echarts-stat.js 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429
  1. import {
  2. __commonJS
  3. } from "./chunk-2LSFTFF7.js";
  4. // node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/dist/ecStat.js
  5. var require_ecStat = __commonJS({
  6. "node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/dist/ecStat.js"(exports, module) {
  7. (function webpackUniversalModuleDefinition(root, factory) {
  8. if (typeof exports === "object" && typeof module === "object")
  9. module.exports = factory();
  10. else if (typeof define === "function" && define.amd)
  11. define([], factory);
  12. else if (typeof exports === "object")
  13. exports["ecStat"] = factory();
  14. else
  15. root["ecStat"] = factory();
  16. })(exports, function() {
  17. return (
  18. /******/
  19. function(modules) {
  20. var installedModules = {};
  21. function __webpack_require__(moduleId) {
  22. if (installedModules[moduleId])
  23. return installedModules[moduleId].exports;
  24. var module2 = installedModules[moduleId] = {
  25. /******/
  26. exports: {},
  27. /******/
  28. id: moduleId,
  29. /******/
  30. loaded: false
  31. /******/
  32. };
  33. modules[moduleId].call(module2.exports, module2, module2.exports, __webpack_require__);
  34. module2.loaded = true;
  35. return module2.exports;
  36. }
  37. __webpack_require__.m = modules;
  38. __webpack_require__.c = installedModules;
  39. __webpack_require__.p = "";
  40. return __webpack_require__(0);
  41. }([
  42. /* 0 */
  43. /***/
  44. function(module2, exports2, __webpack_require__) {
  45. var __WEBPACK_AMD_DEFINE_RESULT__;
  46. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  47. return {
  48. clustering: __webpack_require__(1),
  49. regression: __webpack_require__(5),
  50. statistics: __webpack_require__(6),
  51. histogram: __webpack_require__(15),
  52. transform: {
  53. regression: __webpack_require__(18),
  54. histogram: __webpack_require__(21),
  55. clustering: __webpack_require__(22)
  56. }
  57. };
  58. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  59. },
  60. /* 1 */
  61. /***/
  62. function(module2, exports2, __webpack_require__) {
  63. var __WEBPACK_AMD_DEFINE_RESULT__;
  64. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  65. var dataProcess = __webpack_require__(2);
  66. var dataPreprocess = dataProcess.dataPreprocess;
  67. var normalizeDimensions = dataProcess.normalizeDimensions;
  68. var arrayUtil = __webpack_require__(3);
  69. var numberUtil = __webpack_require__(4);
  70. var arraySize = arrayUtil.size;
  71. var sumOfColumn = arrayUtil.sumOfColumn;
  72. var arraySum = arrayUtil.sum;
  73. var zeros = arrayUtil.zeros;
  74. var numberUtil = __webpack_require__(4);
  75. var isNumber = numberUtil.isNumber;
  76. var mathPow = Math.pow;
  77. var OutputType = {
  78. /**
  79. * Data are all in one. Cluster info are added as an attribute of data.
  80. * ```ts
  81. * type OutputDataSingle = {
  82. * // Each index of `data` is the index of the input data.
  83. * data: OutputDataItem[];
  84. * // The index of `centroids` is the cluster index.
  85. * centroids: [ValueOnX, ValueOnY][];
  86. * };
  87. * type InputDataItem = (ValueOnX | ValueOnY | OtherValue)[];
  88. * type OutputDataItem = (...InputDataItem | ClusterIndex | SquareDistanceToCentroid)[];
  89. * ```
  90. */
  91. SINGLE: "single",
  92. /**
  93. * Data are separated by cluster. Suitable for retrieving data form each cluster.
  94. * ```ts
  95. * type OutputDataMultiple = {
  96. * // Each index of `clusterAssment` is the index of the input data.
  97. * clusterAssment: [ClusterIndex, SquareDistanceToCentroid][];
  98. * // The index of `centroids` is the cluster index.
  99. * centroids: [ValueOnX, ValueOnY][];
  100. * // The index of `pointsInCluster` is the cluster index.
  101. * pointsInCluster: DataItemListInOneCluster[];
  102. * }
  103. * type DataItemListInOneCluster = InputDataItem[];
  104. * type InputDataItem = (ValueOnX | ValueOnY | OtherValue)[];
  105. * type SquareDistanceToCentroid = number;
  106. * type ClusterIndex = number;
  107. * type ValueOnX = number;
  108. * type ValueOnY = number;
  109. * type OtherValue = unknown;
  110. * ```
  111. */
  112. MULTIPLE: "multiple"
  113. };
  114. function kMeans(data, k, dataMeta) {
  115. var clusterAssigned = zeros(data.length, 2);
  116. var centroids = createRandCent(k, calcExtents(data, dataMeta.dimensions));
  117. var clusterChanged = true;
  118. var minDist;
  119. var minIndex;
  120. var distIJ;
  121. var ptsInClust;
  122. while (clusterChanged) {
  123. clusterChanged = false;
  124. for (var i = 0; i < data.length; i++) {
  125. minDist = Infinity;
  126. minIndex = -1;
  127. for (var j = 0; j < k; j++) {
  128. distIJ = distEuclid(data[i], centroids[j], dataMeta);
  129. if (distIJ < minDist) {
  130. minDist = distIJ;
  131. minIndex = j;
  132. }
  133. }
  134. if (clusterAssigned[i][0] !== minIndex) {
  135. clusterChanged = true;
  136. }
  137. clusterAssigned[i][0] = minIndex;
  138. clusterAssigned[i][1] = minDist;
  139. }
  140. for (var i = 0; i < k; i++) {
  141. ptsInClust = [];
  142. for (var j = 0; j < clusterAssigned.length; j++) {
  143. if (clusterAssigned[j][0] === i) {
  144. ptsInClust.push(data[j]);
  145. }
  146. }
  147. centroids[i] = meanInColumns(ptsInClust, dataMeta);
  148. }
  149. }
  150. var clusterWithKmeans = {
  151. centroids,
  152. clusterAssigned
  153. };
  154. return clusterWithKmeans;
  155. }
  156. function meanInColumns(dataList, dataMeta) {
  157. var meanArray = [];
  158. var sum;
  159. var mean;
  160. for (var j = 0; j < dataMeta.dimensions.length; j++) {
  161. var dimIdx = dataMeta.dimensions[j];
  162. sum = 0;
  163. for (var i = 0; i < dataList.length; i++) {
  164. sum += dataList[i][dimIdx];
  165. }
  166. mean = sum / dataList.length;
  167. meanArray.push(mean);
  168. }
  169. return meanArray;
  170. }
  171. function hierarchicalKMeans(data, clusterCountOrConfig, stepByStep) {
  172. var config = (isNumber(clusterCountOrConfig) ? { clusterCount: clusterCountOrConfig, stepByStep } : clusterCountOrConfig) || { clusterCount: 2 };
  173. var k = config.clusterCount;
  174. if (k < 2) {
  175. return;
  176. }
  177. var dataMeta = parseDataMeta(data, config);
  178. var isOutputTypeSingle = dataMeta.outputType === OutputType.SINGLE;
  179. var dataSet = dataPreprocess(data, { dimensions: dataMeta.dimensions });
