| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998 |
- (function webpackUniversalModuleDefinition(root, factory) {
- if(typeof exports === 'object' && typeof module === 'object')
- module.exports = factory();
- else if(typeof define === 'function' && define.amd)
- define([], factory);
- else if(typeof exports === 'object')
- exports["ecStat"] = factory();
- else
- root["ecStat"] = factory();
- })(this, function() {
- return /******/ (function(modules) { // webpackBootstrap
- /******/ // The module cache
- /******/ var installedModules = {};
- /******/ // The require function
- /******/ function __webpack_require__(moduleId) {
- /******/ // Check if module is in cache
- /******/ if(installedModules[moduleId])
- /******/ return installedModules[moduleId].exports;
- /******/ // Create a new module (and put it into the cache)
- /******/ var module = installedModules[moduleId] = {
- /******/ exports: {},
- /******/ id: moduleId,
- /******/ loaded: false
- /******/ };
- /******/ // Execute the module function
- /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
- /******/ // Flag the module as loaded
- /******/ module.loaded = true;
- /******/ // Return the exports of the module
- /******/ return module.exports;
- /******/ }
- /******/ // expose the modules object (__webpack_modules__)
- /******/ __webpack_require__.m = modules;
- /******/ // expose the module cache
- /******/ __webpack_require__.c = installedModules;
- /******/ // __webpack_public_path__
- /******/ __webpack_require__.p = "";
- /******/ // Load entry module and return exports
- /******/ return __webpack_require__(0);
- /******/ })
- /************************************************************************/
- /******/ ([
- /* 0 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- return {
- clustering: __webpack_require__(1),
- regression: __webpack_require__(5),
- statistics: __webpack_require__(6),
- histogram: __webpack_require__(15),
- transform: {
- regression: __webpack_require__(18),
- histogram: __webpack_require__(21),
- clustering: __webpack_require__(22)
- }
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 1 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var dataProcess = __webpack_require__(2);
- var dataPreprocess = dataProcess.dataPreprocess;
- var normalizeDimensions = dataProcess.normalizeDimensions;
- var arrayUtil = __webpack_require__(3);
- var numberUtil = __webpack_require__(4);
- var arraySize = arrayUtil.size;
- var sumOfColumn = arrayUtil.sumOfColumn;
- var arraySum = arrayUtil.sum;
- var zeros = arrayUtil.zeros;
- // var isArray = arrayUtil.isArray;
- var numberUtil = __webpack_require__(4);
- var isNumber = numberUtil.isNumber;
- var mathPow = Math.pow;
- var OutputType = {
- /**
- * Data are all in one. Cluster info are added as an attribute of data.
- * ```ts
- * type OutputDataSingle = {
- * // Each index of `data` is the index of the input data.
- * data: OutputDataItem[];
- * // The index of `centroids` is the cluster index.
- * centroids: [ValueOnX, ValueOnY][];
- * };
- * type InputDataItem = (ValueOnX | ValueOnY | OtherValue)[];
- * type OutputDataItem = (...InputDataItem | ClusterIndex | SquareDistanceToCentroid)[];
- * ```
- */
- SINGLE: 'single',
- /**
- * Data are separated by cluster. Suitable for retrieving data form each cluster.
- * ```ts
- * type OutputDataMultiple = {
- * // Each index of `clusterAssment` is the index of the input data.
- * clusterAssment: [ClusterIndex, SquareDistanceToCentroid][];
- * // The index of `centroids` is the cluster index.
- * centroids: [ValueOnX, ValueOnY][];
- * // The index of `pointsInCluster` is the cluster index.
- * pointsInCluster: DataItemListInOneCluster[];
- * }
- * type DataItemListInOneCluster = InputDataItem[];
- * type InputDataItem = (ValueOnX | ValueOnY | OtherValue)[];
- * type SquareDistanceToCentroid = number;
- * type ClusterIndex = number;
- * type ValueOnX = number;
- * type ValueOnY = number;
- * type OtherValue = unknown;
- * ```
- */
- MULTIPLE: 'multiple'
- }
- /**
- * KMeans of clustering algorithm.
- * @param {Array.<Array.<number>>} data two-dimension array
- * @param {number} k the number of clusters in a dataset
- * @return {Object}
- */
- function kMeans(data, k, dataMeta) {
- // create array to assign data points to centroids, also holds SE of each point
- var clusterAssigned = zeros(data.length, 2);
- var centroids = createRandCent(k, calcExtents(data, dataMeta.dimensions));
- var clusterChanged = true;
- var minDist;
- var minIndex;
- var distIJ;
- var ptsInClust;
- while (clusterChanged) {
- clusterChanged = false;
- for (var i = 0; i < data.length; i++) {
- minDist = Infinity;
- minIndex = -1;
- for (var j = 0; j < k; j++) {
- distIJ = distEuclid(data[i], centroids[j], dataMeta);
- if (distIJ < minDist) {
- minDist = distIJ;
- minIndex = j;
- }
- }
- if (clusterAssigned[i][0] !== minIndex) {
- clusterChanged = true;
- }
- clusterAssigned[i][0] = minIndex;
- clusterAssigned[i][1] = minDist;
- }
- //recalculate centroids
- for (var i = 0; i < k; i++) {
- ptsInClust = [];
- for (var j = 0; j < clusterAssigned.length; j++) {
- if (clusterAssigned[j][0] === i) {
- ptsInClust.push(data[j]);
- }
- }
- centroids[i] = meanInColumns(ptsInClust, dataMeta);
- }
- }
- var clusterWithKmeans = {
- centroids: centroids,
- clusterAssigned: clusterAssigned
- };
- return clusterWithKmeans;
- }
- /**
- * Calculate the average of each column in a two-dimensional array
- * and returns the values as an array.
- */
- function meanInColumns(dataList, dataMeta) {
- var meanArray = [];
- var sum;
- var mean;
- for (var j = 0; j < dataMeta.dimensions.length; j++) {
- var dimIdx = dataMeta.dimensions[j];
- sum = 0;
- for (var i = 0; i < dataList.length; i++) {
- sum += dataList[i][dimIdx];
- }
- mean = sum / dataList.length;
- meanArray.push(mean);
- }
- return meanArray;
- }
- /**
- * The combine of hierarchical clustering and k-means.
- * @param {Array} data two-dimension array.
- * @param {Object|number} [clusterCountOrConfig] config or clusterCountOrConfig.
