNumTrees * forest.landmarkNum + 1;
-      binaryFeatures[i] = new Array(t);
-      for(var j=0; j < t; j++){
-        binaryFeatures[i][j] = {};
-      }
-    }
-
-    var leafnodesPerTree = 1 << (forest.maxDepth - 1);
-
-    for(var i=0; i < images.length; i++){
-
-      var projectedShape = tracking.LBF.unprojectShapeToBoundingBox_(currentShapes[i], boundingBoxes[i]);
-      var transform = tracking.LBF.similarityTransform_(projectedShape, meanShape);
-      
-      for(var j=0; j < forest.landmarkNum; j++){
-        for(var k=0; k < forest.maxNumTrees; k++){
-
-          var binaryCode = tracking.LBF.Regressor.getCodeFromTree(forest.rfs[j][k], images[i], 
-                              currentShapes[i], boundingBoxes[i], transform[0], transform[1]);
-
-          var index = j*forest.maxNumTrees + k;
-          binaryFeatures[i][index].index = leafnodesPerTree * index + binaryCode;
-          binaryFeatures[i][index].value = 1;
-
-        }
-      }
-      binaryFeatures[i][forest.landmarkNum * forest.maxNumTrees].index = -1;
-      binaryFeatures[i][forest.landmarkNum * forest.maxNumTrees].value = -1;
-    }
-    return binaryFeatures;
-
-  }
-
-  /**
-   * Gets the binary code for a specific tree in a random forest. For each landmark,
-   * the position from two pre-defined points are recovered from the training data
-   * and then the intensity of the pixels corresponding to these points is extracted 
-   * from the image and used to traverse the trees in the random forest. At the end,
-   * the ending nodes will be represented by 1, and the remaining nodes by 0.
-   * 
-   * +--------------------------- Random Forest -----------------------------+ 
-   * | Ø = Ending leaf                                                       |
-   * |                                                                       |
-   * |       O             O             O             O             O       |
-   * |     /   \         /   \         /   \         /   \         /   \     |
-   * |    O     O       O     O       O     O       O     O       O     O    |
-   * |   / \   / \     / \   / \     / \   / \     / \   / \     / \   / \   |
-   * |  Ø   O O   O   O   O Ø   O   O   Ø O   O   O   O Ø   O   O   O O   Ø  |
-   * |  1   0 0   0   0   0 1   0   0   1 0   0   0   0 1   0   0   0 0   1  |
-   * +-----------------------------------------------------------------------+
-   * Final binary code for this landmark: 10000010010000100001
-   *
-   * @param {object} forest The tree to be analyzed.
-   * @param {array} image The image with pixels in a grayscale linear array.
-   * @param {matrix} shape The current landmarks shape.
-   * @param {object} boudingBoxes The bounding box of the face.
-   * @param {matrix} rotation The rotation matrix used to transform the projected landmarks
-   *     into the mean shape.
-   * @param {number} scale The scale factor used to transform the projected landmarks
-   *     into the mean shape.
-   * @return {number} The binary code extracted from the tree.
-   * @static
-   */
-  tracking.LBF.Regressor.getCodeFromTree = function(tree, image, shape, boundingBox, rotation, scale){
-    var current = 0;
-    var bincode = 0;
-
-    while(true){
-      
-      var x1 = Math.cos(tree.nodes[current].feats[0]) * tree.nodes[current].feats[2] * tree.maxRadioRadius * boundingBox.width;
-      var y1 = Math.sin(tree.nodes[current].feats[0]) * tree.nodes[current].feats[2] * tree.maxRadioRadius * boundingBox.height;
-      var x2 = Math.cos(tree.nodes[current].feats[1]) * tree.nodes[current].feats[3] * tree.maxRadioRadius * boundingBox.width;
-      var y2 = Math.sin(tree.nodes[current].feats[1]) * tree.nodes[current].feats[3] * tree.maxRadioRadius * boundingBox.height;
-
-      var project_x1 = rotation[0][0] * x1 + rotation[0][1] * y1;
-      var project_y1 = rotation[1][0] * x1 + rotation[1][1] * y1;
-
-      var real_x1 = Math.floor(project_x1 + shape[tree.landmarkID][0]);
-      var real_y1 = Math.floor(project_y1 + shape[tree.landmarkID][1]);
-      real_x1 = Math.max(0.0, Math.min(real_x1, image.height - 1.0));