  180. var clusterAssment = zeros(dataSet.length, 2);
  181. var outputSingleData;
  182. var setClusterIndex;
  183. var getClusterIndex;
  184. function setDistance(dataIndex, dist2) {
  185. clusterAssment[dataIndex][1] = dist2;
  186. }
  187. function getDistance(dataIndex) {
  188. return clusterAssment[dataIndex][1];
  189. }
  190. ;
  191. if (isOutputTypeSingle) {
  192. outputSingleData = [];
  193. var outputClusterIndexDimension = dataMeta.outputClusterIndexDimension;
  194. setClusterIndex = function(dataIndex, clusterIndex) {
  195. outputSingleData[dataIndex][outputClusterIndexDimension] = clusterIndex;
  196. };
  197. getClusterIndex = function(dataIndex) {
  198. return outputSingleData[dataIndex][outputClusterIndexDimension];
  199. };
  200. for (var i = 0; i < dataSet.length; i++) {
  201. outputSingleData.push(dataSet[i].slice());
  202. setDistance(i, 0);
  203. setClusterIndex(i, 0);
  204. }
  205. } else {
  206. setClusterIndex = function(dataIndex, clusterIndex) {
  207. clusterAssment[dataIndex][0] = clusterIndex;
  208. };
  209. getClusterIndex = function(dataIndex) {
  210. return clusterAssment[dataIndex][0];
  211. };
  212. }
  213. var centroid0 = meanInColumns(dataSet, dataMeta);
  214. var centList = [centroid0];
  215. for (var i = 0; i < dataSet.length; i++) {
  216. var dist = distEuclid(dataSet[i], centroid0, dataMeta);
  217. setDistance(i, dist);
  218. }
  219. var lowestSSE;
  220. var ptsInClust;
  221. var ptsNotClust;
  222. var clusterInfo;
  223. var sseSplit;
  224. var sseNotSplit;
  225. var index = 1;
  226. var result = {
  227. data: outputSingleData,
  228. centroids: centList,
  229. isEnd: false
  230. };
  231. if (!isOutputTypeSingle) {
  232. result.clusterAssment = clusterAssment;
  233. }
  234. function oneStep() {
  235. if (index < k) {
  236. lowestSSE = Infinity;
  237. var centSplit;
  238. var newCentroid;
  239. var newClusterAss;
  240. for (var j = 0; j < centList.length; j++) {
  241. ptsInClust = [];
  242. ptsNotClust = [];
  243. for (var i2 = 0; i2 < dataSet.length; i2++) {
  244. if (getClusterIndex(i2) === j) {
  245. ptsInClust.push(dataSet[i2]);
  246. } else {
  247. ptsNotClust.push(getDistance(i2));
  248. }
  249. }
  250. clusterInfo = kMeans(ptsInClust, 2, dataMeta);
  251. sseSplit = sumOfColumn(clusterInfo.clusterAssigned, 1);
  252. sseNotSplit = arraySum(ptsNotClust);
  253. if (sseSplit + sseNotSplit < lowestSSE) {
  254. lowestSSE = sseNotSplit + sseSplit;
  255. centSplit = j;
  256. newCentroid = clusterInfo.centroids;
  257. newClusterAss = clusterInfo.clusterAssigned;
  258. }
  259. }
  260. for (var i2 = 0; i2 < newClusterAss.length; i2++) {
  261. if (newClusterAss[i2][0] === 0) {
  262. newClusterAss[i2][0] = centSplit;
  263. } else if (newClusterAss[i2][0] === 1) {
  264. newClusterAss[i2][0] = centList.length;
  265. }
  266. }
  267. centList[centSplit] = newCentroid[0];
  268. centList.push(newCentroid[1]);
  269. for (var i2 = 0, j = 0; i2 < dataSet.length && j < newClusterAss.length; i2++) {
  270. if (getClusterIndex(i2) === centSplit) {
  271. setClusterIndex(i2, newClusterAss[j][0]);
  272. setDistance(i2, newClusterAss[j++][1]);
  273. }
  274. }
  275. var pointInClust = [];
  276. if (!isOutputTypeSingle) {
  277. for (var i2 = 0; i2 < centList.length; i2++) {
  278. pointInClust[i2] = [];
  279. for (var j = 0; j < dataSet.length; j++) {
  280. if (getClusterIndex(j) === i2) {
  281. pointInClust[i2].push(dataSet[j]);
  282. }
  283. }
  284. }
  285. result.pointsInCluster = pointInClust;
  286. }
  287. index++;
  288. } else {
  289. result.isEnd = true;
  290. }
  291. }
  292. if (!config.stepByStep) {
  293. while (oneStep(), !result.isEnd)
  294. ;
  295. } else {
  296. result.next = function() {
  297. oneStep();
  298. setCentroidToResultData(result, dataMeta);
  299. return result;
  300. };
  301. }
  302. setCentroidToResultData(result, dataMeta);
  303. return result;
  304. }
  305. function setCentroidToResultData(result, dataMeta) {
  306. var outputCentroidDimensions = dataMeta.outputCentroidDimensions;
  307. if (dataMeta.outputType !== OutputType.SINGLE || outputCentroidDimensions == null) {
  308. return;
  309. }
  310. var outputSingleData = result.data;
  311. var centroids = result.centroids;
  312. for (var i = 0; i < outputSingleData.length; i++) {
  313. var line = outputSingleData[i];
  314. var clusterIndex = line[dataMeta.outputClusterIndexDimension];
  315. var centroid = centroids[clusterIndex];
  316. var dimLen = Math.min(centroid.length, outputCentroidDimensions.length);
  317. for (var j = 0; j < dimLen; j++) {
  318. line[outputCentroidDimensions[j]] = centroid[j];
  319. }
  320. }
  321. }
  322. function createRandCent(k, extents) {
  323. var centroids = zeros(k, extents.length);
  324. for (var j = 0; j < extents.length; j++) {
  325. var extentItem = extents[j];
  326. for (var i = 0; i < k; i++) {
  327. centroids[i][j] = extentItem.min + extentItem.span * Math.random();
  328. }
  329. }
  330. return centroids;
  331. }
  332. function distEuclid(dataItem, centroid, dataMeta) {
  333. var powerSum = 0;
  334. var dimensions = dataMeta.dimensions;
  335. var extents = dataMeta.rawExtents;
  336. for (var i = 0; i < dimensions.length; i++) {
  337. var span = extents[i].span;
  338. if (span) {
  339. var dimIdx = dimensions[i];
  340. var dist = (dataItem[dimIdx] - centroid[i]) / span;
  341. powerSum += mathPow(dist, 2);
  342. }
  343. }
  344. return powerSum;
  345. }
  346. function parseDataMeta(dataSet, config) {
  347. var size = arraySize(dataSet);
  348. if (size.length < 1) {
  349. throw new Error("The input data of clustering should be two-dimension array.");
  350. }
  351. var colCount = size[1];
  352. var defaultDimensions = [];
  353. for (var i = 0; i < colCount; i++) {
  354. defaultDimensions.push(i);
  355. }
  356. var dimensions = normalizeDimensions(config.dimensions, defaultDimensions);
  357. var outputType = config.outputType || OutputType.MULTIPLE;
  358. var outputClusterIndexDimension = config.outputClusterIndexDimension;
  359. if (outputType === OutputType.SINGLE && !numberUtil.isNumber(outputClusterIndexDimension)) {
  360. throw new Error("outputClusterIndexDimension is required as a number.");
  361. }
  362. var extents = calcExtents(dataSet, dimensions);
  363. return {
  364. dimensions,
  365. rawExtents: extents,
  366. outputType,