- * @param {number} clusterCountOrConfig.clusterCount Mandatory.
- * The number of clusters in a dataset. It has to be greater than 1.
- * @param {boolean} [clusterCountOrConfig.stepByStep=false] Optional.
- * @param {OutputType} [clusterCountOrConfig.outputType='multiple'] Optional.
- * See `OutputType`.
- * @param {number} [clusterCountOrConfig.outputClusterIndexDimension] Mandatory.
- * Only work in `OutputType.SINGLE`.
- * @param {number} [clusterCountOrConfig.outputCentroidDimensions] Optional.
- * If specified, the centroid will be set to those dimensions of the result data one by one.
- * By default not set centroid to result.
- * Only work in `OutputType.SINGLE`.
- * @param {Array.<number>} [clusterCountOrConfig.dimensions] Optional.
- * Target dimensions to calculate the regression.
- * By default: use all of the data.
- * @return {Array} See `OutputType`.
- */
- function hierarchicalKMeans(data, clusterCountOrConfig, stepByStep) {
- var config = (
- isNumber(clusterCountOrConfig)
- ? {clusterCount: clusterCountOrConfig, stepByStep: stepByStep}
- : clusterCountOrConfig
- ) || {clusterCount: 2};
- var k = config.clusterCount;
- if (k < 2) {
- return;
- }
- var dataMeta = parseDataMeta(data, config);
- var isOutputTypeSingle = dataMeta.outputType === OutputType.SINGLE;
- var dataSet = dataPreprocess(data, {dimensions: dataMeta.dimensions});
- var clusterAssment = zeros(dataSet.length, 2);
- var outputSingleData;
- var setClusterIndex;
- var getClusterIndex;
- function setDistance(dataIndex, dist) {
- clusterAssment[dataIndex][1] = dist;
- }
- function getDistance(dataIndex) {
- return clusterAssment[dataIndex][1];
- };
- if (isOutputTypeSingle) {
- outputSingleData = [];
- var outputClusterIndexDimension = dataMeta.outputClusterIndexDimension;
- setClusterIndex = function (dataIndex, clusterIndex) {
- outputSingleData[dataIndex][outputClusterIndexDimension] = clusterIndex;
- };
- getClusterIndex = function (dataIndex) {
- return outputSingleData[dataIndex][outputClusterIndexDimension];
- };
- for (var i = 0; i < dataSet.length; i++) {
- outputSingleData.push(dataSet[i].slice());
- setDistance(i, 0);
- setClusterIndex(i, 0);
- }
- }
- else {
- setClusterIndex = function (dataIndex, clusterIndex) {
- clusterAssment[dataIndex][0] = clusterIndex;
- };
- getClusterIndex = function (dataIndex) {
- return clusterAssment[dataIndex][0];
- };
- }
- // initial center point.
- var centroid0 = meanInColumns(dataSet, dataMeta);
- var centList = [centroid0];
- for (var i = 0; i < dataSet.length; i++) {
- var dist = distEuclid(dataSet[i], centroid0, dataMeta);
- setDistance(i, dist);
- }
- var lowestSSE;
- var ptsInClust;
- var ptsNotClust;
- var clusterInfo;
- var sseSplit;
- var sseNotSplit;
- var index = 1;
- var result = {
- data: outputSingleData,
- centroids: centList,
- isEnd: false
- };
- if (!isOutputTypeSingle) {
- // Only for backward compat.
- result.clusterAssment = clusterAssment;
- }
- function oneStep() {
- //the existing clusters are continuously divided
- //until the number of clusters is k
- if (index < k) {
- lowestSSE = Infinity;
- var centSplit;
- var newCentroid;
- var newClusterAss;
- for (var j = 0; j < centList.length; j++) {
- ptsInClust = [];
- ptsNotClust = [];
- for (var i = 0; i < dataSet.length; i++) {
- if (getClusterIndex(i) === j) {
- ptsInClust.push(dataSet[i]);
- }
- else {
- ptsNotClust.push(getDistance(i));
- }
- }
- clusterInfo = kMeans(ptsInClust, 2, dataMeta);
- sseSplit = sumOfColumn(clusterInfo.clusterAssigned, 1);
- sseNotSplit = arraySum(ptsNotClust);
- if (sseSplit + sseNotSplit < lowestSSE) {
- lowestSSE = sseNotSplit + sseSplit;
- centSplit = j;
- newCentroid = clusterInfo.centroids;
- newClusterAss = clusterInfo.clusterAssigned;
- }
- }
- for (var i = 0; i < newClusterAss.length; i++) {
- if (newClusterAss[i][0] === 0) {
- newClusterAss[i][0] = centSplit;
- }
- else if (newClusterAss[i][0] === 1) {
- newClusterAss[i][0] = centList.length;
- }
- }
- centList[centSplit] = newCentroid[0];
- centList.push(newCentroid[1]);
- for (var i = 0, j = 0; i < dataSet.length && j < newClusterAss.length; i++) {
- if (getClusterIndex(i) === centSplit) {
- setClusterIndex(i, newClusterAss[j][0]);
- setDistance(i, newClusterAss[j++][1]);
- }
- }
- var pointInClust = [];
- if (!isOutputTypeSingle) {
- for (var i = 0; i < centList.length; i++) {
- pointInClust[i] = [];
- for (var j = 0; j < dataSet.length; j++) {
- if (getClusterIndex(j) === i) {
- pointInClust[i].push(dataSet[j]);
- }
- }
- }
- result.pointsInCluster = pointInClust;
- }
- index++;
- }
- else {
- result.isEnd = true;
- }
- }
- if (!config.stepByStep) {
- while (oneStep(), !result.isEnd);
- }
- else {
- result.next = function () {
- oneStep();
- setCentroidToResultData(result, dataMeta);
- return result;
- };
- }
- setCentroidToResultData(result, dataMeta);
- return result;
- }
- function setCentroidToResultData(result, dataMeta) {
- var outputCentroidDimensions = dataMeta.outputCentroidDimensions;
- if (dataMeta.outputType !== OutputType.SINGLE || outputCentroidDimensions == null) {
- return;
- }
- var outputSingleData = result.data;
- var centroids = result.centroids;
- for (var i = 0; i < outputSingleData.length; i++) {
- var line = outputSingleData[i];
- var clusterIndex = line[dataMeta.outputClusterIndexDimension];
- var centroid = centroids[clusterIndex];
- var dimLen = Math.min(centroid.length, outputCentroidDimensions.length);
- for (var j = 0; j < dimLen; j++) {
- line[outputCentroidDimensions[j]] = centroid[j];
- }
- }
- }
- /**
- * Create random centroid of kmeans.
