1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429 |
- import {
- __commonJS
- } from "./chunk-2LSFTFF7.js";
- // node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/dist/ecStat.js
- var require_ecStat = __commonJS({
- "node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/dist/ecStat.js"(exports, module) {
- (function webpackUniversalModuleDefinition(root, factory) {
- if (typeof exports === "object" && typeof module === "object")
- module.exports = factory();
- else if (typeof define === "function" && define.amd)
- define([], factory);
- else if (typeof exports === "object")
- exports["ecStat"] = factory();
- else
- root["ecStat"] = factory();
- })(exports, function() {
- return (
- /******/
- function(modules) {
- var installedModules = {};
- function __webpack_require__(moduleId) {
- if (installedModules[moduleId])
- return installedModules[moduleId].exports;
- var module2 = installedModules[moduleId] = {
- /******/
- exports: {},
- /******/
- id: moduleId,
- /******/
- loaded: false
- /******/
- };
- modules[moduleId].call(module2.exports, module2, module2.exports, __webpack_require__);
- module2.loaded = true;
- return module2.exports;
- }
- __webpack_require__.m = modules;
- __webpack_require__.c = installedModules;
- __webpack_require__.p = "";
- return __webpack_require__(0);
- }([
- /* 0 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- return {
- clustering: __webpack_require__(1),
- regression: __webpack_require__(5),
- statistics: __webpack_require__(6),
- histogram: __webpack_require__(15),
- transform: {
- regression: __webpack_require__(18),
- histogram: __webpack_require__(21),
- clustering: __webpack_require__(22)
- }
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 1 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var dataProcess = __webpack_require__(2);
- var dataPreprocess = dataProcess.dataPreprocess;
- var normalizeDimensions = dataProcess.normalizeDimensions;
- var arrayUtil = __webpack_require__(3);
- var numberUtil = __webpack_require__(4);
- var arraySize = arrayUtil.size;
- var sumOfColumn = arrayUtil.sumOfColumn;
- var arraySum = arrayUtil.sum;
- var zeros = arrayUtil.zeros;
- var numberUtil = __webpack_require__(4);
- var isNumber = numberUtil.isNumber;
- var mathPow = Math.pow;
- var OutputType = {
- /**
- * Data are all in one. Cluster info are added as an attribute of data.
- * ```ts
- * type OutputDataSingle = {
- * // Each index of `data` is the index of the input data.
- * data: OutputDataItem[];
- * // The index of `centroids` is the cluster index.
- * centroids: [ValueOnX, ValueOnY][];
- * };
- * type InputDataItem = (ValueOnX | ValueOnY | OtherValue)[];
- * type OutputDataItem = (...InputDataItem | ClusterIndex | SquareDistanceToCentroid)[];
- * ```
- */
- SINGLE: "single",
- /**
- * Data are separated by cluster. Suitable for retrieving data form each cluster.
- * ```ts
- * type OutputDataMultiple = {
- * // Each index of `clusterAssment` is the index of the input data.
- * clusterAssment: [ClusterIndex, SquareDistanceToCentroid][];
- * // The index of `centroids` is the cluster index.
- * centroids: [ValueOnX, ValueOnY][];
- * // The index of `pointsInCluster` is the cluster index.
- * pointsInCluster: DataItemListInOneCluster[];
- * }
- * type DataItemListInOneCluster = InputDataItem[];
- * type InputDataItem = (ValueOnX | ValueOnY | OtherValue)[];
- * type SquareDistanceToCentroid = number;
- * type ClusterIndex = number;
- * type ValueOnX = number;
- * type ValueOnY = number;
- * type OtherValue = unknown;
- * ```
- */
- MULTIPLE: "multiple"
- };
- function kMeans(data, k, dataMeta) {
- var clusterAssigned = zeros(data.length, 2);
- var centroids = createRandCent(k, calcExtents(data, dataMeta.dimensions));
- var clusterChanged = true;
- var minDist;
- var minIndex;
- var distIJ;
- var ptsInClust;
- while (clusterChanged) {
- clusterChanged = false;
- for (var i = 0; i < data.length; i++) {
- minDist = Infinity;
- minIndex = -1;
- for (var j = 0; j < k; j++) {
- distIJ = distEuclid(data[i], centroids[j], dataMeta);
- if (distIJ < minDist) {
- minDist = distIJ;
- minIndex = j;
- }
- }
- if (clusterAssigned[i][0] !== minIndex) {
- clusterChanged = true;
- }
- clusterAssigned[i][0] = minIndex;
- clusterAssigned[i][1] = minDist;
- }
- for (var i = 0; i < k; i++) {
- ptsInClust = [];
- for (var j = 0; j < clusterAssigned.length; j++) {
- if (clusterAssigned[j][0] === i) {
- ptsInClust.push(data[j]);
- }
- }
- centroids[i] = meanInColumns(ptsInClust, dataMeta);
- }
- }
- var clusterWithKmeans = {
- centroids,
- clusterAssigned
- };
- return clusterWithKmeans;
- }
- function meanInColumns(dataList, dataMeta) {
- var meanArray = [];
- var sum;
- var mean;
- for (var j = 0; j < dataMeta.dimensions.length; j++) {
- var dimIdx = dataMeta.dimensions[j];
- sum = 0;
- for (var i = 0; i < dataList.length; i++) {
- sum += dataList[i][dimIdx];
- }
- mean = sum / dataList.length;
- meanArray.push(mean);
- }
- return meanArray;
- }