  367. outputClusterIndexDimension,
  368. outputCentroidDimensions: config.outputCentroidDimensions
  369. };
  370. }
  371. function calcExtents(dataSet, dimensions) {
  372. var extents = [];
  373. var dimLen = dimensions.length;
  374. for (var i = 0; i < dimLen; i++) {
  375. extents.push({ min: Infinity, max: -Infinity });
  376. }
  377. for (var i = 0; i < dataSet.length; i++) {
  378. var line = dataSet[i];
  379. for (var j = 0; j < dimLen; j++) {
  380. var extentItem = extents[j];
  381. var val = line[dimensions[j]];
  382. extentItem.min > val && (extentItem.min = val);
  383. extentItem.max < val && (extentItem.max = val);
  384. }
  385. }
  386. for (var i = 0; i < dimLen; i++) {
  387. extents[i].span = extents[i].max - extents[i].min;
  388. }
  389. return extents;
  390. }
  391. return {
  392. OutputType,
  393. hierarchicalKMeans
  394. };
  395. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  396. },
  397. /* 2 */
  398. /***/
  399. function(module2, exports2, __webpack_require__) {
  400. var __WEBPACK_AMD_DEFINE_RESULT__;
  401. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  402. var array = __webpack_require__(3);
  403. var isArray = array.isArray;
  404. var size = array.size;
  405. var number = __webpack_require__(4);
  406. var isNumber = number.isNumber;
  407. function normalizeDimensions(dimensions, defaultDimensions) {
  408. return typeof dimensions === "number" ? [dimensions] : dimensions == null ? defaultDimensions : dimensions;
  409. }
  410. function dataPreprocess(data, opt) {
  411. opt = opt || {};
  412. var dimensions = opt.dimensions;
  413. var numberDimensionMap = {};
  414. if (dimensions != null) {
  415. for (var i = 0; i < dimensions.length; i++) {
  416. numberDimensionMap[dimensions[i]] = true;
  417. }
  418. }
  419. var targetOneDim = opt.toOneDimensionArray ? dimensions ? dimensions[0] : 0 : null;
  420. function shouldBeNumberDimension(dimIdx) {
  421. return !dimensions || numberDimensionMap.hasOwnProperty(dimIdx);
  422. }
  423. if (!isArray(data)) {
  424. throw new Error("Invalid data type, you should input an array");
  425. }
  426. var predata = [];
  427. var arraySize = size(data);
  428. if (arraySize.length === 1) {
  429. for (var i = 0; i < arraySize[0]; i++) {
  430. var item = data[i];
  431. if (isNumber(item)) {
  432. predata.push(item);
  433. }
  434. }
  435. } else if (arraySize.length === 2) {
  436. for (var i = 0; i < arraySize[0]; i++) {
  437. var isCorrect = true;
  438. var item = data[i];
  439. for (var j = 0; j < arraySize[1]; j++) {
  440. if (shouldBeNumberDimension(j) && !isNumber(item[j])) {
  441. isCorrect = false;
  442. }
  443. }
  444. if (isCorrect) {
  445. predata.push(
  446. targetOneDim != null ? item[targetOneDim] : item
  447. );
  448. }
  449. }
  450. }
  451. return predata;
  452. }
  453. function getPrecision(val) {
  454. var str = val.toString();
  455. var dotIndex = str.indexOf(".");
  456. return dotIndex < 0 ? 0 : str.length - 1 - dotIndex;
  457. }
  458. return {
  459. normalizeDimensions,
  460. dataPreprocess,
  461. getPrecision
  462. };
  463. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  464. },
  465. /* 3 */
  466. /***/
  467. function(module2, exports2, __webpack_require__) {
  468. var __WEBPACK_AMD_DEFINE_RESULT__;
  469. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  470. var objToString = Object.prototype.toString;
  471. var arrayProto = Array.prototype;
  472. var nativeMap = arrayProto.map;
  473. function size(data) {
  474. var s = [];
  475. while (isArray(data)) {
  476. s.push(data.length);
  477. data = data[0];
  478. }
  479. return s;
  480. }
  481. function isArray(value) {
  482. return objToString.call(value) === "[object Array]";
  483. }
  484. function zeros(m, n) {
  485. var zeroArray = [];
  486. for (var i = 0; i < m; i++) {
  487. zeroArray[i] = [];
  488. for (var j = 0; j < n; j++) {
  489. zeroArray[i][j] = 0;
  490. }
  491. }
  492. return zeroArray;
  493. }
  494. function sum(vector) {
  495. var sum2 = 0;
  496. for (var i = 0; i < vector.length; i++) {
  497. sum2 += vector[i];
  498. }
  499. return sum2;
  500. }
  501. function sumOfColumn(dataList, n) {
  502. var sum2 = 0;
  503. for (var i = 0; i < dataList.length; i++) {
  504. sum2 += dataList[i][n];
  505. }
  506. return sum2;
  507. }
  508. function ascending(a, b) {
  509. return a > b ? 1 : a < b ? -1 : a === b ? 0 : NaN;
  510. }
  511. function bisect(array, value, start, end) {
  512. if (start == null) {
  513. start = 0;
  514. }
  515. if (end == null) {
  516. end = array.length;
  517. }
  518. while (start < end) {
  519. var mid = Math.floor((start + end) / 2);
  520. var compare = ascending(array[mid], value);
  521. if (compare > 0) {
  522. end = mid;
  523. } else if (compare < 0) {
  524. start = mid + 1;
  525. } else {
  526. return mid + 1;
  527. }
  528. }
  529. return start;
  530. }
  531. function map(obj, cb, context) {
  532. if (!(obj && cb)) {
  533. return;
  534. }
  535. if (obj.map && obj.map === nativeMap) {
  536. return obj.map(cb, context);
  537. } else {
  538. var result = [];
  539. for (var i = 0, len = obj.length; i < len; i++) {
  540. result.push(cb.call(context, obj[i], i, obj));
  541. }
  542. return result;
  543. }
  544. }
  545. return {
  546. size,
  547. isArray,
  548. zeros,
  549. sum,
  550. sumOfColumn,
  551. ascending,
  552. bisect,
  553. map
  554. };
  555. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  556. },
  557. /* 4 */
  558. /***/
  559. function(module2, exports2, __webpack_require__) {
  560. var __WEBPACK_AMD_DEFINE_RESULT__;
  561. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  562. function isNumber(value) {
  563. value = value === null ? NaN : +value;
  564. return typeof value === "number" && !isNaN(value);
  565. }
  566. function isInteger(value) {
  567. return isFinite(value) && value === Math.round(value);
  568. }
  569. function quantityExponent(val) {
  570. if (val === 0) {
  571. return 0;
  572. }
  573. var exp = Math.floor(Math.log(val) / Math.LN10);
  574. if (val / Math.pow(10, exp) >= 10) {
  575. exp++;
  576. }
  577. return exp;
  578. }
  579. return {
  580. isNumber,
  581. isInteger,
  582. quantityExponent
  583. };
  584. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  585. },
  586. /* 5 */
  587. /***/
  588. function(module2, exports2, __webpack_require__) {