- */
- function createRandCent(k, extents) {
- //constructs a two-dimensional array with all values 0
- var centroids = zeros(k, extents.length);
- //create random cluster centers, within bounds of each dimension
- for (var j = 0; j < extents.length; j++) {
- var extentItem = extents[j];
- for (var i = 0; i < k; i++) {
- centroids[i][j] = extentItem.min + extentItem.span * Math.random();
- }
- }
- return centroids;
- }
- /**
- * Distance method for calculating similarity
- */
- function distEuclid(dataItem, centroid, dataMeta) {
- // The distance should be normalized between different dimensions,
- // otherwise they may provide different weight in the final distance.
- // The greater weight offers more effect in the cluster determination.
- var powerSum = 0;
- var dimensions = dataMeta.dimensions;
- var extents = dataMeta.rawExtents;
- //subtract the corresponding elements in the vectors
- for (var i = 0; i < dimensions.length; i++) {
- var span = extents[i].span;
- // If span is 0, do not count.
- if (span) {
- var dimIdx = dimensions[i];
- var dist = (dataItem[dimIdx] - centroid[i]) / span;
- powerSum += mathPow(dist, 2);
- }
- }
- return powerSum;
- }
- function parseDataMeta(dataSet, config) {
- var size = arraySize(dataSet);
- if (size.length < 1) {
- throw new Error('The input data of clustering should be two-dimension array.');
- }
- var colCount = size[1];
- var defaultDimensions = [];
- for (var i = 0; i < colCount; i++) {
- defaultDimensions.push(i);
- }
- var dimensions = normalizeDimensions(config.dimensions, defaultDimensions);
- var outputType = config.outputType || OutputType.MULTIPLE;
- var outputClusterIndexDimension = config.outputClusterIndexDimension;
- if (outputType === OutputType.SINGLE && !numberUtil.isNumber(outputClusterIndexDimension)) {
- throw new Error('outputClusterIndexDimension is required as a number.');
- }
- var extents = calcExtents(dataSet, dimensions);
- return {
- dimensions: dimensions,
- rawExtents: extents,
- outputType: outputType,
- outputClusterIndexDimension: outputClusterIndexDimension,
- outputCentroidDimensions: config.outputCentroidDimensions,
- };
- }
- function calcExtents(dataSet, dimensions) {
- var extents = [];
- var dimLen = dimensions.length;
- for (var i = 0; i < dimLen; i++) {
- extents.push({ min: Infinity, max: -Infinity });
- }
- for (var i = 0; i < dataSet.length; i++) {
- var line = dataSet[i];
- for (var j = 0; j < dimLen; j++) {
- var extentItem = extents[j];
- var val = line[dimensions[j]];
- extentItem.min > val && (extentItem.min = val);
- extentItem.max < val && (extentItem.max = val);
- }
- }
- for (var i = 0; i < dimLen; i++) {
- extents[i].span = extents[i].max - extents[i].min;
- }
- return extents;
- }
- return {
- OutputType: OutputType,
- hierarchicalKMeans: hierarchicalKMeans
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 2 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var array = __webpack_require__(3);
- var isArray = array.isArray;
- var size = array.size;
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- /**
- * @param {Array.<number>|number} dimensions like `[2, 4]` or `4`
- * @param {Array.<number>} [defaultDimensions=undefined] By default `undefined`.
- * @return {Array.<number>} number like `4` is normalized to `[4]`,
- * `null`/`undefined` is normalized to `defaultDimensions`.
- */
- function normalizeDimensions(dimensions, defaultDimensions) {
- return typeof dimensions === 'number'
- ? [dimensions]
- : dimensions == null
- ? defaultDimensions
- : dimensions;
- }
- /**
- * Data preprocessing, filter the wrong data object.
- * for example [12,] --- missing y value
- * [,12] --- missing x value
- * [12, b] --- incorrect y value
- * ['a', 12] --- incorrect x value
- * @param {Array.<Array>} data
- * @param {Object?} [opt]
- * @param {Array.<number>} [opt.dimensions] Optional. Like [2, 4],
- * means that dimension index 2 and dimension index 4 need to be number.
- * If null/undefined (by default), all dimensions need to be number.
- * @param {boolean} [opt.toOneDimensionArray] Convert to one dimension array.
- * Each value is from `opt.dimensions[0]` or dimension 0.
- * @return {Array.<Array.<number>>}
- */
- function dataPreprocess(data, opt) {
- opt = opt || {};
- var dimensions = opt.dimensions;
- var numberDimensionMap = {};
- if (dimensions != null) {
- for (var i = 0; i < dimensions.length; i++) {
- numberDimensionMap[dimensions[i]] = true;
- }
- }
- var targetOneDim = opt.toOneDimensionArray
- ? (dimensions ? dimensions[0] : 0)
- : null;
- function shouldBeNumberDimension(dimIdx) {
- return !dimensions || numberDimensionMap.hasOwnProperty(dimIdx);
- }
- if (!isArray(data)) {
- throw new Error('Invalid data type, you should input an array');
- }
- var predata = [];
- var arraySize = size(data);
- if (arraySize.length === 1) {
- for (var i = 0; i < arraySize[0]; i++) {
- var item = data[i];
- if (isNumber(item)) {
- predata.push(item);
- }
- }
- }
- else if (arraySize.length === 2) {
- for (var i = 0; i < arraySize[0]; i++) {
- var isCorrect = true;
- var item = data[i];
- for (var j = 0; j < arraySize[1]; j++) {
- if (shouldBeNumberDimension(j) && !isNumber(item[j])) {
- isCorrect = false;
- }
- }
- if (isCorrect) {
- predata.push(
- targetOneDim != null
- ? item[targetOneDim]
- : item
- );
- }
- }
- }
- return predata;
- }
- /**
- * @param {string|number} val
- * @return {number}
- */
- function getPrecision(val) {
- var str = val.toString();
- // scientific notation is not considered
- var dotIndex = str.indexOf('.');
- return dotIndex < 0 ? 0 : str.length - 1 - dotIndex;
- }
- return {
- normalizeDimensions: normalizeDimensions,
- dataPreprocess: dataPreprocess,
- getPrecision: getPrecision
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 3 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var objToString = Object.prototype.toString;
- var arrayProto = Array.prototype;
- var nativeMap = arrayProto.map;
- /**
- * Get the size of a array
- * @param {Array} data
- * @return {Array}
- */
- function size(data) {
- var s = [];
- while (isArray(data)) {
- s.push(data.length);
- data = data[0];
- }
- return s;
- }
- /**
- * @param {*} value
- * @return {boolean}
- */
- function isArray(value) {
- return objToString.call(value) === '[object Array]';
- }
- /**
- * constructs a (m x n) array with all values 0
- * @param {number} m the row
- * @param {number} n the column
- * @return {Array}
- */
- function zeros(m, n) {
- var zeroArray = [];
- for (var i = 0; i < m ; i++) {
- zeroArray[i] = [];
- for (var j = 0; j < n; j++) {
- zeroArray[i][j] = 0;
- }
- }
- return zeroArray;
- }
- /**
- * Sums each element in the array.