- function hierarchicalKMeans(data, clusterCountOrConfig, stepByStep) {
- var config = (isNumber(clusterCountOrConfig) ? { clusterCount: clusterCountOrConfig, stepByStep } : clusterCountOrConfig) || { clusterCount: 2 };
- var k = config.clusterCount;
- if (k < 2) {
- return;
- }
- var dataMeta = parseDataMeta(data, config);
- var isOutputTypeSingle = dataMeta.outputType === OutputType.SINGLE;
- var dataSet = dataPreprocess(data, { dimensions: dataMeta.dimensions });
- var clusterAssment = zeros(dataSet.length, 2);
- var outputSingleData;
- var setClusterIndex;
- var getClusterIndex;
- function setDistance(dataIndex, dist2) {
- clusterAssment[dataIndex][1] = dist2;
- }
- function getDistance(dataIndex) {
- return clusterAssment[dataIndex][1];
- }
- ;
- if (isOutputTypeSingle) {
- outputSingleData = [];
- var outputClusterIndexDimension = dataMeta.outputClusterIndexDimension;
- setClusterIndex = function(dataIndex, clusterIndex) {
- outputSingleData[dataIndex][outputClusterIndexDimension] = clusterIndex;
- };
- getClusterIndex = function(dataIndex) {
- return outputSingleData[dataIndex][outputClusterIndexDimension];
- };
- for (var i = 0; i < dataSet.length; i++) {
- outputSingleData.push(dataSet[i].slice());
- setDistance(i, 0);
- setClusterIndex(i, 0);
- }
- } else {
- setClusterIndex = function(dataIndex, clusterIndex) {
- clusterAssment[dataIndex][0] = clusterIndex;
- };
- getClusterIndex = function(dataIndex) {
- return clusterAssment[dataIndex][0];
- };
- }
- var centroid0 = meanInColumns(dataSet, dataMeta);
- var centList = [centroid0];
- for (var i = 0; i < dataSet.length; i++) {
- var dist = distEuclid(dataSet[i], centroid0, dataMeta);
- setDistance(i, dist);
- }
- var lowestSSE;
- var ptsInClust;
- var ptsNotClust;
- var clusterInfo;
- var sseSplit;
- var sseNotSplit;
- var index = 1;
- var result = {
- data: outputSingleData,
- centroids: centList,
- isEnd: false
- };
- if (!isOutputTypeSingle) {
- result.clusterAssment = clusterAssment;
- }
- function oneStep() {
- if (index < k) {
- lowestSSE = Infinity;
- var centSplit;
- var newCentroid;
- var newClusterAss;
- for (var j = 0; j < centList.length; j++) {
- ptsInClust = [];
- ptsNotClust = [];
- for (var i2 = 0; i2 < dataSet.length; i2++) {
- if (getClusterIndex(i2) === j) {
- ptsInClust.push(dataSet[i2]);
- } else {
- ptsNotClust.push(getDistance(i2));
- }
- }
- clusterInfo = kMeans(ptsInClust, 2, dataMeta);
- sseSplit = sumOfColumn(clusterInfo.clusterAssigned, 1);
- sseNotSplit = arraySum(ptsNotClust);
- if (sseSplit + sseNotSplit < lowestSSE) {
- lowestSSE = sseNotSplit + sseSplit;
- centSplit = j;
- newCentroid = clusterInfo.centroids;
- newClusterAss = clusterInfo.clusterAssigned;
- }
- }
- for (var i2 = 0; i2 < newClusterAss.length; i2++) {
- if (newClusterAss[i2][0] === 0) {
- newClusterAss[i2][0] = centSplit;
- } else if (newClusterAss[i2][0] === 1) {
- newClusterAss[i2][0] = centList.length;
- }
- }
- centList[centSplit] = newCentroid[0];
- centList.push(newCentroid[1]);
- for (var i2 = 0, j = 0; i2 < dataSet.length && j < newClusterAss.length; i2++) {
- if (getClusterIndex(i2) === centSplit) {
- setClusterIndex(i2, newClusterAss[j][0]);
- setDistance(i2, newClusterAss[j++][1]);
- }
- }
- var pointInClust = [];
- if (!isOutputTypeSingle) {
- for (var i2 = 0; i2 < centList.length; i2++) {
- pointInClust[i2] = [];
- for (var j = 0; j < dataSet.length; j++) {
- if (getClusterIndex(j) === i2) {
- pointInClust[i2].push(dataSet[j]);
- }
- }
- }
- result.pointsInCluster = pointInClust;
- }
- index++;
- } else {
- result.isEnd = true;
- }
- }
- if (!config.stepByStep) {
- while (oneStep(), !result.isEnd)
- ;
- } else {
- result.next = function() {
- oneStep();
- setCentroidToResultData(result, dataMeta);
- return result;
- };
- }
- setCentroidToResultData(result, dataMeta);
- return result;
- }
- function setCentroidToResultData(result, dataMeta) {
- var outputCentroidDimensions = dataMeta.outputCentroidDimensions;
- if (dataMeta.outputType !== OutputType.SINGLE || outputCentroidDimensions == null) {
- return;
- }
- var outputSingleData = result.data;
- var centroids = result.centroids;
- for (var i = 0; i < outputSingleData.length; i++) {
- var line = outputSingleData[i];
- var clusterIndex = line[dataMeta.outputClusterIndexDimension];
- var centroid = centroids[clusterIndex];
- var dimLen = Math.min(centroid.length, outputCentroidDimensions.length);
- for (var j = 0; j < dimLen; j++) {
- line[outputCentroidDimensions[j]] = centroid[j];
- }
- }
- }
- function createRandCent(k, extents) {
- var centroids = zeros(k, extents.length);
- for (var j = 0; j < extents.length; j++) {
- var extentItem = extents[j];
- for (var i = 0; i < k; i++) {
- centroids[i][j] = extentItem.min + extentItem.span * Math.random();
- }
- }
- return centroids;
- }
- function distEuclid(dataItem, centroid, dataMeta) {
- var powerSum = 0;
- var dimensions = dataMeta.dimensions;
- var extents = dataMeta.rawExtents;
- for (var i = 0; i < dimensions.length; i++) {
- var span = extents[i].span;
- if (span) {