  589. var __WEBPACK_AMD_DEFINE_RESULT__;
  590. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  591. var dataProcess = __webpack_require__(2);
  592. var dataPreprocess = dataProcess.dataPreprocess;
  593. var normalizeDimensions = dataProcess.normalizeDimensions;
  594. var regreMethods = {
  595. /**
  596. * Common linear regression algorithm
  597. */
  598. linear: function(predata, opt) {
  599. var xDimIdx = opt.dimensions[0];
  600. var yDimIdx = opt.dimensions[1];
  601. var sumX = 0;
  602. var sumY = 0;
  603. var sumXY = 0;
  604. var sumXX = 0;
  605. var len = predata.length;
  606. for (var i = 0; i < len; i++) {
  607. var rawItem = predata[i];
  608. sumX += rawItem[xDimIdx];
  609. sumY += rawItem[yDimIdx];
  610. sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
  611. sumXX += rawItem[xDimIdx] * rawItem[xDimIdx];
  612. }
  613. var gradient = (len * sumXY - sumX * sumY) / (len * sumXX - sumX * sumX);
  614. var intercept = sumY / len - gradient * sumX / len;
  615. var result = [];
  616. for (var j = 0; j < predata.length; j++) {
  617. var rawItem = predata[j];
  618. var resultItem = rawItem.slice();
  619. resultItem[xDimIdx] = rawItem[xDimIdx];
  620. resultItem[yDimIdx] = gradient * rawItem[xDimIdx] + intercept;
  621. result.push(resultItem);
  622. }
  623. var expression = "y = " + Math.round(gradient * 100) / 100 + "x + " + Math.round(intercept * 100) / 100;
  624. return {
  625. points: result,
  626. parameter: {
  627. gradient,
  628. intercept
  629. },
  630. expression
  631. };
  632. },
  633. /**
  634. * If the raw data include [0,0] point, we should choose linearThroughOrigin
  635. * instead of linear.
  636. */
  637. linearThroughOrigin: function(predata, opt) {
  638. var xDimIdx = opt.dimensions[0];
  639. var yDimIdx = opt.dimensions[1];
  640. var sumXX = 0;
  641. var sumXY = 0;
  642. for (var i = 0; i < predata.length; i++) {
  643. var rawItem = predata[i];
  644. sumXX += rawItem[xDimIdx] * rawItem[xDimIdx];
  645. sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
  646. }
  647. var gradient = sumXY / sumXX;
  648. var result = [];
  649. for (var j = 0; j < predata.length; j++) {
  650. var rawItem = predata[j];
  651. var resultItem = rawItem.slice();
  652. resultItem[xDimIdx] = rawItem[xDimIdx];
  653. resultItem[yDimIdx] = rawItem[xDimIdx] * gradient;
  654. result.push(resultItem);
  655. }
  656. var expression = "y = " + Math.round(gradient * 100) / 100 + "x";
  657. return {
  658. points: result,
  659. parameter: {
  660. gradient
  661. },
  662. expression
  663. };
  664. },
  665. /**
  666. * Exponential regression
  667. */
  668. exponential: function(predata, opt) {
  669. var xDimIdx = opt.dimensions[0];
  670. var yDimIdx = opt.dimensions[1];
  671. var sumX = 0;
  672. var sumY = 0;
  673. var sumXXY = 0;
  674. var sumYlny = 0;
  675. var sumXYlny = 0;
  676. var sumXY = 0;
  677. for (var i = 0; i < predata.length; i++) {
  678. var rawItem = predata[i];
  679. sumX += rawItem[xDimIdx];
  680. sumY += rawItem[yDimIdx];
  681. sumXY += rawItem[xDimIdx] * rawItem[yDimIdx];
  682. sumXXY += rawItem[xDimIdx] * rawItem[xDimIdx] * rawItem[yDimIdx];
  683. sumYlny += rawItem[yDimIdx] * Math.log(rawItem[yDimIdx]);
  684. sumXYlny += rawItem[xDimIdx] * rawItem[yDimIdx] * Math.log(rawItem[yDimIdx]);
  685. }
  686. var denominator = sumY * sumXXY - sumXY * sumXY;
  687. var coefficient = Math.pow(Math.E, (sumXXY * sumYlny - sumXY * sumXYlny) / denominator);
  688. var index = (sumY * sumXYlny - sumXY * sumYlny) / denominator;
  689. var result = [];
  690. for (var j = 0; j < predata.length; j++) {
  691. var rawItem = predata[j];
  692. var resultItem = rawItem.slice();
  693. resultItem[xDimIdx] = rawItem[xDimIdx];
  694. resultItem[yDimIdx] = coefficient * Math.pow(Math.E, index * rawItem[xDimIdx]);
  695. result.push(resultItem);
  696. }
  697. var expression = "y = " + Math.round(coefficient * 100) / 100 + "e^(" + Math.round(index * 100) / 100 + "x)";
  698. return {
  699. points: result,
  700. parameter: {
  701. coefficient,
  702. index
  703. },
  704. expression
  705. };
  706. },
  707. /**
  708. * Logarithmic regression
  709. */
  710. logarithmic: function(predata, opt) {
  711. var xDimIdx = opt.dimensions[0];
  712. var yDimIdx = opt.dimensions[1];
  713. var sumlnx = 0;
  714. var sumYlnx = 0;
  715. var sumY = 0;
  716. var sumlnxlnx = 0;
  717. for (var i = 0; i < predata.length; i++) {
  718. var rawItem = predata[i];
  719. sumlnx += Math.log(rawItem[xDimIdx]);
  720. sumYlnx += rawItem[yDimIdx] * Math.log(rawItem[xDimIdx]);
  721. sumY += rawItem[yDimIdx];
  722. sumlnxlnx += Math.pow(Math.log(rawItem[xDimIdx]), 2);
  723. }
  724. var gradient = (i * sumYlnx - sumY * sumlnx) / (i * sumlnxlnx - sumlnx * sumlnx);
  725. var intercept = (sumY - gradient * sumlnx) / i;
  726. var result = [];
  727. for (var j = 0; j < predata.length; j++) {
  728. var rawItem = predata[j];
  729. var resultItem = rawItem.slice();
  730. resultItem[xDimIdx] = rawItem[xDimIdx];
  731. resultItem[yDimIdx] = gradient * Math.log(rawItem[xDimIdx]) + intercept;
  732. result.push(resultItem);
  733. }
  734. var expression = "y = " + Math.round(intercept * 100) / 100 + " + " + Math.round(gradient * 100) / 100 + "ln(x)";
  735. return {
  736. points: result,
  737. parameter: {
  738. gradient,
  739. intercept
  740. },
  741. expression
  742. };
  743. },
  744. /**
  745. * Polynomial regression
  746. */
  747. polynomial: function(predata, opt) {
  748. var xDimIdx = opt.dimensions[0];
  749. var yDimIdx = opt.dimensions[1];
  750. var order = opt.order;
  751. if (order == null) {
  752. order = 2;
  753. }
  754. var coeMatrix = [];
  755. var lhs = [];
  756. var k = order + 1;
  757. for (var i = 0; i < k; i++) {
  758. var sumA = 0;
  759. for (var n = 0; n < predata.length; n++) {
  760. var rawItem = predata[n];
  761. sumA += rawItem[yDimIdx] * Math.pow(rawItem[xDimIdx], i);
  762. }
  763. lhs.push(sumA);
  764. var temp = [];
  765. for (var j = 0; j < k; j++) {
  766. var sumB = 0;
  767. for (var m = 0; m < predata.length; m++) {
  768. sumB += Math.pow(predata[m][xDimIdx], i + j);
  769. }
  770. temp.push(sumB);
  771. }
  772. coeMatrix.push(temp);
  773. }
  774. coeMatrix.push(lhs);
  775. var coeArray = gaussianElimination(coeMatrix, k);
  776. var result = [];
  777. for (var i = 0; i < predata.length; i++) {