-      real_y1 = Math.max(0.0, Math.min(real_y1, image.width - 1.0));
-
-      var project_x2 = rotation[0][0] * x2 + rotation[0][1] * y2;
-      var project_y2 = rotation[1][0] * x2 + rotation[1][1] * y2;
-
-      var real_x2 = Math.floor(project_x2 + shape[tree.landmarkID][0]);
-      var real_y2 = Math.floor(project_y2 + shape[tree.landmarkID][1]);
-      real_x2 = Math.max(0.0, Math.min(real_x2, image.height - 1.0));
-      real_y2 = Math.max(0.0, Math.min(real_y2, image.width - 1.0));
-      var pdf = Math.floor(image.data[real_y1*image.width + real_x1]) - 
-          Math.floor(image.data[real_y2 * image.width +real_x2]);
-
-      if(pdf < tree.nodes[current].thresh){
-        current = tree.nodes[current].cnodes[0];
-      }else{
-        current = tree.nodes[current].cnodes[1];
-      }
-
-      if (tree.nodes[current].is_leafnode == 1) {
-        bincode = 1;
-        for (var i=0; i < tree.leafnodes.length; i++) {
-          if (tree.leafnodes[i] == current) {
-            return bincode;
-          }
-          bincode++;
-        }
-        return bincode;
-      }
-
-    }
-
-    return bincode;
-  }
-
-}());
-(function() {
-  /**
-   * Face Alignment via Regressing Local Binary Features (LBF)
-   * This approach has two components: a set of local binary features and
-   * a locality principle for learning those features.
-   * The locality principle is used to guide the learning of a set of highly
-   * discriminative local binary features for each landmark independently.
-   * The obtained local binary features are used to learn a linear regression
-   * that later will be used to guide the landmarks in the alignment phase.
-   * 
-   * @authors: VoxarLabs Team (http://cin.ufpe.br/~voxarlabs)
-   *           Lucas Figueiredo <lsf@cin.ufpe.br>, Thiago Menezes <tmc2@cin.ufpe.br>,
-   *           Thiago Domingues <tald@cin.ufpe.br>, Rafael Roberto <rar3@cin.ufpe.br>,
-   *           Thulio Araujo <tlsa@cin.ufpe.br>, Joao Victor <jvfl@cin.ufpe.br>,
-   *           Tomer Simis <tls@cin.ufpe.br>)
-   */
-  
-  /**
-   * Holds the maximum number of stages that will be used in the alignment algorithm.
-   * Each stage contains a different set of random forests and retrieves the binary
-   * code from a more "specialized" (i.e. smaller) region around the landmarks.
-   * @type {number}
-   * @static
-   */
-  tracking.LBF.maxNumStages = 4;
-
-  /**
-   * Holds the regressor that will be responsible for extracting the local features from 
-   * the image and guide the landmarks using the training data.
-   * @type {object}
-   * @protected
-   * @static
-   */
-  tracking.LBF.regressor_ = null; 
-  
-  /**
-   * Generates a set of landmarks for a set of faces
-   * @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
-   * @param {number} width The image width.
-   * @param {number} height The image height.
-   * @param {array} faces The list of faces detected in the image
-   * @return {array} The aligned landmarks, each set of landmarks corresponding
-   *     to a specific face.
-   * @static
-   */
-  tracking.LBF.align = function(pixels, width, height, faces){
-
-    if(tracking.LBF.regressor_ == null){
-      tracking.LBF.regressor_ = new tracking.LBF.Regressor(
-        tracking.LBF.maxNumStages
-      );
-    }
-
-    pixels = tracking.Image.grayscale(pixels, width, height, false);
-
-    pixels = tracking.Image.equalizeHist(pixels, width, height);
-
-    var shapes = new Array(faces.length);
-
-    for(var i in faces){
-
-      faces[i].height = faces[i].width;
-
-      var boundingBox = {};
-      boundingBox.startX = faces[i].x;
-      boundingBox.startY = faces[i].y;
-      boundingBox.width = faces[i].width;
-      boundingBox.height = faces[i].height;
-
-      shapes[i] = tracking.LBF.regressor_.predict(pixels, width, height, boundingBox);
-    }
-
-    return shapes;
-  }
-
-  /**
-   * Unprojects the landmarks shape from the bounding box.
-   * @param {matrix} shape The landmarks shape.
-   * @param {matrix} boudingBox The bounding box.