- var dimIdx = dimensions[i];
- var dist = (dataItem[dimIdx] - centroid[i]) / span;
- powerSum += mathPow(dist, 2);
- }
- }
- return powerSum;
- }
- function parseDataMeta(dataSet, config) {
- var size = arraySize(dataSet);
- if (size.length < 1) {
- throw new Error("The input data of clustering should be two-dimension array.");
- }
- var colCount = size[1];
- var defaultDimensions = [];
- for (var i = 0; i < colCount; i++) {
- defaultDimensions.push(i);
- }
- var dimensions = normalizeDimensions(config.dimensions, defaultDimensions);
- var outputType = config.outputType || OutputType.MULTIPLE;
- var outputClusterIndexDimension = config.outputClusterIndexDimension;
- if (outputType === OutputType.SINGLE && !numberUtil.isNumber(outputClusterIndexDimension)) {
- throw new Error("outputClusterIndexDimension is required as a number.");
- }
- var extents = calcExtents(dataSet, dimensions);
- return {
- dimensions,
- rawExtents: extents,
- outputType,
- outputClusterIndexDimension,
- outputCentroidDimensions: config.outputCentroidDimensions
- };
- }
- function calcExtents(dataSet, dimensions) {
- var extents = [];
- var dimLen = dimensions.length;
- for (var i = 0; i < dimLen; i++) {
- extents.push({ min: Infinity, max: -Infinity });
- }
- for (var i = 0; i < dataSet.length; i++) {
- var line = dataSet[i];
- for (var j = 0; j < dimLen; j++) {
- var extentItem = extents[j];
- var val = line[dimensions[j]];
- extentItem.min > val && (extentItem.min = val);
- extentItem.max < val && (extentItem.max = val);
- }
- }
- for (var i = 0; i < dimLen; i++) {
- extents[i].span = extents[i].max - extents[i].min;
- }
- return extents;
- }
- return {
- OutputType,
- hierarchicalKMeans
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 2 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var array = __webpack_require__(3);
- var isArray = array.isArray;
- var size = array.size;
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- function normalizeDimensions(dimensions, defaultDimensions) {
- return typeof dimensions === "number" ? [dimensions] : dimensions == null ? defaultDimensions : dimensions;
- }
- function dataPreprocess(data, opt) {
- opt = opt || {};
- var dimensions = opt.dimensions;
- var numberDimensionMap = {};
- if (dimensions != null) {
- for (var i = 0; i < dimensions.length; i++) {
- numberDimensionMap[dimensions[i]] = true;
- }
- }
- var targetOneDim = opt.toOneDimensionArray ? dimensions ? dimensions[0] : 0 : null;
- function shouldBeNumberDimension(dimIdx) {
- return !dimensions || numberDimensionMap.hasOwnProperty(dimIdx);
- }
- if (!isArray(data)) {
- throw new Error("Invalid data type, you should input an array");
- }
- var predata = [];
- var arraySize = size(data);
- if (arraySize.length === 1) {
- for (var i = 0; i < arraySize[0]; i++) {
- var item = data[i];
- if (isNumber(item)) {
- predata.push(item);
- }
- }
- } else if (arraySize.length === 2) {
- for (var i = 0; i < arraySize[0]; i++) {
- var isCorrect = true;
- var item = data[i];
- for (var j = 0; j < arraySize[1]; j++) {
- if (shouldBeNumberDimension(j) && !isNumber(item[j])) {
- isCorrect = false;
- }
- }
- if (isCorrect) {
- predata.push(
- targetOneDim != null ? item[targetOneDim] : item
- );
- }
- }
- }
- return predata;
- }
- function getPrecision(val) {
- var str = val.toString();
- var dotIndex = str.indexOf(".");
- return dotIndex < 0 ? 0 : str.length - 1 - dotIndex;
- }
- return {
- normalizeDimensions,
- dataPreprocess,
- getPrecision
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 3 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var objToString = Object.prototype.toString;
- var arrayProto = Array.prototype;
- var nativeMap = arrayProto.map;
- function size(data) {
- var s = [];
- while (isArray(data)) {
- s.push(data.length);
- data = data[0];
- }
- return s;
- }
- function isArray(value) {
- return objToString.call(value) === "[object Array]";
- }
- function zeros(m, n) {
- var zeroArray = [];
- for (var i = 0; i < m; i++) {
- zeroArray[i] = [];
- for (var j = 0; j < n; j++) {
- zeroArray[i][j] = 0;
- }
- }
- return zeroArray;
- }
- function sum(vector) {
- var sum2 = 0;
- for (var i = 0; i < vector.length; i++) {
- sum2 += vector[i];
- }
- return sum2;
- }
- function sumOfColumn(dataList, n) {
- var sum2 = 0;
- for (var i = 0; i < dataList.length; i++) {
- sum2 += dataList[i][n];
- }
- return sum2;
- }
- function ascending(a, b) {
- return a > b ? 1 : a < b ? -1 : a === b ? 0 : NaN;
- }
- function bisect(array, value, start, end) {
- if (start == null) {
- start = 0;
- }
- if (end == null) {
- end = array.length;
- }
- while (start < end) {
- var mid = Math.floor((start + end) / 2);
- var compare = ascending(array[mid], value);
- if (compare > 0) {
- end = mid;
- } else if (compare < 0) {
- start = mid + 1;
- } else {
- return mid + 1;
- }
- }
- return start;
- }
- function map(obj, cb, context) {
- if (!(obj && cb)) {
- return;
- }
- if (obj.map && obj.map === nativeMap) {
- return obj.map(cb, context);
- } else {