  778. var value = 0;
  779. var rawItem = predata[i];
  780. for (var n = 0; n < coeArray.length; n++) {
  781. value += coeArray[n] * Math.pow(rawItem[xDimIdx], n);
  782. }
  783. var resultItem = rawItem.slice();
  784. resultItem[xDimIdx] = rawItem[xDimIdx];
  785. resultItem[yDimIdx] = value;
  786. result.push(resultItem);
  787. }
  788. var expression = "y = ";
  789. for (var i = coeArray.length - 1; i >= 0; i--) {
  790. if (i > 1) {
  791. expression += Math.round(coeArray[i] * Math.pow(10, i + 1)) / Math.pow(10, i + 1) + "x^" + i + " + ";
  792. } else if (i === 1) {
  793. expression += Math.round(coeArray[i] * 100) / 100 + "x + ";
  794. } else {
  795. expression += Math.round(coeArray[i] * 100) / 100;
  796. }
  797. }
  798. return {
  799. points: result,
  800. parameter: coeArray,
  801. expression
  802. };
  803. }
  804. };
  805. function gaussianElimination(matrix, number) {
  806. for (var i = 0; i < matrix.length - 1; i++) {
  807. var maxColumn = i;
  808. for (var j = i + 1; j < matrix.length - 1; j++) {
  809. if (Math.abs(matrix[i][j]) > Math.abs(matrix[i][maxColumn])) {
  810. maxColumn = j;
  811. }
  812. }
  813. for (var k = i; k < matrix.length; k++) {
  814. var temp = matrix[k][i];
  815. matrix[k][i] = matrix[k][maxColumn];
  816. matrix[k][maxColumn] = temp;
  817. }
  818. for (var n = i + 1; n < matrix.length - 1; n++) {
  819. for (var m = matrix.length - 1; m >= i; m--) {
  820. matrix[m][n] -= matrix[m][i] / matrix[i][i] * matrix[i][n];
  821. }
  822. }
  823. }
  824. var data = new Array(number);
  825. var len = matrix.length - 1;
  826. for (var j = matrix.length - 2; j >= 0; j--) {
  827. var temp = 0;
  828. for (var i = j + 1; i < matrix.length - 1; i++) {
  829. temp += matrix[i][j] * data[i];
  830. }
  831. data[j] = (matrix[len][j] - temp) / matrix[j][j];
  832. }
  833. return data;
  834. }
  835. var regression = function(regreMethod, data, optOrOrder) {
  836. var opt = typeof optOrOrder === "number" ? { order: optOrOrder } : optOrOrder || {};
  837. var dimensions = normalizeDimensions(opt.dimensions, [0, 1]);
  838. var predata = dataPreprocess(data, { dimensions });
  839. var result = regreMethods[regreMethod](predata, {
  840. order: opt.order,
  841. dimensions
  842. });
  843. var xDimIdx = dimensions[0];
  844. result.points.sort(function(itemA, itemB) {
  845. return itemA[xDimIdx] - itemB[xDimIdx];
  846. });
  847. return result;
  848. };
  849. return regression;
  850. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  851. },
  852. /* 6 */
  853. /***/
  854. function(module2, exports2, __webpack_require__) {
  855. var __WEBPACK_AMD_DEFINE_RESULT__;
  856. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  857. var statistics = {};
  858. statistics.max = __webpack_require__(7);
  859. statistics.deviation = __webpack_require__(8);
  860. statistics.mean = __webpack_require__(10);
  861. statistics.median = __webpack_require__(12);
  862. statistics.min = __webpack_require__(14);
  863. statistics.quantile = __webpack_require__(13);
  864. statistics.sampleVariance = __webpack_require__(9);
  865. statistics.sum = __webpack_require__(11);
  866. return statistics;
  867. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  868. },
  869. /* 7 */
  870. /***/
  871. function(module2, exports2, __webpack_require__) {
  872. var __WEBPACK_AMD_DEFINE_RESULT__;
  873. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  874. var number = __webpack_require__(4);
  875. var isNumber = number.isNumber;
  876. function max(data) {
  877. var maxData = -Infinity;
  878. for (var i = 0; i < data.length; i++) {
  879. if (isNumber(data[i]) && data[i] > maxData) {
  880. maxData = data[i];
  881. }
  882. }
  883. return maxData;
  884. }
  885. return max;
  886. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  887. },
  888. /* 8 */
  889. /***/
  890. function(module2, exports2, __webpack_require__) {
  891. var __WEBPACK_AMD_DEFINE_RESULT__;
  892. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  893. var variance = __webpack_require__(9);
  894. return function(data) {
  895. var squaredDeviation = variance(data);
  896. return squaredDeviation ? Math.sqrt(squaredDeviation) : squaredDeviation;
  897. };
  898. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  899. },
  900. /* 9 */
  901. /***/
  902. function(module2, exports2, __webpack_require__) {
  903. var __WEBPACK_AMD_DEFINE_RESULT__;
  904. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  905. var number = __webpack_require__(4);
  906. var isNumber = number.isNumber;
  907. var mean = __webpack_require__(10);
  908. function sampleVariance(data) {
  909. var len = data.length;
  910. if (!len || len < 2) {
  911. return 0;
  912. }
  913. if (data.length >= 2) {
  914. var meanValue = mean(data);
  915. var sum = 0;
  916. var temple;
  917. for (var i = 0; i < data.length; i++) {
  918. if (isNumber(data[i])) {
  919. temple = data[i] - meanValue;
  920. sum += temple * temple;
  921. }
  922. }
  923. return sum / (data.length - 1);
  924. }
  925. }
  926. return sampleVariance;
  927. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  928. },
  929. /* 10 */
  930. /***/
  931. function(module2, exports2, __webpack_require__) {
  932. var __WEBPACK_AMD_DEFINE_RESULT__;
  933. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  934. var sum = __webpack_require__(11);
  935. function mean(data) {
  936. var len = data.length;
  937. if (!len) {
  938. return 0;
  939. }
  940. return sum(data) / data.length;
  941. }
  942. return mean;
  943. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  944. },
  945. /* 11 */
  946. /***/
  947. function(module2, exports2, __webpack_require__) {
  948. var __WEBPACK_AMD_DEFINE_RESULT__;
  949. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  950. var number = __webpack_require__(4);
  951. var isNumber = number.isNumber;
  952. function sum(data) {
  953. var len = data.length;
  954. if (!len) {
  955. return 0;
  956. }
  957. var sumData = 0;
  958. for (var i = 0; i < len; i++) {
  959. if (isNumber(data[i])) {
  960. sumData += data[i];
  961. }
  962. }
  963. return sumData;
  964. }
  965. return sum;
  966. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  967. },
  968. /* 12 */
  969. /***/
  970. function(module2, exports2, __webpack_require__) {
  971. var __WEBPACK_AMD_DEFINE_RESULT__;