- * Internal use, for performance considerations, to avoid
- * unnecessary judgments and calculations.
- * @param {Array} vector
- * @return {number}
- */
- function sum(vector) {
- var sum = 0;
- for (var i = 0; i < vector.length; i++) {
- sum += vector[i];
- }
- return sum;
- }
- /**
- * Computes the sum of the specified column elements in a two-dimensional array
- * @param {Array.<Array>} dataList two-dimensional array
- * @param {number} n the specified column, zero-based
- * @return {number}
- */
- function sumOfColumn(dataList, n) {
- var sum = 0;
- for (var i = 0; i < dataList.length; i++) {
- sum += dataList[i][n];
- }
- return sum;
- }
- function ascending(a, b) {
- return a > b ? 1 : a < b ? -1 : a === b ? 0 : NaN;
- }
- /**
- * Binary search algorithm --- this bisector is specidfied to histogram, which every bin like that [a, b),
- * so the return value use to add 1.
- * @param {Array.<number>} array
- * @param {number} value
- * @param {number} start
- * @param {number} end
- * @return {number}
- */
- function bisect(array, value, start, end) { //移出去
- if (start == null) {
- start = 0;
- }
- if (end == null) {
- end = array.length;
- }
- while (start < end) {
- var mid = Math.floor((start + end) / 2);
- var compare = ascending(array[mid], value);
- if (compare > 0) {
- end = mid;
- }
- else if (compare < 0) {
- start = mid + 1;
- }
- else {
- return mid + 1;
- }
- }
- return start;
- }
- /**
- * 数组映射
- * @memberOf module:zrender/core/util
- * @param {Array} obj
- * @param {Function} cb
- * @param {*} [context]
- * @return {Array}
- */
- function map(obj, cb, context) {
- if (!(obj && cb)) {
- return;
- }
- if (obj.map && obj.map === nativeMap) {
- return obj.map(cb, context);
- }
- else {
- var result = [];
- for (var i = 0, len = obj.length; i < len; i++) {
- result.push(cb.call(context, obj[i], i, obj));
- }
- return result;
- }
- }
- return {
- size: size,
- isArray: isArray,
- zeros: zeros,
- sum: sum,
- sumOfColumn: sumOfColumn,
- ascending: ascending,
- bisect: bisect,
- map: map
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 4 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- /**
- * Test whether value is a number.
- * @param {*} value
- * @return {boolean}
- */
- function isNumber(value) {
- value = value === null ? NaN : +value;
- return typeof value === 'number' && !isNaN(value);
- }
- /**
- * Test if a number is integer.
- * @param {number} value
- * @return {boolean}
- */
- function isInteger(value) {
- return isFinite(value) && value === Math.round(value);
- }
- function quantityExponent(val) {
- if (val === 0) {
- return 0;
- }
- var exp = Math.floor(Math.log(val) / Math.LN10);
- // Fix pricision loss.
- if (val / Math.pow(10, exp) >= 10) {
- exp++;
- }
- return exp;
- }
- return {
- isNumber: isNumber,
- isInteger: isInteger,
- quantityExponent: quantityExponent
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 5 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var dataProcess = __webpack_require__(2);
- var dataPreprocess = dataProcess.dataPreprocess;
- var normalizeDimensions = dataProcess.normalizeDimensions;
- var regreMethods = {
- /**
- * Common linear regression algorithm
- */
- linear: function (predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumX = 0;
- var sumY = 0;
- var sumXY = 0;
- var sumXX = 0;
- var len = predata.length;
- for (var i = 0; i < len; i++) {
- var rawItem = predata[i];
- sumX += rawItem[xDimIdx];
- sumY += rawItem[yDimIdx];
- sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
- sumXX += rawItem[xDimIdx] * rawItem[xDimIdx];
- }
- var gradient = ((len * sumXY) - (sumX * sumY)) / ((len * sumXX) - (sumX * sumX));
- var intercept = (sumY / len) - ((gradient * sumX) / len);
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = gradient * rawItem[xDimIdx] + intercept;
- result.push(resultItem);
- }
- var expression = 'y = ' + Math.round(gradient * 100) / 100 + 'x + ' + Math.round(intercept * 100) / 100;
- return {
- points: result,
- parameter: {
- gradient: gradient,
- intercept: intercept
- },
- expression: expression
- };
- },
- /**
- * If the raw data include [0,0] point, we should choose linearThroughOrigin
- * instead of linear.