- var result = [];
- for (var i = 0, len = obj.length; i < len; i++) {
- result.push(cb.call(context, obj[i], i, obj));
- }
- return result;
- }
- }
- return {
- size,
- isArray,
- zeros,
- sum,
- sumOfColumn,
- ascending,
- bisect,
- map
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 4 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- function isNumber(value) {
- value = value === null ? NaN : +value;
- return typeof value === "number" && !isNaN(value);
- }
- function isInteger(value) {
- return isFinite(value) && value === Math.round(value);
- }
- function quantityExponent(val) {
- if (val === 0) {
- return 0;
- }
- var exp = Math.floor(Math.log(val) / Math.LN10);
- if (val / Math.pow(10, exp) >= 10) {
- exp++;
- }
- return exp;
- }
- return {
- isNumber,
- isInteger,
- quantityExponent
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 5 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var dataProcess = __webpack_require__(2);
- var dataPreprocess = dataProcess.dataPreprocess;
- var normalizeDimensions = dataProcess.normalizeDimensions;
- var regreMethods = {
- /**
- * Common linear regression algorithm
- */
- linear: function(predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumX = 0;
- var sumY = 0;
- var sumXY = 0;
- var sumXX = 0;
- var len = predata.length;
- for (var i = 0; i < len; i++) {
- var rawItem = predata[i];
- sumX += rawItem[xDimIdx];
- sumY += rawItem[yDimIdx];
- sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
- sumXX += rawItem[xDimIdx] * rawItem[xDimIdx];
- }
- var gradient = (len * sumXY - sumX * sumY) / (len * sumXX - sumX * sumX);
- var intercept = sumY / len - gradient * sumX / len;
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = gradient * rawItem[xDimIdx] + intercept;
- result.push(resultItem);
- }
- var expression = "y = " + Math.round(gradient * 100) / 100 + "x + " + Math.round(intercept * 100) / 100;
- return {
- points: result,
- parameter: {
- gradient,
- intercept
- },
- expression
- };
- },
- /**
- * If the raw data include [0,0] point, we should choose linearThroughOrigin
- * instead of linear.
- */
- linearThroughOrigin: function(predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumXX = 0;
- var sumXY = 0;
- for (var i = 0; i < predata.length; i++) {
- var rawItem = predata[i];
- sumXX += rawItem[xDimIdx] * rawItem[xDimIdx];
- sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
- }
- var gradient = sumXY / sumXX;
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = rawItem[xDimIdx] * gradient;
- result.push(resultItem);
- }
- var expression = "y = " + Math.round(gradient * 100) / 100 + "x";
- return {
- points: result,
- parameter: {
- gradient
- },
- expression
- };
- },
- /**
- * Exponential regression
- */
- exponential: function(predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumX = 0;
- var sumY = 0;
- var sumXXY = 0;
- var sumYlny = 0;
- var sumXYlny = 0;
- var sumXY = 0;
- for (var i = 0; i < predata.length; i++) {
- var rawItem = predata[i];
- sumX += rawItem[xDimIdx];
- sumY += rawItem[yDimIdx];
- sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
- sumXXY += rawItem[xDimIdx] * rawItem[xDimIdx] * rawItem[yDimIdx];
- sumYlny += rawItem[yDimIdx] * Math.log(rawItem[yDimIdx]);
- sumXYlny += rawItem[xDimIdx] * rawItem[yDimIdx] * Math.log(rawItem[yDimIdx]);
- }
- var denominator = sumY * sumXXY - sumXY * sumXY;
- var coefficient = Math.pow(Math.E, (sumXXY * sumYlny - sumXY * sumXYlny) / denominator);
- var index = (sumY * sumXYlny - sumXY * sumYlny) / denominator;
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = coefficient * Math.pow(Math.E, index * rawItem[xDimIdx]);
- result.push(resultItem);
- }
- var expression = "y = " + Math.round(coefficient * 100) / 100 + "e^(" + Math.round(index * 100) / 100 + "x)";
- return {
- points: result,
- parameter: {
- coefficient,
- index
- },
- expression
- };
- },
- /**
- * Logarithmic regression
- */
- logarithmic: function(predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var sumlnx = 0;
- var sumYlnx = 0;
- var sumY = 0;
- var sumlnxlnx = 0;
- for (var i = 0; i < predata.length; i++) {
- var rawItem = predata[i];
- sumlnx += Math.log(rawItem[xDimIdx]);
- sumYlnx += rawItem[yDimIdx] * Math.log(rawItem[xDimIdx]);
- sumY += rawItem[yDimIdx];
- sumlnxlnx += Math.pow(Math.log(rawItem[xDimIdx]), 2);
- }
- var gradient = (i * sumYlnx - sumY * sumlnx) / (i * sumlnxlnx - sumlnx * sumlnx);
- var intercept = (sumY - gradient * sumlnx) / i;
- var result = [];
- for (var j = 0; j < predata.length; j++) {
- var rawItem = predata[j];
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = gradient * Math.log(rawItem[xDimIdx]) + intercept;
- result.push(resultItem);
- }
- var expression = "y = " + Math.round(intercept * 100) / 100 + " + " + Math.round(gradient * 100) / 100 + "ln(x)";
- return {
- points: result,
- parameter: {
- gradient,
- intercept
- },
- expression
- };
- },
- /**
- * Polynomial regression
- */
- polynomial: function(predata, opt) {
- var xDimIdx = opt.dimensions[0];