-   * @return {matrix} The landmarks shape projected into the bounding box.
-   * @static
-   * @protected
-   */
-  tracking.LBF.unprojectShapeToBoundingBox_ = function(shape, boundingBox){
-    var temp = new Array(shape.length);
-    for(var i=0; i < shape.length; i++){
-      temp[i] = [
-        (shape[i][0] - boundingBox.startX) / boundingBox.width,
-        (shape[i][1] - boundingBox.startY) / boundingBox.height
-      ];
-    }
-    return temp;
-  }
-
-  /**
-   * Projects the landmarks shape into the bounding box. The landmarks shape has
-   * normalized coordinates, so it is necessary to map these coordinates into
-   * the bounding box coordinates.
-   * @param {matrix} shape The landmarks shape.
-   * @param {matrix} boudingBox The bounding box.
-   * @return {matrix} The landmarks shape.
-   * @static
-   * @protected
-   */
-  tracking.LBF.projectShapeToBoundingBox_ = function(shape, boundingBox){
-    var temp = new Array(shape.length);
-    for(var i=0; i < shape.length; i++){
-      temp[i] = [
-        shape[i][0] * boundingBox.width + boundingBox.startX,
-        shape[i][1] * boundingBox.height + boundingBox.startY
-      ];
-    }
-    return temp;
-  }
-
-  /**
-   * Calculates the rotation and scale necessary to transform shape1 into shape2.
-   * @param {matrix} shape1 The shape to be transformed.
-   * @param {matrix} shape2 The shape to be transformed in.
-   * @return {[matrix, scalar]} The rotation matrix and scale that applied to shape1
-   *     results in shape2.
-   * @static
-   * @protected
-   */
-  tracking.LBF.similarityTransform_ = function(shape1, shape2){
-
-    var center1 = [0,0];
-    var center2 = [0,0];
-    for (var i = 0; i < shape1.length; i++) {
-      center1[0] += shape1[i][0];
-      center1[1] += shape1[i][1];
-      center2[0] += shape2[i][0];
-      center2[1] += shape2[i][1];
-    }
-    center1[0] /= shape1.length;
-    center1[1] /= shape1.length;
-    center2[0] /= shape2.length;
-    center2[1] /= shape2.length;
-
-    var temp1 = tracking.Matrix.clone(shape1);
-    var temp2 = tracking.Matrix.clone(shape2);
-    for(var i=0; i < shape1.length; i++){
-      temp1[i][0] -= center1[0];
-      temp1[i][1] -= center1[1];
-      temp2[i][0] -= center2[0];
-      temp2[i][1] -= center2[1];
-    }
-
-    var covariance1, covariance2;
-    var mean1, mean2;
-
-    var t = tracking.Matrix.calcCovarMatrix(temp1);
-    covariance1 = t[0];
-    mean1 = t[1];
-
-    t = tracking.Matrix.calcCovarMatrix(temp2);
-    covariance2 = t[0];
-    mean2 = t[1];
-
-    var s1 = Math.sqrt(tracking.Matrix.norm(covariance1));
-    var s2 = Math.sqrt(tracking.Matrix.norm(covariance2));
-
-    var scale = s1/s2;
-    temp1 = tracking.Matrix.mulScalar(1.0/s1, temp1);
-    temp2 = tracking.Matrix.mulScalar(1.0/s2, temp2);
-
-    var num = 0, den = 0;
-    for (var i = 0; i < shape1.length; i++) {
-      num = num + temp1[i][1] * temp2[i][0] - temp1[i][0] * temp2[i][1];
-      den = den + temp1[i][0] * temp2[i][0] + temp1[i][1] * temp2[i][1];
-    }
-
-    var norm = Math.sqrt(num*num + den*den);
-    var sin_theta = num/norm;
-    var cos_theta = den/norm;
-    var rotation = [
-      [cos_theta, -sin_theta],
-      [sin_theta, cos_theta]
-    ];
-
-    return [rotation, scale];
-  }
-
-  /**
-   * LBF Random Forest data structure.