- */
- linearThroughOrigin: function (predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumXX = 0;
- var sumXY = 0;
- for (var i = 0; i < predata.length; i++) {
- var rawItem = predata[i];
- sumXX += rawItem[xDimIdx] * rawItem[xDimIdx];
- sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
- }
- var gradient = sumXY / sumXX;
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = rawItem[xDimIdx] * gradient;
- result.push(resultItem);
- }
- var expression = 'y = ' + Math.round(gradient * 100) / 100 + 'x';
- return {
- points: result,
- parameter: {
- gradient: gradient
- },
- expression: expression
- };
- },
- /**
- * Exponential regression
- */
- exponential: function (predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumX = 0;
- var sumY = 0;
- var sumXXY = 0;
- var sumYlny = 0;
- var sumXYlny = 0;
- var sumXY = 0;
- for (var i = 0; i < predata.length; i++) {
- var rawItem = predata[i];
- sumX += rawItem[xDimIdx];
- sumY += rawItem[yDimIdx];
- sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
- sumXXY += rawItem[xDimIdx] * rawItem[xDimIdx] * rawItem[yDimIdx];
- sumYlny += rawItem[yDimIdx] * Math.log(rawItem[yDimIdx]);
- sumXYlny += rawItem[xDimIdx] * rawItem[yDimIdx] * Math.log(rawItem[yDimIdx]);
- }
- var denominator = (sumY * sumXXY) - (sumXY * sumXY);
- var coefficient = Math.pow(Math.E, (sumXXY * sumYlny - sumXY * sumXYlny) / denominator);
- var index = (sumY * sumXYlny - sumXY * sumYlny) / denominator;
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = coefficient * Math.pow(Math.E, index * rawItem[xDimIdx]);
- result.push(resultItem);
- }
- var expression = 'y = ' + Math.round(coefficient * 100) / 100 + 'e^(' + Math.round(index * 100) / 100 + 'x)';
- return {
- points: result,
- parameter: {
- coefficient: coefficient,
- index: index
- },
- expression: expression
- };
- },
- /**
- * Logarithmic regression
- */
- logarithmic: function (predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumlnx = 0;
- var sumYlnx = 0;
- var sumY = 0;
- var sumlnxlnx = 0;
- for (var i = 0; i < predata.length; i++) {
- var rawItem = predata[i];
- sumlnx += Math.log(rawItem[xDimIdx]);
- sumYlnx += rawItem[yDimIdx] * Math.log(rawItem[xDimIdx]);
- sumY += rawItem[yDimIdx];
- sumlnxlnx += Math.pow(Math.log(rawItem[xDimIdx]), 2);
- }
- var gradient = (i * sumYlnx - sumY * sumlnx) / (i * sumlnxlnx - sumlnx * sumlnx);
- var intercept = (sumY - gradient * sumlnx) / i;
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = gradient * Math.log(rawItem[xDimIdx]) + intercept;
- result.push(resultItem);
- }
- var expression =
- 'y = '
- + Math.round(intercept * 100) / 100
- + ' + '
- + Math.round(gradient * 100) / 100 + 'ln(x)';
- return {
- points: result,
- parameter: {
- gradient: gradient,
- intercept: intercept
- },
- expression: expression
- };
- },
- /**
- * Polynomial regression
- */
- polynomial: function (predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var order = opt.order;
- if (order == null) {
- order = 2;
- }
- //coefficient matrix
- var coeMatrix = [];
- var lhs = [];
- var k = order + 1;
- for (var i = 0; i < k; i++) {
- var sumA = 0;
- for (var n = 0; n < predata.length; n++) {
- var rawItem = predata[n];
- sumA += rawItem[yDimIdx] * Math.pow(rawItem[xDimIdx], i);
- }
- lhs.push(sumA);
- var temp = [];
- for (var j = 0; j < k; j++) {
- var sumB = 0;
- for (var m = 0; m < predata.length; m++) {
- sumB += Math.pow(predata[m][xDimIdx], i + j);
- }
- temp.push(sumB);
- }
- coeMatrix.push(temp);
- }
- coeMatrix.push(lhs);
- var coeArray = gaussianElimination(coeMatrix, k);
- var result = [];
- for (var i = 0; i < predata.length; i++) {
- var value = 0;
- var rawItem = predata[i];
- for (var n = 0; n < coeArray.length; n++) {
- value += coeArray[n] * Math.pow(rawItem[xDimIdx], n);
- }
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = value;
- result.push(resultItem);
- }
- var expression = 'y = ';
- for (var i = coeArray.length - 1; i >= 0; i--) {
- if (i > 1) {
- expression += Math.round(coeArray[i] * Math.pow(10, i + 1)) / Math.pow(10, i + 1) + 'x^' + i + ' + ';
- }
- else if (i === 1) {
- expression += Math.round(coeArray[i] * 100) / 100 + 'x' + ' + ';
- }
- else {
- expression += Math.round(coeArray[i] * 100) / 100;
- }
- }
- return {
- points: result,
- parameter: coeArray,
- expression: expression
- };
- }
- };
- /**
- * Gaussian elimination
- * @param {Array.<Array.<number>>} matrix two-dimensional number array
- * @param {number} number
- * @return {Array}
- */
- function gaussianElimination(matrix, number) {
- for (var i = 0; i < matrix.length - 1; i++) {
- var maxColumn = i;
- for (var j = i + 1; j < matrix.length - 1; j++) {
- if (Math.abs(matrix[i][j]) > Math.abs(matrix[i][maxColumn])) {
- maxColumn = j;
- }
- }
- // the matrix here is the transpose of the common Augmented matrix.
- // so the can perform the primary column transform, in fact, equivalent
- // to the primary line changes
- for (var k = i; k < matrix.length; k++) {
- var temp = matrix[k][i];
- matrix[k][i] = matrix[k][maxColumn];
- matrix[k][maxColumn] = temp;
- }
- for (var n = i + 1; n < matrix.length - 1; n++) {
- for (var m = matrix.length - 1; m >= i; m--) {
- matrix[m][n] -= matrix[m][i] / matrix[i][i] * matrix[i][n];
- }
- }
- }
- var data = new Array(number);
- var len = matrix.length - 1;
- for (var j = matrix.length - 2; j >= 0; j--) {
- var temp = 0;
- for (var i = j + 1; i < matrix.length - 1; i++) {
- temp += matrix[i][j] * data[i];
- }
- data[j] = (matrix[len][j] - temp) / matrix[j][j];
- }
- return data;
- }
- /**
- * @param {string} regreMethod
- * @param {Array.<Array.<number>>} data two-dimensional number array
- * @param {Object|number} [optOrOrder] opt or order
- * @param {number} [optOrOrder.order] order of polynomials
- * @param {Array.<number>|number} [optOrOrder.dimensions=[0, 1]] Target dimensions to calculate the regression.
- * By defualt: use [0, 1] as [x, y].
- * @return {Array}
- */
- var regression = function (regreMethod, data, optOrOrder) {
- var opt = typeof optOrOrder === 'number'
- ? { order: optOrOrder }
- : (optOrOrder || {});
- var dimensions = normalizeDimensions(opt.dimensions, [0, 1]);
- var predata = dataPreprocess(data, { dimensions: dimensions });
- var result = regreMethods[regreMethod](predata, {
- order: opt.order,
- dimensions: dimensions
- });
- // Sort for line chart.