- var yDimIdx = opt.dimensions[1];
- var order = opt.order;
- if (order == null) {
- order = 2;
- }
- var coeMatrix = [];
- var lhs = [];
- var k = order + 1;
- for (var i = 0; i < k; i++) {
- var sumA = 0;
- for (var n = 0; n < predata.length; n++) {
- var rawItem = predata[n];
- sumA += rawItem[yDimIdx] * Math.pow(rawItem[xDimIdx], i);
- }
- lhs.push(sumA);
- var temp = [];
- for (var j = 0; j < k; j++) {
- var sumB = 0;
- for (var m = 0; m < predata.length; m++) {
- sumB += Math.pow(predata[m][xDimIdx], i + j);
- }
- temp.push(sumB);
- }
- coeMatrix.push(temp);
- }
- coeMatrix.push(lhs);
- var coeArray = gaussianElimination(coeMatrix, k);
- var result = [];
- for (var i = 0; i < predata.length; i++) {
- var value = 0;
- var rawItem = predata[i];
- for (var n = 0; n < coeArray.length; n++) {
- value += coeArray[n] * Math.pow(rawItem[xDimIdx], n);
- }
- var resultItem = rawItem.slice();
- resultItem[xDimIdx] = rawItem[xDimIdx];
- resultItem[yDimIdx] = value;
- result.push(resultItem);
- }
- var expression = "y = ";
- for (var i = coeArray.length - 1; i >= 0; i--) {
- if (i > 1) {
- expression += Math.round(coeArray[i] * Math.pow(10, i + 1)) / Math.pow(10, i + 1) + "x^" + i + " + ";
- } else if (i === 1) {
- expression += Math.round(coeArray[i] * 100) / 100 + "x + ";
- } else {
- expression += Math.round(coeArray[i] * 100) / 100;
- }
- }
- return {
- points: result,
- parameter: coeArray,
- expression
- };
- }
- };
- function gaussianElimination(matrix, number) {
- for (var i = 0; i < matrix.length - 1; i++) {
- var maxColumn = i;
- for (var j = i + 1; j < matrix.length - 1; j++) {
- if (Math.abs(matrix[i][j]) > Math.abs(matrix[i][maxColumn])) {
- maxColumn = j;
- }
- }
- for (var k = i; k < matrix.length; k++) {
- var temp = matrix[k][i];
- matrix[k][i] = matrix[k][maxColumn];
- matrix[k][maxColumn] = temp;
- }
- for (var n = i + 1; n < matrix.length - 1; n++) {
- for (var m = matrix.length - 1; m >= i; m--) {
- matrix[m][n] -= matrix[m][i] / matrix[i][i] * matrix[i][n];
- }
- }
- }
- var data = new Array(number);
- var len = matrix.length - 1;
- for (var j = matrix.length - 2; j >= 0; j--) {
- var temp = 0;
- for (var i = j + 1; i < matrix.length - 1; i++) {
- temp += matrix[i][j] * data[i];
- }
- data[j] = (matrix[len][j] - temp) / matrix[j][j];
- }
- return data;
- }
- var regression = function(regreMethod, data, optOrOrder) {
- var opt = typeof optOrOrder === "number" ? { order: optOrOrder } : optOrOrder || {};
- var dimensions = normalizeDimensions(opt.dimensions, [0, 1]);
- var predata = dataPreprocess(data, { dimensions });
- var result = regreMethods[regreMethod](predata, {
- order: opt.order,
- dimensions
- });
- var xDimIdx = dimensions[0];
- result.points.sort(function(itemA, itemB) {
- return itemA[xDimIdx] - itemB[xDimIdx];
- });
- return result;
- };
- return regression;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 6 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var statistics = {};
- statistics.max = __webpack_require__(7);
- statistics.deviation = __webpack_require__(8);
- statistics.mean = __webpack_require__(10);
- statistics.median = __webpack_require__(12);
- statistics.min = __webpack_require__(14);
- statistics.quantile = __webpack_require__(13);
- statistics.sampleVariance = __webpack_require__(9);
- statistics.sum = __webpack_require__(11);
- return statistics;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 7 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- function max(data) {
- var maxData = -Infinity;
- for (var i = 0; i < data.length; i++) {
- if (isNumber(data[i]) && data[i] > maxData) {
- maxData = data[i];
- }
- }
- return maxData;
- }
- return max;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 8 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var variance = __webpack_require__(9);
- return function(data) {
- var squaredDeviation = variance(data);
- return squaredDeviation ? Math.sqrt(squaredDeviation) : squaredDeviation;
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 9 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- var mean = __webpack_require__(10);
- function sampleVariance(data) {
- var len = data.length;
- if (!len || len < 2) {
- return 0;
- }
- if (data.length >= 2) {
- var meanValue = mean(data);
- var sum = 0;
- var temple;
- for (var i = 0; i < data.length; i++) {
- if (isNumber(data[i])) {
- temple = data[i] - meanValue;
- sum += temple * temple;
- }
- }
- return sum / (data.length - 1);
- }
- }
- return sampleVariance;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 10 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var sum = __webpack_require__(11);
- function mean(data) {
- var len = data.length;
- if (!len) {
- return 0;
- }
- return sum(data) / data.length;
- }
- return mean;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 11 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- function sum(data) {
- var len = data.length;
- if (!len) {
- return 0;
- }
- var sumData = 0;
- for (var i = 0; i < len; i++) {