-   * @static
-   * @constructor
-   */
-  tracking.LBF.RandomForest = function(forestIndex){
-    this.maxNumTrees = tracking.LBF.RegressorData[forestIndex].max_numtrees;
-    this.landmarkNum = tracking.LBF.RegressorData[forestIndex].num_landmark;
-    this.maxDepth = tracking.LBF.RegressorData[forestIndex].max_depth;
-    this.stages = tracking.LBF.RegressorData[forestIndex].stages; 
-
-    this.rfs = new Array(this.landmarkNum);
-    for(var i=0; i < this.landmarkNum; i++){
-      this.rfs[i] = new Array(this.maxNumTrees);
-      for(var j=0; j < this.maxNumTrees; j++){
-        this.rfs[i][j] = new tracking.LBF.Tree(forestIndex, i, j);
-      }
-    }
-  }
-
-  /**
-   * LBF Tree data structure.
-   * @static
-   * @constructor
-   */
-  tracking.LBF.Tree = function(forestIndex, landmarkIndex, treeIndex){
-    var data = tracking.LBF.RegressorData[forestIndex].landmarks[landmarkIndex][treeIndex];
-    this.maxDepth = data.max_depth;
-    this.maxNumNodes = data.max_numnodes;
-    this.nodes = data.nodes;
-    this.landmarkID = data.landmark_id;
-    this.numLeafnodes = data.num_leafnodes;
-    this.numNodes = data.num_nodes;
-    this.maxNumFeats = data.max_numfeats;
-    this.maxRadioRadius = data.max_radio_radius;
-    this.leafnodes = data.id_leafnodes;
-  }
-
-}());

File diff suppressed because it is too large
+ 0 - 0
src/static/face/js/uni.webview.1.5.4.js


File diff suppressed because it is too large
+ 0 - 5
src/static/face/js/vue.global.prod.js


+ 0 - 447
src/static/face/meeting.html

@@ -1,447 +0,0 @@
-<!doctype html>
-<html>
-
-<head>
-    <meta charset="utf-8">
-    <title>人脸识别</title>
-    <script type="text/javascript" src="./js/tracking-min.js"></script>
-    <script type="text/javascript" src="./js/face_data/face-min.js"></script>
-    <script type="text/javascript" src="./js/jquery-2.2.1.min.js"></script>
-    <!-- VUE3 的 SDK -->
-    <script type="text/javascript" src="./js/vue.global.prod.js"></script>
-    <!-- uni 的 SDK -->
-    <script type="text/javascript" src="./js/uni.webview.1.5.4.js"></script>
-    <style>
-        html,
-        body {
-            width: 100%;
-            height: 100%;
-            margin: 0;
-            /* Safari */
-            -webkit-user-select: none;
-            /* Firefox */
-            -moz-user-select: none;
-            /* IE10+/Edge */
-            -ms-user-select: none;
-            /* Standard syntax */
-            user-select: none;
-
-            ::-webkit-scrollbar {
-                display: none;
-            }
-        }
-
-        video,
-        canvas {
-            position: absolute;
-            left: 0;
-            top: 0;
-        }
-
-        .home-card-one,
-        .home-card-two,
-        .home-card-three {
-            display: flex;
-            flex-wrap: wrap;
-            overflow: auto;
-            color: #000;
-            padding: 20px 20px 50px 20px;
-            width: calc(100% - 40px);
-            height: calc(100% - 70px);
-            text-align: center;
-            background-color: #fff;
-        }
-
-
-        .home-card-left {
-            display: flex;
-            flex-wrap: wrap;
-            width: calc(50% - 10px);
-            margin-right: 10px;
-        }
-
-        .home-card-left-image {
-            max-height: auto;
-        }
-
-        .home-card-left-header {
-            width: 100%;
-            clear: both;
-            font-size: 30px;
-            color: #409eff;
-            margin: 30px 0 30px 0;
-        }
-
-        .home-card-left-content {
-            width: 100%;
-            font-size: 18px;
-            padding: 10px;
-            background-color: #dfdfdf;
-            border-radius: 15px;
-        }
-
-        /* .home-card-left-content>div:last-child {
-            margin-bottom: 30px;
-        } */
-
-        .home-card-left-content>div {
-            margin-bottom: 20px;
-        }
-
-        .home-card-left-content>div:first-child {
-            text-align: left;
-            margin-bottom: 30px;
-        }
-
-        .home-card-right {
-            display: flex;
-            flex-wrap: wrap;
-            width: calc(50% - 10px);
-            text-align: center;
-            justify-content: center;
-            background-color: #409eff;
-            border-radius: 15px;
-            color: white;
-            margin-left: 10px;
-        }
-
-        .home-card-right-header {
-            display: flex;
-            justify-content: center;
-            max-height: 36px;
-            margin-bottom: 30px;
-        }
-
-        .home-card-right-header-center {
-            padding: 10px;
-            font-size: 12px;
-            background: rgb(255 255 255 / 10%);
-            border-radius: 5px;
-        }
-
-        .home-card-right-header-title {
-            font-size: 18px;
-            margin: auto 0;
-        }
-
-        .home-card-right-content {