- var xDimIdx = dimensions[0];
- result.points.sort(function (itemA, itemB) {
- return itemA[xDimIdx] - itemB[xDimIdx];
- });
- return result;
- };
- return regression;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 6 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var statistics = {};
- statistics.max = __webpack_require__(7);
- statistics.deviation = __webpack_require__(8);
- statistics.mean = __webpack_require__(10);
- statistics.median = __webpack_require__(12);
- statistics.min = __webpack_require__(14);
- statistics.quantile = __webpack_require__(13);
- statistics.sampleVariance = __webpack_require__(9);
- statistics.sum = __webpack_require__(11);
- return statistics;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 7 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- /**
- * Is a method for computing the max value of a list of numbers,
- * which will filter other data types.
- * @param {Array.<number>} data
- * @return {number}
- */
- function max(data) {
- var maxData = -Infinity;
- for (var i = 0; i < data.length; i++) {
- if (isNumber(data[i]) && data[i] > maxData) {
- maxData = data[i];
- }
- }
- return maxData;
- }
- return max;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 8 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var variance = __webpack_require__(9);
- /**
- * Computing the deviation
- * @param {Array.<number>} data
- * @return {number}
- */
- return function (data) {
- var squaredDeviation = variance(data);
- return squaredDeviation ? Math.sqrt(squaredDeviation) : squaredDeviation;
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 9 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- var mean = __webpack_require__(10);
- /**
- * Computing the variance of list of sample
- * @param {Array.<number>} data
- * @return {number}
- */
- function sampleVariance(data) {
- var len = data.length;
- if (!len || len < 2) {
- return 0;
- }
- if (data.length >= 2) {
- var meanValue = mean(data);
- var sum = 0;
- var temple;
- for (var i = 0; i < data.length; i++) {
- if (isNumber(data[i])) {
- temple = data[i] - meanValue;
- sum += temple * temple;
- }
- }
- return sum / (data.length - 1);
- }
- }
- return sampleVariance;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 10 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var sum = __webpack_require__(11);
- /**
- * Is a method for computing the mean value of a list of numbers,
- * which will filter other data types.
- * @param {Array.<number>} data
- * @return {number}
- */
- function mean(data) {
- var len = data.length;
- if (!len) {
- return 0;
- }
- return sum(data) / data.length;
- }
- return mean;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 11 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- /**
- * Is a method for computing the sum of a list of numbers,
- * which will filter other data types.
- * @param {Array.<number>} data
- * @return {number}
- */
- function sum(data) {
- var len = data.length;
- if (!len) {
- return 0;
- }
- var sumData = 0;
- for (var i = 0; i < len; i++) {
- if (isNumber(data[i])) {
- sumData += data[i];
- }
- }
- return sumData;
- }
- return sum;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 12 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var quantile = __webpack_require__(13);
- /**
- * Is a method for computing the median value of a sorted array of numbers
- * @param {Array.<number>} data
- * @return {number}
- */
- function median(data) {
- return quantile(data, 0.5);
- }
- return median;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 13 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- /**
- * Estimating quantiles from a sorted sample of numbers
- * @see https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample
- * R-7 method
- * @param {Array.<number>} data sorted array
- * @param {number} p
- */
- return function (data, p) {
- var len = data.length;
- if (!len) {
- return 0;
- }
- if (p <= 0 || len < 2) {
- return data[0];
- }
- if (p >= 1) {
- return data[len -1];
- }
- // in the wikipedia's R-7 method h = (N - 1)p + 1, but here array index start from 0
- var h = (len - 1) * p;
- var i = Math.floor(h);
- var a = data[i];
- var b = data[i + 1];
- return a + (b - a) * (h - i);
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 14 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- /**
- * Is a method for computing the min value of a list of numbers,
- * which will filter other data types.
- * @param {Array.<number>} data
- * @return {number}
- */
- function min(data) {
- var minData = Infinity;
- for (var i = 0; i < data.length; i++) {
- if (isNumber(data[i]) && data[i] < minData) {
- minData = data[i];
- }
- }
- return minData;
- }
- return min;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 15 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var max = __webpack_require__(7);
- var min = __webpack_require__(14);
- var quantile = __webpack_require__(13);
- var deviation = __webpack_require__(8);
- var dataProcess = __webpack_require__(2);
- var dataPreprocess = dataProcess.dataPreprocess;
- var normalizeDimensions = dataProcess.normalizeDimensions;
- var array = __webpack_require__(3);
- var ascending = array.ascending;
- var map = array.map;
- var range = __webpack_require__(16);
- var bisect = array.bisect;
- var tickStep = __webpack_require__(17);
- /**
- * Compute bins for histogram
- * @param {Array.<number>} data
- * @param {Object|string} optOrMethod Optional settings or `method`.
- * @param {Object|string} optOrMethod.method 'squareRoot' | 'scott' | 'freedmanDiaconis' | 'sturges'
- * @param {Array.<number>|number} optOrMethod.dimensions If data is a 2-d array,
- * which dimension will be used to calculate histogram.