- if (isNumber(data[i])) {
- sumData += data[i];
- }
- }
- return sumData;
- }
- return sum;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 12 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var quantile = __webpack_require__(13);
- function median(data) {
- return quantile(data, 0.5);
- }
- return median;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 13 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- return function(data, p) {
- var len = data.length;
- if (!len) {
- return 0;
- }
- if (p <= 0 || len < 2) {
- return data[0];
- }
- if (p >= 1) {
- return data[len - 1];
- }
- var h = (len - 1) * p;
- var i = Math.floor(h);
- var a = data[i];
- var b = data[i + 1];
- return a + (b - a) * (h - i);
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 14 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var number = __webpack_require__(4);
- var isNumber = number.isNumber;
- function min(data) {
- var minData = Infinity;
- for (var i = 0; i < data.length; i++) {
- if (isNumber(data[i]) && data[i] < minData) {
- minData = data[i];
- }
- }
- return minData;
- }
- return min;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 15 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var max = __webpack_require__(7);
- var min = __webpack_require__(14);
- var quantile = __webpack_require__(13);
- var deviation = __webpack_require__(8);
- var dataProcess = __webpack_require__(2);
- var dataPreprocess = dataProcess.dataPreprocess;
- var normalizeDimensions = dataProcess.normalizeDimensions;
- var array = __webpack_require__(3);
- var ascending = array.ascending;
- var map = array.map;
- var range = __webpack_require__(16);
- var bisect = array.bisect;
- var tickStep = __webpack_require__(17);
- function computeBins(data, optOrMethod) {
- var opt = typeof optOrMethod === "string" ? { method: optOrMethod } : optOrMethod || {};
- var threshold = opt.method == null ? thresholdMethod.squareRoot : thresholdMethod[opt.method];
- var dimensions = normalizeDimensions(opt.dimensions);
- var values = dataPreprocess(data, {
- dimensions,
- toOneDimensionArray: true
- });
- var maxValue = max(values);
- var minValue = min(values);
- var binsNumber = threshold(values, minValue, maxValue);
- var tickStepResult = tickStep(minValue, maxValue, binsNumber);
- var step = tickStepResult.step;
- var toFixedPrecision = tickStepResult.toFixedPrecision;
- var rangeArray = range(
- // use function toFixed() to avoid data like '0.700000001'
- +(Math.ceil(minValue / step) * step).toFixed(toFixedPrecision),
- +(Math.floor(maxValue / step) * step).toFixed(toFixedPrecision),
- step,
- toFixedPrecision
- );
- var len = rangeArray.length;
- var bins = new Array(len + 1);
- for (var i = 0; i <= len; i++) {
- bins[i] = {};
- bins[i].sample = [];
- bins[i].x0 = i > 0 ? rangeArray[i - 1] : rangeArray[i] - minValue === step ? minValue : rangeArray[i] - step;
- bins[i].x1 = i < len ? rangeArray[i] : maxValue - rangeArray[i - 1] === step ? maxValue : rangeArray[i - 1] + step;
- }
- for (var i = 0; i < values.length; i++) {
- if (minValue <= values[i] && values[i] <= maxValue) {
- bins[bisect(rangeArray, values[i], 0, len)].sample.push(values[i]);
- }
- }
- var data = map(bins, function(bin) {
- return [
- +((bin.x0 + bin.x1) / 2).toFixed(toFixedPrecision),
- bin.sample.length,
- bin.x0,
- bin.x1,
- bin.x0 + " - " + bin.x1
- ];
- });
- var customData = map(bins, function(bin) {
- return [bin.x0, bin.x1, bin.sample.length];
- });
- return {
- bins,
- data,
- customData
- };
- }
- var thresholdMethod = {
- squareRoot: function(data) {
- var bins = Math.ceil(Math.sqrt(data.length));
- return bins > 50 ? 50 : bins;
- },
- scott: function(data, min2, max2) {
- return Math.ceil((max2 - min2) / (3.5 * deviation(data) * Math.pow(data.length, -1 / 3)));
- },
- freedmanDiaconis: function(data, min2, max2) {
- data.sort(ascending);
- return Math.ceil(
- (max2 - min2) / (2 * (quantile(data, 0.75) - quantile(data, 0.25)) * Math.pow(data.length, -1 / 3))
- );
- },
- sturges: function(data) {
- return Math.ceil(Math.log(data.length) / Math.LN2) + 1;
- }
- };
- return computeBins;
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 16 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var dataProcess = __webpack_require__(2);
- var getPrecision = dataProcess.getPrecision;
- return function(start, end, step, precision) {
- var len = arguments.length;
- if (len < 2) {
- end = start;
- start = 0;
- step = 1;
- } else if (len < 3) {
- step = 1;
- } else if (len < 4) {
- step = +step;
- precision = getPrecision(step);
- } else {
- precision = +precision;
- }
- var n = Math.ceil(((end - start) / step).toFixed(precision));
- var range = new Array(n + 1);
- for (var i = 0; i < n + 1; i++) {
- range[i] = +(start + i * step).toFixed(precision);
- }
- return range;
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 17 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var numberUtil = __webpack_require__(4);
- return function(start, stop, count) {