  972. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  973. var quantile = __webpack_require__(13);
  974. function median(data) {
  975. return quantile(data, 0.5);
  976. }
  977. return median;
  978. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  979. },
  980. /* 13 */
  981. /***/
  982. function(module2, exports2, __webpack_require__) {
  983. var __WEBPACK_AMD_DEFINE_RESULT__;
  984. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  985. return function(data, p) {
  986. var len = data.length;
  987. if (!len) {
  988. return 0;
  989. }
  990. if (p <= 0 || len < 2) {
  991. return data[0];
  992. }
  993. if (p >= 1) {
  994. return data[len - 1];
  995. }
  996. var h = (len - 1) * p;
  997. var i = Math.floor(h);
  998. var a = data[i];
  999. var b = data[i + 1];
  1000. return a + (b - a) * (h - i);
  1001. };
  1002. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1003. },
  1004. /* 14 */
  1005. /***/
  1006. function(module2, exports2, __webpack_require__) {
  1007. var __WEBPACK_AMD_DEFINE_RESULT__;
  1008. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1009. var number = __webpack_require__(4);
  1010. var isNumber = number.isNumber;
  1011. function min(data) {
  1012. var minData = Infinity;
  1013. for (var i = 0; i < data.length; i++) {
  1014. if (isNumber(data[i]) && data[i] < minData) {
  1015. minData = data[i];
  1016. }
  1017. }
  1018. return minData;
  1019. }
  1020. return min;
  1021. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1022. },
  1023. /* 15 */
  1024. /***/
  1025. function(module2, exports2, __webpack_require__) {
  1026. var __WEBPACK_AMD_DEFINE_RESULT__;
  1027. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1028. var max = __webpack_require__(7);
  1029. var min = __webpack_require__(14);
  1030. var quantile = __webpack_require__(13);
  1031. var deviation = __webpack_require__(8);
  1032. var dataProcess = __webpack_require__(2);
  1033. var dataPreprocess = dataProcess.dataPreprocess;
  1034. var normalizeDimensions = dataProcess.normalizeDimensions;
  1035. var array = __webpack_require__(3);
  1036. var ascending = array.ascending;
  1037. var map = array.map;
  1038. var range = __webpack_require__(16);
  1039. var bisect = array.bisect;
  1040. var tickStep = __webpack_require__(17);
  1041. function computeBins(data, optOrMethod) {
  1042. var opt = typeof optOrMethod === "string" ? { method: optOrMethod } : optOrMethod || {};
  1043. var threshold = opt.method == null ? thresholdMethod.squareRoot : thresholdMethod[opt.method];
  1044. var dimensions = normalizeDimensions(opt.dimensions);
  1045. var values = dataPreprocess(data, {
  1046. dimensions,
  1047. toOneDimensionArray: true
  1048. });
  1049. var maxValue = max(values);
  1050. var minValue = min(values);
  1051. var binsNumber = threshold(values, minValue, maxValue);
  1052. var tickStepResult = tickStep(minValue, maxValue, binsNumber);
  1053. var step = tickStepResult.step;
  1054. var toFixedPrecision = tickStepResult.toFixedPrecision;
  1055. var rangeArray = range(
  1056. // use function toFixed() to avoid data like '0.700000001'
  1057. +(Math.ceil(minValue / step) * step).toFixed(toFixedPrecision),
  1058. +(Math.floor(maxValue / step) * step).toFixed(toFixedPrecision),
  1059. step,
  1060. toFixedPrecision
  1061. );
  1062. var len = rangeArray.length;
  1063. var bins = new Array(len + 1);
  1064. for (var i = 0; i <= len; i++) {
  1065. bins[i] = {};
  1066. bins[i].sample = [];
  1067. bins[i].x0 = i > 0 ? rangeArray[i - 1] : rangeArray[i] - minValue === step ? minValue : rangeArray[i] - step;
  1068. bins[i].x1 = i < len ? rangeArray[i] : maxValue - rangeArray[i - 1] === step ? maxValue : rangeArray[i - 1] + step;
  1069. }
  1070. for (var i = 0; i < values.length; i++) {
  1071. if (minValue <= values[i] && values[i] <= maxValue) {
  1072. bins[bisect(rangeArray, values[i], 0, len)].sample.push(values[i]);
  1073. }
  1074. }
  1075. var data = map(bins, function(bin) {
  1076. return [
  1077. +((bin.x0 + bin.x1) / 2).toFixed(toFixedPrecision),
  1078. bin.sample.length,
  1079. bin.x0,
  1080. bin.x1,
  1081. bin.x0 + " - " + bin.x1
  1082. ];
  1083. });
  1084. var customData = map(bins, function(bin) {
  1085. return [bin.x0, bin.x1, bin.sample.length];
  1086. });
  1087. return {
  1088. bins,
  1089. data,
  1090. customData
  1091. };
  1092. }
  1093. var thresholdMethod = {
  1094. squareRoot: function(data) {
  1095. var bins = Math.ceil(Math.sqrt(data.length));
  1096. return bins > 50 ? 50 : bins;
  1097. },
  1098. scott: function(data, min2, max2) {
  1099. return Math.ceil((max2 - min2) / (3.5 * deviation(data) * Math.pow(data.length, -1 / 3)));
  1100. },
  1101. freedmanDiaconis: function(data, min2, max2) {
  1102. data.sort(ascending);
  1103. return Math.ceil(
  1104. (max2 - min2) / (2 * (quantile(data, 0.75) - quantile(data, 0.25)) * Math.pow(data.length, -1 / 3))
  1105. );
  1106. },
  1107. sturges: function(data) {
  1108. return Math.ceil(Math.log(data.length) / Math.LN2) + 1;
  1109. }
  1110. };
  1111. return computeBins;
  1112. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1113. },
  1114. /* 16 */
  1115. /***/
  1116. function(module2, exports2, __webpack_require__) {
  1117. var __WEBPACK_AMD_DEFINE_RESULT__;
  1118. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1119. var dataProcess = __webpack_require__(2);
  1120. var getPrecision = dataProcess.getPrecision;
  1121. return function(start, end, step, precision) {
  1122. var len = arguments.length;
  1123. if (len < 2) {
  1124. end = start;
  1125. start = 0;
  1126. step = 1;
  1127. } else if (len < 3) {
  1128. step = 1;
  1129. } else if (len < 4) {
  1130. step = +step;
  1131. precision = getPrecision(step);
  1132. } else {
  1133. precision = +precision;
  1134. }
  1135. var n = Math.ceil(((end - start) / step).toFixed(precision));
  1136. var range = new Array(n + 1);
  1137. for (var i = 0; i < n + 1; i++) {
  1138. range[i] = +(start + i * step).toFixed(precision);
  1139. }
  1140. return range;
  1141. };
  1142. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1143. },
  1144. /* 17 */
  1145. /***/
  1146. function(module2, exports2, __webpack_require__) {
  1147. var __WEBPACK_AMD_DEFINE_RESULT__;
  1148. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1149. var numberUtil = __webpack_require__(4);
  1150. return function(start, stop, count) {