- * @return {Object}
- */
- function computeBins(data, optOrMethod) {
- var opt = typeof optOrMethod === 'string'
- ? { method: optOrMethod }
- : (optOrMethod || {});
- var threshold = opt.method == null
- ? thresholdMethod.squareRoot
- : thresholdMethod[opt.method];
- var dimensions = normalizeDimensions(opt.dimensions);
- var values = dataPreprocess(data, {
- dimensions: dimensions,
- toOneDimensionArray: true
- });
- var maxValue = max(values);
- var minValue = min(values);
- var binsNumber = threshold(values, minValue, maxValue);
- var tickStepResult = tickStep(minValue, maxValue, binsNumber);
- var step = tickStepResult.step;
- var toFixedPrecision = tickStepResult.toFixedPrecision;
- // return the xAxis coordinate for each bins, except the end point of the value
- var rangeArray = range(
- // use function toFixed() to avoid data like '0.700000001'
- +((Math.ceil(minValue / step) * step).toFixed(toFixedPrecision)),
- +((Math.floor(maxValue / step) * step).toFixed(toFixedPrecision)),
- step,
- toFixedPrecision
- );
- var len = rangeArray.length;
- var bins = new Array(len + 1);
- for (var i = 0; i <= len; i++) {
- bins[i] = {};
- bins[i].sample = [];
- bins[i].x0 = i > 0
- ? rangeArray[i - 1]
- : (rangeArray[i] - minValue) === step
- ? minValue
- : (rangeArray[i] - step);
- bins[i].x1 = i < len
- ? rangeArray[i]
- : (maxValue - rangeArray[i-1]) === step
- ? maxValue
- : rangeArray[i - 1] + step;
- }
- for (var i = 0; i < values.length; i++) {
- if (minValue <= values[i] && values[i] <= maxValue) {
- bins[bisect(rangeArray, values[i], 0, len)].sample.push(values[i]);
- }
- }
- var data = map(bins, function (bin) {
- // use function toFixed() to avoid data like '6.5666638489'
- return [
- +((bin.x0 + bin.x1) / 2).toFixed(toFixedPrecision),
- bin.sample.length,
- bin.x0,
- bin.x1,
- bin.x0 + ' - ' + bin.x1
- ];
- });
- var customData = map(bins, function (bin) {
- return [bin.x0, bin.x1, bin.sample.length];
- });
- return {
- bins: bins,
- data: data,
- customData: customData
- };
- }
- /**
- * Four kinds of threshold methods used to
- * compute how much bins the histogram should be divided
- * @see https://en.wikipedia.org/wiki/Histogram
- * @type {Object}
- */
- var thresholdMethod = {
- squareRoot: function (data) {
- var bins = Math.ceil(Math.sqrt(data.length));
- return bins > 50 ? 50 : bins;
- },
- scott: function (data, min, max) {
- return Math.ceil((max - min) / (3.5 * deviation(data) * Math.pow(data.length, -1 / 3)));
- },
- freedmanDiaconis: function (data, min, max) {
- data.sort(ascending);
- return Math.ceil(
- (max - min) / (2 * (quantile(data, 0.75) - quantile(data, 0.25)) * Math.pow(data.length, -1 / 3))
- );
- },
- sturges: function (data) {
- return Math.ceil(Math.log(data.length) / Math.LN2) + 1;
- }
- };
- return computeBins;
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 16 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var dataProcess = __webpack_require__(2);
- var getPrecision = dataProcess.getPrecision;
- /**
- * Computing range array.
- * Adding param precision to fix range value, avoiding range[i] = 0.7000000001.
- * @param {number} start
- * @param {number} end
- * @param {number} step
- * @param {number} precision
- * @return {Array.<number>}
- */
- return function (start, end, step, precision) {
- var len = arguments.length;
- if (len < 2) {
- end = start;
- start = 0;
- step = 1;
- }
- else if (len < 3) {
- step = 1;
- }
- else if (len < 4) {
- step = +step;
- precision = getPrecision(step);
- }
- else {
- precision = +precision;
- }
- var n = Math.ceil(((end - start) / step).toFixed(precision));
- var range = new Array(n + 1);
- for (var i = 0; i < n + 1; i++) {
- range[i] = +(start + i * step).toFixed(precision);
- }
- return range;
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 17 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var numberUtil = __webpack_require__(4);
- /**
- * Computing the length of step
- * @see https://github.com/d3/d3-array/blob/master/src/ticks.js
- * @param {number} start
- * @param {number} stop
- * @param {number} count
- */
- return function (start, stop, count) {
- var step0 = Math.abs(stop - start) / count;
- var precision = numberUtil.quantityExponent(step0);
- var step1 = Math.pow(10, precision);
- var error = step0 / step1;
- if (error >= Math.sqrt(50)) {
- step1 *= 10;
- }
- else if (error >= Math.sqrt(10)) {
- step1 *= 5;
- }
- else if(error >= Math.sqrt(2)) {
- step1 *= 2;
- }
- var toFixedPrecision = precision < 0 ? -precision : 0;
- var resultStep = +(
- (stop >= start ? step1 : -step1).toFixed(toFixedPrecision)
- );
- return {
- step: resultStep,
- toFixedPrecision: toFixedPrecision
- };
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 18 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var regression = __webpack_require__(5);
- var transformHelper = __webpack_require__(19);
- var FORMULA_DIMENSION = 2;
- return {
- type: 'ecStat:regression',
- /**
- * @param {Paramter<typeof regression>[0]} [params.config.method='linear'] 'linear' by default
- * @param {Paramter<typeof regression>[2]} [params.config.order=2] Only work when method is `polynomial`.
- * @param {DimensionLoose[]|DimensionLoose} [params.config.dimensions=[0, 1]] dimensions that used to calculate regression.
- * By default [0, 1].
- * @param {'start' | 'end' | 'all'} params.config.formulaOn Include formula on the last (third) dimension of the:
- * 'start': first data item.
- * 'end': last data item (by default).
- * 'all': all data items.
- * 'none': no data item.
- */
- transform: function transform(params) {
- var upstream = params.upstream;
- var config = params.config || {};
- var method = config.method || 'linear';
- var result = regression(method, upstream.cloneRawData(), {
- order: config.order,
- dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions)
- });
- var points = result.points;
- var formulaOn = config.formulaOn;
- if (formulaOn == null) {
- formulaOn = 'end';
- }
- var dimensions;
- if (formulaOn !== 'none') {
- for (var i = 0; i < points.length; i++) {
- points[i][FORMULA_DIMENSION] =
- (
- (formulaOn === 'start' && i === 0)
- || (formulaOn === 'all')
- || (formulaOn === 'end' && i === points.length - 1)
- ) ? result.expression : '';
- }
- dimensions = upstream.cloneAllDimensionInfo();
- dimensions[FORMULA_DIMENSION] = {};
- }
- return [{
- dimensions: dimensions,
- data: points
- }];
- }
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 19 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var arrayUtil = __webpack_require__(3);
- var numberUtil = __webpack_require__(4);
- var objectUtil = __webpack_require__(20);
- /**
- * type DimensionLoose = DimensionIndex | DimensionName;
- * type DimensionIndex = number;
- * type DimensionName = string;
- *
- * @param {object} transformParams The parameter of echarts transfrom.