- var step0 = Math.abs(stop - start) / count;
- var precision = numberUtil.quantityExponent(step0);
- var step1 = Math.pow(10, precision);
- var error = step0 / step1;
- if (error >= Math.sqrt(50)) {
- step1 *= 10;
- } else if (error >= Math.sqrt(10)) {
- step1 *= 5;
- } else if (error >= Math.sqrt(2)) {
- step1 *= 2;
- }
- var toFixedPrecision = precision < 0 ? -precision : 0;
- var resultStep = +(stop >= start ? step1 : -step1).toFixed(toFixedPrecision);
- return {
- step: resultStep,
- toFixedPrecision
- };
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 18 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var regression = __webpack_require__(5);
- var transformHelper = __webpack_require__(19);
- var FORMULA_DIMENSION = 2;
- return {
- type: "ecStat:regression",
- /**
- * @param {Paramter<typeof regression>[0]} [params.config.method='linear'] 'linear' by default
- * @param {Paramter<typeof regression>[2]} [params.config.order=2] Only work when method is `polynomial`.
- * @param {DimensionLoose[]|DimensionLoose} [params.config.dimensions=[0, 1]] dimensions that used to calculate regression.
- * By default [0, 1].
- * @param {'start' | 'end' | 'all'} params.config.formulaOn Include formula on the last (third) dimension of the:
- * 'start': first data item.
- * 'end': last data item (by default).
- * 'all': all data items.
- * 'none': no data item.
- */
- transform: function transform(params) {
- var upstream = params.upstream;
- var config = params.config || {};
- var method = config.method || "linear";
- var result = regression(method, upstream.cloneRawData(), {
- order: config.order,
- dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions)
- });
- var points = result.points;
- var formulaOn = config.formulaOn;
- if (formulaOn == null) {
- formulaOn = "end";
- }
- var dimensions;
- if (formulaOn !== "none") {
- for (var i = 0; i < points.length; i++) {
- points[i][FORMULA_DIMENSION] = formulaOn === "start" && i === 0 || formulaOn === "all" || formulaOn === "end" && i === points.length - 1 ? result.expression : "";
- }
- dimensions = upstream.cloneAllDimensionInfo();
- dimensions[FORMULA_DIMENSION] = {};
- }
- return [{
- dimensions,
- data: points
- }];
- }
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 19 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var arrayUtil = __webpack_require__(3);
- var numberUtil = __webpack_require__(4);
- var objectUtil = __webpack_require__(20);
- function normalizeExistingDimensions(transformParams, dimensionsConfig) {
- if (dimensionsConfig == null) {
- return;
- }
- var upstream = transformParams.upstream;
- if (arrayUtil.isArray(dimensionsConfig)) {
- var result = [];
- for (var i = 0; i < dimensionsConfig.length; i++) {
- var dimInfo = upstream.getDimensionInfo(dimensionsConfig[i]);
- validateDimensionExists(dimInfo, dimensionsConfig[i]);
- result[i] = dimInfo.index;
- }
- return result;
- } else {
- var dimInfo = upstream.getDimensionInfo(dimensionsConfig);
- validateDimensionExists(dimInfo, dimensionsConfig);
- return dimInfo.index;
- }
- function validateDimensionExists(dimInfo2, dimConfig) {
- if (!dimInfo2) {
- throw new Error("Can not find dimension by " + dimConfig);
- }
- }
- }
- function normalizeNewDimensions(dimensionsConfig) {
- if (arrayUtil.isArray(dimensionsConfig)) {
- var names = [];
- var indices = [];
- for (var i = 0; i < dimensionsConfig.length; i++) {
- var item = parseDimensionNewItem(dimensionsConfig[i]);
- names.push(item.name);
- indices.push(item.index);
- }
- return { name: names, index: indices };
- } else if (dimensionsConfig != null) {
- return parseDimensionNewItem(dimensionsConfig);
- }
- function parseDimensionNewItem(dimConfig) {
- if (numberUtil.isNumber(dimConfig)) {
- return { index: dimConfig };
- } else if (objectUtil.isObject(dimConfig) && numberUtil.isNumber(dimConfig.index)) {
- return dimConfig;
- }
- throw new Error("Illegle new dimensions config. Expect `{ name: string, index: number }`.");
- }
- }
- return {
- normalizeExistingDimensions,
- normalizeNewDimensions
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 20 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- function extend(target, source) {
- if (Object.assign) {
- Object.assign(target, source);
- } else {
- for (var key in source) {
- if (source.hasOwnProperty(key)) {
- target[key] = source[key];
- }
- }
- }
- return target;
- }
- function isObject(value) {
- const type = typeof value;
- return type === "function" || !!value && type === "object";
- }
- return {
- extend,
- isObject
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 21 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var histogram = __webpack_require__(15);
- var transformHelper = __webpack_require__(19);
- return {
- type: "ecStat:histogram",
- /**
- * @param {'squareRoot' | 'scott' | 'freedmanDiaconis' | 'sturges'} [params.config.method='squareRoot']
- * @param {DimnensionLoose[]} [params.config.dimensions=[0, 1]] dimensions that used to calculate histogram.