-            width: 100%;
-        }
-
-        .home-card-right-footer {
-            position: relative;
-            width: 320px;
-            height: 240px;
-        }
-
-        .specialEffects1,
-        .specialEffects2 {
-            width: 445px;
-            height: 330px;
-            position: absolute;
-            z-index: 2000 !important;
-            transform: translate(-50%, -50%);
-            top: 50%;
-            left: 50%;
-        }
-
-        .specialEffects1 {
-            background: url(img/face.gif) no-repeat;
-            background-size: 445px 330px;
-        }
-
-        .specialEffects2 {
-            background: url(img/face_detection.gif) no-repeat;
-            background-size: 445px 330px;
-        }
-
-        .home-card-bottom {
-            width: 100%;
-            position: absolute;
-            left: 0;
-            bottom: 0;
-            display: flex;
-            overflow: auto;
-            height: 31px;
-            margin-top: 20px;
-        }
-
-        .home-card-bottom>div {
-            padding: 6px;
-            font-size: 13px;
-            color: #fff;
-            border-left: 1.5px #fff solid;
-            white-space: nowrap;
-        }
-
-        .home-card-bottom>div:first-child {
-            border: 0px;
-        }
-
-        @media (max-width: 768px) {
-
-            .home-card-left,
-            .home-card-right {
-                width: 100% !important;
-                margin: 0 !important;
-            }
-
-            .home-card-left {
-                margin-bottom: 20px !important;
-            }
-        }
-    </style>
-</head>
-
-<body>
-    <div id="face-container" class="face-container home-card-two">
-        <div id="home-card-left" class="home-card-left">
-            <image id="home-card-left-image" class="home-card-left-image" src="./img/logo.png" width="125px"
-                height="60px" mode="aspectFill"></image>
-            <div class="home-card-left-header">{{state.dataAll?.roomName || "请配置会议室"}}</div>
-            <div class="home-card-left-content" style="margin-bottom: 20px;">
-                <div>本场会议</div>
-                <div>{{state.thisVenueData[0]?.meetingName || "空闲中"}}</div>
-                <div>{{state.thisVenueTime.startTime || "00:00"}} — {{state.thisVenueTime.endTime || "00:00"}}
-                </div>
-            </div>
-
-            <div class="home-card-left-content">
-                <div>下场会议</div>
-                <div>{{state.nextSceneData[0]?.meetingName || "空闲中"}}</div>
-                <div>{{state.nextSceneTime.startTime || "00:00"}} — {{state.nextSceneTime.endTime || "00:00"}}
-                </div>
-            </div>
-        </div>
-        <div id="home-card-right" class="home-card-right">
-            <div class="home-card-right-header">
-                <div class="home-card-right-header-center">
-                    <span style="padding: 0 5px 0 0; border-right: 1px #fff solid">温度:80℃</span>
-                    <span style="padding: 0px 5px; border-right: 1px #fff solid">湿度:80%</span>
-                    <span style="padding: 0px 5px; border-right: 1px #fff solid">PM2.5:10μg/m3</span>
-                    <span style="padding: 0 0 0 5px">甲醛:0ppm</span>
-                </div>
-                <div class="home-card-right-header-title">{{state.thisVenueData[0] ? "&nbsp;&nbsp;会议进行中" :
-                    "&nbsp;"}}</div>
-            </div>
-            <div class="home-card-right-content">
-                <div style="font-size: 20px; margin-bottom: 15px;">{{state.thisVenueData[0]?.meetingName || "空闲中"}}
-                </div>
-                <div style="font-size: 18px; margin-bottom: 15px;">
-                    {{state.thisVenueTime.startTime || "00:00"}} — {{state.thisVenueTime.endTime || "00:00"}}
-                </div>
-                <div style="font-size: 14px; margin-bottom: 15px;">{{state.msg || "&nbsp;"}}</div>
-            </div>
-            <div class="home-card-right-footer" id="home-card-right-footer">
-                <video id="video" width="320" height="240" preload autoplay loop muted></video>
-                <canvas id="canvas" width="320" height="240"></canvas>
-                <!--人脸特效区域-->
-                <div class="specialEffects1" v-if="state.faceImgState"></div>
-                <div class="specialEffects2" v-else></div>
-            </div>
-
-        </div>
-        <div id="home-card-bottom" class="home-card-bottom">
-            <div v-for="(item, timeIndex) in state.timeList" :key="item" :id="`timeScorll${timeIndex}`" :style="{ backgroundColor: item.isEnd === 1 ? '#909399' :
-                item.isHave===1 ? '#fa3534' : item.isReservation===1 ? '#ff9900' : '#409eff' }">
-                {{item.isEnd != 0 || item.isHave != 0 || item.isReservation != 0 ? item.startTime + " —— " +