  1151. var step0 = Math.abs(stop - start) / count;
  1152. var precision = numberUtil.quantityExponent(step0);
  1153. var step1 = Math.pow(10, precision);
  1154. var error = step0 / step1;
  1155. if (error >= Math.sqrt(50)) {
  1156. step1 *= 10;
  1157. } else if (error >= Math.sqrt(10)) {
  1158. step1 *= 5;
  1159. } else if (error >= Math.sqrt(2)) {
  1160. step1 *= 2;
  1161. }
  1162. var toFixedPrecision = precision < 0 ? -precision : 0;
  1163. var resultStep = +(stop >= start ? step1 : -step1).toFixed(toFixedPrecision);
  1164. return {
  1165. step: resultStep,
  1166. toFixedPrecision
  1167. };
  1168. };
  1169. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1170. },
  1171. /* 18 */
  1172. /***/
  1173. function(module2, exports2, __webpack_require__) {
  1174. var __WEBPACK_AMD_DEFINE_RESULT__;
  1175. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1176. var regression = __webpack_require__(5);
  1177. var transformHelper = __webpack_require__(19);
  1178. var FORMULA_DIMENSION = 2;
  1179. return {
  1180. type: "ecStat:regression",
  1181. /**
  1182. * @param {Paramter<typeof regression>[0]} [params.config.method='linear'] 'linear' by default
  1183. * @param {Paramter<typeof regression>[2]} [params.config.order=2] Only work when method is `polynomial`.
  1184. * @param {DimensionLoose[]|DimensionLoose} [params.config.dimensions=[0, 1]] dimensions that used to calculate regression.
  1185. * By default [0, 1].
  1186. * @param {'start' | 'end' | 'all'} params.config.formulaOn Include formula on the last (third) dimension of the:
  1187. * 'start': first data item.
  1188. * 'end': last data item (by default).
  1189. * 'all': all data items.
  1190. * 'none': no data item.
  1191. */
  1192. transform: function transform(params) {
  1193. var upstream = params.upstream;
  1194. var config = params.config || {};
  1195. var method = config.method || "linear";
  1196. var result = regression(method, upstream.cloneRawData(), {
  1197. order: config.order,
  1198. dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions)
  1199. });
  1200. var points = result.points;
  1201. var formulaOn = config.formulaOn;
  1202. if (formulaOn == null) {
  1203. formulaOn = "end";
  1204. }
  1205. var dimensions;
  1206. if (formulaOn !== "none") {
  1207. for (var i = 0; i < points.length; i++) {
  1208. points[i][FORMULA_DIMENSION] = formulaOn === "start" && i === 0 || formulaOn === "all" || formulaOn === "end" && i === points.length - 1 ? result.expression : "";
  1209. }
  1210. dimensions = upstream.cloneAllDimensionInfo();
  1211. dimensions[FORMULA_DIMENSION] = {};
  1212. }
  1213. return [{
  1214. dimensions,
  1215. data: points
  1216. }];
  1217. }
  1218. };
  1219. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1220. },
  1221. /* 19 */
  1222. /***/
  1223. function(module2, exports2, __webpack_require__) {
  1224. var __WEBPACK_AMD_DEFINE_RESULT__;
  1225. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1226. var arrayUtil = __webpack_require__(3);
  1227. var numberUtil = __webpack_require__(4);
  1228. var objectUtil = __webpack_require__(20);
  1229. function normalizeExistingDimensions(transformParams, dimensionsConfig) {
  1230. if (dimensionsConfig == null) {
  1231. return;
  1232. }
  1233. var upstream = transformParams.upstream;
  1234. if (arrayUtil.isArray(dimensionsConfig)) {
  1235. var result = [];
  1236. for (var i = 0; i < dimensionsConfig.length; i++) {
  1237. var dimInfo = upstream.getDimensionInfo(dimensionsConfig[i]);
  1238. validateDimensionExists(dimInfo, dimensionsConfig[i]);
  1239. result[i] = dimInfo.index;
  1240. }
  1241. return result;
  1242. } else {
  1243. var dimInfo = upstream.getDimensionInfo(dimensionsConfig);
  1244. validateDimensionExists(dimInfo, dimensionsConfig);
  1245. return dimInfo.index;
  1246. }
  1247. function validateDimensionExists(dimInfo2, dimConfig) {
  1248. if (!dimInfo2) {
  1249. throw new Error("Can not find dimension by " + dimConfig);
  1250. }
  1251. }
  1252. }
  1253. function normalizeNewDimensions(dimensionsConfig) {
  1254. if (arrayUtil.isArray(dimensionsConfig)) {
  1255. var names = [];
  1256. var indices = [];
  1257. for (var i = 0; i < dimensionsConfig.length; i++) {
  1258. var item = parseDimensionNewItem(dimensionsConfig[i]);
  1259. names.push(item.name);
  1260. indices.push(item.index);
  1261. }
  1262. return { name: names, index: indices };
  1263. } else if (dimensionsConfig != null) {
  1264. return parseDimensionNewItem(dimensionsConfig);
  1265. }
  1266. function parseDimensionNewItem(dimConfig) {
  1267. if (numberUtil.isNumber(dimConfig)) {
  1268. return { index: dimConfig };
  1269. } else if (objectUtil.isObject(dimConfig) && numberUtil.isNumber(dimConfig.index)) {
  1270. return dimConfig;
  1271. }
  1272. throw new Error("Illegle new dimensions config. Expect `{ name: string, index: number }`.");
  1273. }
  1274. }
  1275. return {
  1276. normalizeExistingDimensions,
  1277. normalizeNewDimensions
  1278. };
  1279. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1280. },
  1281. /* 20 */
  1282. /***/
  1283. function(module2, exports2, __webpack_require__) {
  1284. var __WEBPACK_AMD_DEFINE_RESULT__;
  1285. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1286. function extend(target, source) {
  1287. if (Object.assign) {
  1288. Object.assign(target, source);
  1289. } else {
  1290. for (var key in source) {
  1291. if (source.hasOwnProperty(key)) {
  1292. target[key] = source[key];
  1293. }
  1294. }
  1295. }
  1296. return target;
  1297. }
  1298. function isObject(value) {
  1299. const type = typeof value;
  1300. return type === "function" || !!value && type === "object";
  1301. }
  1302. return {
  1303. extend,
  1304. isObject
  1305. };
  1306. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1307. },
  1308. /* 21 */
  1309. /***/
  1310. function(module2, exports2, __webpack_require__) {
  1311. var __WEBPACK_AMD_DEFINE_RESULT__;
  1312. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1313. var histogram = __webpack_require__(15);
  1314. var transformHelper = __webpack_require__(19);
  1315. return {
  1316. type: "ecStat:histogram",
  1317. /**
  1318. * @param {'squareRoot' | 'scott' | 'freedmanDiaconis' | 'sturges'} [params.config.method='squareRoot']
  1319. * @param {DimnensionLoose[]} [params.config.dimensions=[0, 1]] dimensions that used to calculate histogram.