- * By default [0].
- */
- transform: function transform(params) {
- var upstream = params.upstream;
- var config = params.config || {};
- var result = histogram(upstream.cloneRawData(), {
- method: config.method,
- dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions)
- });
- return [{
- dimensions: ["MeanOfV0V1", "VCount", "V0", "V1", "DisplayableName"],
- data: result.data
- }, {
- data: result.customData
- }];
- }
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- },
- /* 22 */
- /***/
- function(module2, exports2, __webpack_require__) {
- var __WEBPACK_AMD_DEFINE_RESULT__;
- !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
- var clustering = __webpack_require__(1);
- var numberUtil = __webpack_require__(4);
- var transformHelper = __webpack_require__(19);
- var isNumber = numberUtil.isNumber;
- return {
- type: "ecStat:clustering",
- /**
- * @param {number} params.config.clusterCount Mandatory.
- * The number of clusters in a dataset. It has to be greater than 1.
- * @param {(DimensionName | DimensionIndex)[]} [params.config.dimensions] Optional.
- * Target dimensions to calculate the regression.
- * By default: use all of the data.
- * @param {(DimensionIndex | {name?: DimensionName, index: DimensionIndex})} [params.config.outputClusterIndexDimension] Mandatory.
- * @param {(DimensionIndex | {name?: DimensionName, index: DimensionIndex})[]} [params.config.outputCentroidDimensions] Optional.
- * If specified, the centroid will be set to those dimensions of the result data one by one.
- * By default not set centroid to result.
- */
- transform: function transform(params) {
- var upstream = params.upstream;
- var config = params.config || {};
- var clusterCount = config.clusterCount;
- if (!isNumber(clusterCount) || clusterCount <= 0) {
- throw new Error('config param "clusterCount" need to be specified as an interger greater than 1.');
- }
- if (clusterCount === 1) {
- return [{}, {
- data: []
- }];
- }
- var outputClusterIndexDimension = transformHelper.normalizeNewDimensions(
- config.outputClusterIndexDimension
- );
- var outputCentroidDimensions = transformHelper.normalizeNewDimensions(
- config.outputCentroidDimensions
- );
- if (outputClusterIndexDimension == null) {
- throw new Error("outputClusterIndexDimension is required as a number.");
- }
- var result = clustering.hierarchicalKMeans(upstream.cloneRawData(), {
- clusterCount,
- stepByStep: false,
- dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions),
- outputType: clustering.OutputType.SINGLE,
- outputClusterIndexDimension: outputClusterIndexDimension.index,
- outputCentroidDimensions: (outputCentroidDimensions || {}).index
- });
- var sourceDimAll = upstream.cloneAllDimensionInfo();
- var resultDimsDef = [];
- for (var i = 0; i < sourceDimAll.length; i++) {
- var sourceDimItem = sourceDimAll[i];
- resultDimsDef.push(sourceDimItem.name);
- }
- resultDimsDef[outputClusterIndexDimension.index] = outputClusterIndexDimension.name;
- if (outputCentroidDimensions) {
- for (var i = 0; i < outputCentroidDimensions.index.length; i++) {
- if (outputCentroidDimensions.name[i] != null) {
- resultDimsDef[outputCentroidDimensions.index[i]] = outputCentroidDimensions.name[i];
- }
- }
- }
- return [{
- dimensions: resultDimsDef,
- data: result.data
- }, {
- data: result.centroids
- }];
- }
- };
- }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
- }
- /******/
- ])
- );
- });
- }
- });
- // node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/index.js
- var require_echarts_stat = __commonJS({
- "node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/index.js"(exports, module) {
- module.exports = require_ecStat();
- }
- });
- export default require_echarts_stat();
- //# sourceMappingURL=echarts-stat.js.map
|