-                item.endTime : item.startTime}}
-            </div>
-        </div>
-    </div>
-    <script>
-        // 创建Vue实例
-        Vue.createApp({
-            components: {},
-            emits: [],
-            props: {},
-            data() {
-                return {
-                    flag: true,
-                    time: 2000,
-                    tracker: null,
-                    trackerTask: null,
-                    state: {
-                        dataAll: {},
-                        thisVenueData: [],
-                        thisVenueTime: {},
-                        nextSceneData: [],
-                        nextSceneTime: {},
-                        timeList: [],
-                        faceImgState: true,
-                    },
-                    timeOutEvent: 0
-                };
-            },
-            computed: {},
-            methods: {
-                // 初始化数据
-                initData() { },
-                // 初始化摄像头
-                initVido() {
-                    var that = this;
-
-                    var video = document.getElementById("video");//视频dom
-                    video.style.transform = 'scaleX(-1)';//视频翻转(1.水平翻转-scaleX(-1) 2.垂直翻转-scaleY(-1))
-                    var canvas = document.getElementById('canvas');//画布dom
-                    canvas.style.transform = 'scaleX(-1)';//画布翻转(1.水平翻转-scaleX(-1) 2.垂直翻转-scaleY(-1))
-                    var context = canvas.getContext('2d');
-                    that.tracker = new tracking.ObjectTracker('face');
-                    that.tracker.setInitialScale(4); //设置识别的放大比例
-                    that.tracker.setStepSize(2);//设置步长
-                    that.tracker.setEdgesDensity(0.1);//边缘密度
-                    //启动摄像头,并且识别视频内容
-                    that.trackerTask = tracking.track('#video', that.tracker, {
-                        camera: true
-                    });
-
-                    that.tracker.on('track', function (event) {
-                        if (event.data.length === 0) {
-                            // console.log('未检测到人脸')
-                            context.clearRect(0, 0, canvas.width, canvas.height);
-                        } else if (event.data.length > 1) {
-                            // console.log('检测到多张人脸')
-                        } else {
-                            context.clearRect(0, 0, canvas.width, canvas.height);
-                            event.data.forEach(function (rect) {
-                                context.strokeStyle = '#409eff';
-                                context.strokeRect(rect.x, rect.y, rect.width, rect.height);
-                                context.fillStyle = "#409eff";
-                                context.lineWidth = 1.5;
-                            });
-                            if (that.flag) {
-                                console.log("拍照");
-                                that.state.faceImgState = false;
-                                context.drawImage(video, 0, 0, video.width, video.height);
-                                that.saveAsLocalImage();//调用获取图片bold
-                                context.clearRect(0, 0, canvas.width, canvas.height);
-                                flag = false;
-                            } else {
-                                //console.log("冷却中");
-                            }
-                        }
-                    });
-
-                    $("#home-card-left-image").on({
-                        touchstart: function (e) {
-                            that.timeOutEvent = setTimeout(() => {
-                                that.longPress()
-                            }, 1000);
-                            e.preventDefault();
-                        },
-                        touchmove: function () {
-                            clearTimeout(that.timeOutEvent);
-                            that.timeOutEvent = 0;
-                        },
-                        touchend: function () {
-                            clearTimeout(that.timeOutEvent);
-                            if (that.timeOutEvent != 0) {
-                                console.log("你这是点击,不是长按");
-                            }
-                            return false;
-                        }
-                    })
-                },
-                // 向父页面推送数据
-                parentMessage(type, data) {
-                    var message = {
-                        funcName: type,
-                        data: data,
-                    };
-
-                    //APP-PLUS
-                    uni.postMessage({
-                        data: message
-                    });
-
-                    //H5
-                    if (window.parent) {
-                        window.parent.postMessage(message, '*');
-                    }
-                },
-                // 获取图片bold