  1320. * By default [0].
  1321. */
  1322. transform: function transform(params) {
  1323. var upstream = params.upstream;
  1324. var config = params.config || {};
  1325. var result = histogram(upstream.cloneRawData(), {
  1326. method: config.method,
  1327. dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions)
  1328. });
  1329. return [{
  1330. dimensions: ["MeanOfV0V1", "VCount", "V0", "V1", "DisplayableName"],
  1331. data: result.data
  1332. }, {
  1333. data: result.customData
  1334. }];
  1335. }
  1336. };
  1337. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1338. },
  1339. /* 22 */
  1340. /***/
  1341. function(module2, exports2, __webpack_require__) {
  1342. var __WEBPACK_AMD_DEFINE_RESULT__;
  1343. !(__WEBPACK_AMD_DEFINE_RESULT__ = function(require2) {
  1344. var clustering = __webpack_require__(1);
  1345. var numberUtil = __webpack_require__(4);
  1346. var transformHelper = __webpack_require__(19);
  1347. var isNumber = numberUtil.isNumber;
  1348. return {
  1349. type: "ecStat:clustering",
  1350. /**
  1351. * @param {number} params.config.clusterCount Mandatory.
  1352. * The number of clusters in a dataset. It has to be greater than 1.
  1353. * @param {(DimensionName | DimensionIndex)[]} [params.config.dimensions] Optional.
  1354. * Target dimensions to calculate the regression.
  1355. * By default: use all of the data.
  1356. * @param {(DimensionIndex | {name?: DimensionName, index: DimensionIndex})} [params.config.outputClusterIndexDimension] Mandatory.
  1357. * @param {(DimensionIndex | {name?: DimensionName, index: DimensionIndex})[]} [params.config.outputCentroidDimensions] Optional.
  1358. * If specified, the centroid will be set to those dimensions of the result data one by one.
  1359. * By default not set centroid to result.
  1360. */
  1361. transform: function transform(params) {
  1362. var upstream = params.upstream;
  1363. var config = params.config || {};
  1364. var clusterCount = config.clusterCount;
  1365. if (!isNumber(clusterCount) || clusterCount <= 0) {
  1366. throw new Error('config param "clusterCount" need to be specified as an interger greater than 1.');
  1367. }
  1368. if (clusterCount === 1) {
  1369. return [{}, {
  1370. data: []
  1371. }];
  1372. }
  1373. var outputClusterIndexDimension = transformHelper.normalizeNewDimensions(
  1374. config.outputClusterIndexDimension
  1375. );
  1376. var outputCentroidDimensions = transformHelper.normalizeNewDimensions(
  1377. config.outputCentroidDimensions
  1378. );
  1379. if (outputClusterIndexDimension == null) {
  1380. throw new Error("outputClusterIndexDimension is required as a number.");
  1381. }
  1382. var result = clustering.hierarchicalKMeans(upstream.cloneRawData(), {
  1383. clusterCount,
  1384. stepByStep: false,
  1385. dimensions: transformHelper.normalizeExistingDimensions(params, config.dimensions),
  1386. outputType: clustering.OutputType.SINGLE,
  1387. outputClusterIndexDimension: outputClusterIndexDimension.index,
  1388. outputCentroidDimensions: (outputCentroidDimensions || {}).index
  1389. });
  1390. var sourceDimAll = upstream.cloneAllDimensionInfo();
  1391. var resultDimsDef = [];
  1392. for (var i = 0; i < sourceDimAll.length; i++) {
  1393. var sourceDimItem = sourceDimAll[i];
  1394. resultDimsDef.push(sourceDimItem.name);
  1395. }
  1396. resultDimsDef[outputClusterIndexDimension.index] = outputClusterIndexDimension.name;
  1397. if (outputCentroidDimensions) {
  1398. for (var i = 0; i < outputCentroidDimensions.index.length; i++) {
  1399. if (outputCentroidDimensions.name[i] != null) {
  1400. resultDimsDef[outputCentroidDimensions.index[i]] = outputCentroidDimensions.name[i];
  1401. }
  1402. }
  1403. }
  1404. return [{
  1405. dimensions: resultDimsDef,
  1406. data: result.data
  1407. }, {
  1408. data: result.centroids
  1409. }];
  1410. }
  1411. };
  1412. }.call(exports2, __webpack_require__, exports2, module2), __WEBPACK_AMD_DEFINE_RESULT__ !== void 0 && (module2.exports = __WEBPACK_AMD_DEFINE_RESULT__));
  1413. }
  1414. /******/
  1415. ])
  1416. );
  1417. });
  1418. }
  1419. });
  1420. // node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/index.js
  1421. var require_echarts_stat = __commonJS({
  1422. "node_modules/.pnpm/echarts-stat@1.2.0/node_modules/echarts-stat/index.js"(exports, module) {
  1423. module.exports = require_ecStat();
  1424. }
  1425. });
  1426. export default require_echarts_stat();
  1427. //# sourceMappingURL=echarts-stat.js.map