- * @param {DimensionLoose | DimensionLoose[]} dimensionsConfig
- * @return {DimensionIndex | DimensionIndex[]}
- */
- function normalizeExistingDimensions(transformParams, dimensionsConfig) {
- if (dimensionsConfig == null) {
- return;
- }
- var upstream = transformParams.upstream;
- if (arrayUtil.isArray(dimensionsConfig)) {
- var result = [];
- for (var i = 0; i < dimensionsConfig.length; i++) {
- var dimInfo = upstream.getDimensionInfo(dimensionsConfig[i]);
- validateDimensionExists(dimInfo, dimensionsConfig[i]);
- result[i] = dimInfo.index;
- }
- return result;
- }
- else {
- var dimInfo = upstream.getDimensionInfo(dimensionsConfig);
- validateDimensionExists(dimInfo, dimensionsConfig);
- return dimInfo.index;
- }
- function validateDimensionExists(dimInfo, dimConfig) {
- if (!dimInfo) {
- throw new Error('Can not find dimension by ' + dimConfig);
- }
- }
- }
- /**
- * @param {object} transformParams The parameter of echarts transfrom.
- * @param {(DimensionIndex | {name: DimensionName, index: DimensionIndex})[]} dimensionsConfig
- * @param {{name: DimensionName | DimensionName[], index: DimensionIndex | DimensionIndex[]}}
- */
- function normalizeNewDimensions(dimensionsConfig) {
- if (arrayUtil.isArray(dimensionsConfig)) {
- var names = [];
- var indices = [];
- for (var i = 0; i < dimensionsConfig.length; i++) {
- var item = parseDimensionNewItem(dimensionsConfig[i]);
- names.push(item.name);
- indices.push(item.index);
- }
- return {name: names, index: indices};
- }
- else if (dimensionsConfig != null) {
- return parseDimensionNewItem(dimensionsConfig);
- }
- function parseDimensionNewItem(dimConfig) {
- if (numberUtil.isNumber(dimConfig)) {
- return { index: dimConfig };
- }
- else if (objectUtil.isObject(dimConfig) && numberUtil.isNumber(dimConfig.index)) {
- return dimConfig;
- }
- throw new Error('Illegle new dimensions config. Expect `{ name: string, index: number }`.');
- }
- }
- return {
- normalizeExistingDimensions: normalizeExistingDimensions,
- normalizeNewDimensions: normalizeNewDimensions
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 20 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- function extend(target, source) {
- if (Object.assign) {
- Object.assign(target, source);
- }
- else {
- for (var key in source) {
- if (source.hasOwnProperty(key)) {
- target[key] = source[key];
- }
- }
- }
- return target;
- }
- function isObject(value) {
- const type = typeof value;
- return type === 'function' || (!!value && type === 'object');
- }
- return {
- extend: extend,
- isObject: isObject
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 21 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var histogram = __webpack_require__(15);
- var transformHelper = __webpack_require__(19);
- return {
- type: 'ecStat:histogram',
- /**
- * @param {'squareRoot' | 'scott' | 'freedmanDiaconis' | 'sturges'} [params.config.method='squareRoot']
- * @param {DimnensionLoose[]} [params.config.dimensions=[0, 1]] dimensions that used to calculate histogram.
- * By default [0].
- */
- transform: function transform(params) {
- var upstream = params.upstream;
- var config = params.config || {};
- var result = histogram(upstream.cloneRawData(), {
- method: config.method,
- dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions)
- });
- return [{
- dimensions: ['MeanOfV0V1', 'VCount', 'V0', 'V1', 'DisplayableName'],
- data: result.data
- }, {
- data: result.customData
- }];
- }
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ }),
- /* 22 */
- /***/ (function(module, exports, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;!(__WEBPACK_AMD_DEFINE_RESULT__ = function (require) {
- var clustering = __webpack_require__(1);
- var numberUtil = __webpack_require__(4);
- var transformHelper = __webpack_require__(19);
- var isNumber = numberUtil.isNumber;
- return {
- type: 'ecStat:clustering',
- /**
- * @param {number} params.config.clusterCount Mandatory.
- * The number of clusters in a dataset. It has to be greater than 1.
- * @param {(DimensionName | DimensionIndex)[]} [params.config.dimensions] Optional.
- * Target dimensions to calculate the regression.
- * By default: use all of the data.
- * @param {(DimensionIndex | {name?: DimensionName, index: DimensionIndex})} [params.config.outputClusterIndexDimension] Mandatory.
- * @param {(DimensionIndex | {name?: DimensionName, index: DimensionIndex})[]} [params.config.outputCentroidDimensions] Optional.
- * If specified, the centroid will be set to those dimensions of the result data one by one.
- * By default not set centroid to result.
- */
- transform: function transform(params) {
- var upstream = params.upstream;
- var config = params.config || {};
- var clusterCount = config.clusterCount;
- if (!isNumber(clusterCount) || clusterCount <= 0) {
- throw new Error('config param "clusterCount" need to be specified as an interger greater than 1.');
- }
- if (clusterCount === 1) {
- return [{
- }, {
- data: []
- }];
- }
- var outputClusterIndexDimension = transformHelper.normalizeNewDimensions(
- config.outputClusterIndexDimension
- );
- var outputCentroidDimensions = transformHelper.normalizeNewDimensions(
- config.outputCentroidDimensions
- );
- if (outputClusterIndexDimension == null) {
- throw new Error('outputClusterIndexDimension is required as a number.');
- }
- var result = clustering.hierarchicalKMeans(upstream.cloneRawData(), {
- clusterCount: clusterCount,
- stepByStep: false,
- dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions),
- outputType: clustering.OutputType.SINGLE,
- outputClusterIndexDimension: outputClusterIndexDimension.index,
- outputCentroidDimensions: (outputCentroidDimensions || {}).index
- });
- var sourceDimAll = upstream.cloneAllDimensionInfo();
- var resultDimsDef = [];
- for (var i = 0; i < sourceDimAll.length; i++) {
- var sourceDimItem = sourceDimAll[i];
- resultDimsDef.push(sourceDimItem.name);
- }
- // Always set to dims def even if name not exists, because the resultDimsDef.length
- // need to be enlarged to tell echarts that there is "cluster index dimension" and "dist dimension".
- resultDimsDef[outputClusterIndexDimension.index] = outputClusterIndexDimension.name;
- if (outputCentroidDimensions) {
- for (var i = 0; i < outputCentroidDimensions.index.length; i++) {
- if (outputCentroidDimensions.name[i] != null) {
- resultDimsDef[outputCentroidDimensions.index[i]] = outputCentroidDimensions.name[i];
- }
- }
- }
- return [{
- dimensions: resultDimsDef,
- data: result.data
- }, {
- data: result.centroids
- }];
- }
- };
- }.call(exports, __webpack_require__, exports, module), __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- /***/ })
- /******/ ])
- });
- ;
|