-                saveAsLocalImage() {
-                    var myCanvas = document.getElementById("canvas");
-                    var image = myCanvas.toDataURL("image/png").replace("image/png", "image/octet-stream");
-                    this.parentMessage('人脸识别', { imageBase: image })
-                },
-                // 人脸冷却
-                faceCooling() {
-                    var that = this
-                    setTimeout(() => {
-                        that.flag = true
-                        that.state.faceImgState = false;
-                    }, that.time);
-                },
-                // 解析数据
-                analysisData(event) {
-                    console.log(event.funcName)
-                    if ("funcName" in event) {
-                        if (event.funcName == "初始化数据") {
-                            this.state.dataAll = JSON.parse(event.data).dataAll
-                            this.state.thisVenueData = JSON.parse(event.data).thisVenueData
-                            this.state.thisVenueTime = JSON.parse(event.data).thisVenueTime
-                            this.state.nextSceneData = JSON.parse(event.data).nextSceneData
-                            this.state.nextSceneTime = JSON.parse(event.data).nextSceneTime
-                            this.state.timeList = JSON.parse(event.data).timeList
-                            this.initData();
-                        } else if (event.funcName == "开启摄像头") {
-                            this.initVido();//调用初始化摄像头
-                        } else if (event.funcName == "关闭摄像头") {
-                            this.closeFace();
-                        } else if (event.funcName == "人脸冷却") {
-                            this.faceCooling();
-                        }
-                    }
-                },
-                // 长按事件
-                longPress() {
-                    this.parentMessage('打开配置')
-                    this.timeOutEvent = 0
-                },
-                // 监听页面是否隐藏
-                handleVisibilityChange() {
-                    if (document.visibilityState === 'visible') {
-                        // 页面变为可见时的处理逻辑
-                        console.log('页面变为可见');
-                        this.initVido();
-                    } else if (document.visibilityState === 'hidden') {
-                        // 页面变为不可见时的处理逻辑
-                        console.log('页面变为不可见');
-                        this.closeFace();
-                    }
-                },
-                closeFace() {
-                    try {
-                        this.tracker = null
-                        // 关闭摄像头
-                        let video = document.getElementById('video')
-                        video.srcObject.getTracks()[0].stop()
-                        // 停止侦测
-                        this.trackerTask.stop()
-                    } catch (error) { }
-                }
-            },
-            created() {
-                var that = this
-                // APP-PLUS || H5(接收父页面传过来的值)
-                window.receiveData = (msg) => {
-                    that.analysisData(msg)
-                }
-                window.addEventListener("message", function (event) {
-                    that.analysisData(event.data)
-                });
-            },
-            mounted() {
-                document.addEventListener('visibilitychange', this.handleVisibilityChange);
-            },
-            beforeDestroy() {
-                // 移除window方法
-                window.receiveData = null;
-            },
-            watch: {},
-        }).mount('#face-container');
-    </script>
-</body>
-
-</html>

+ 11 - 0
src/store/modules/setting.js

@@ -73,6 +73,7 @@ const settingStores = defineStore("storage-setting", {
             // 获取系统信息
             const systemInfo = uni.getSystemInfoSync();
             _this.deviceList.deviceBrand = systemInfo.deviceBrand;
+            // _this.deviceList.deviceId = this.GetAndroidId();
             _this.deviceList.deviceId = systemInfo.deviceId;
             _this.deviceList.deviceModel = systemInfo.deviceModel;
             _this.deviceList.operateSystem = systemInfo.platform;
@@ -102,6 +103,16 @@ const settingStores = defineStore("storage-setting", {
                 },
             });
         },
+        GetAndroidId() {
+            // 需要原生插件支持
+            plus.android.importClass("android.provider.Settings");
+            const context = plus.android.runtimeMainActivity().getApplicationContext();
+            const androidId = plus.android.invoke("android.provider.Settings$Secure", "getString", context
+                .getContentResolver(), "android_id");
+            console.log("Android ID: ", androidId);
+
+            return androidId;
+        },
         /**
          * @消息推送监听
          */

Some files were not shown because too many files changed in this diff