| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 | /* *  arch/arm/include/asm/cacheflush.h * *  Copyright (C) 1999-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#ifndef _ASMARM_CACHEFLUSH_H#define _ASMARM_CACHEFLUSH_H#include <linux/mm.h>#include <asm/glue-cache.h>#include <asm/shmparam.h>#include <asm/cachetype.h>#include <asm/outercache.h>#define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)/* * This flag is used to indicate that the page pointed to by a pte is clean * and does not require cleaning before returning it to the user. */#define PG_dcache_clean PG_arch_1/* *	MM Cache Management *	=================== * *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files *	implement these methods. * *	Start addresses are inclusive and end addresses are exclusive; *	start addresses should be rounded down, end addresses up. * *	See Documentation/cachetlb.txt for more information. *	Please note that the implementation of these, and the required *	effects are cache-type (VIVT/VIPT/PIPT) specific. * *	flush_icache_all() * *		Unconditionally clean and invalidate the entire icache. *		Currently only needed for cache-v6.S and cache-v7.S, see *		__flush_icache_all for the generic implementation. * *	flush_kern_all() * *		Unconditionally clean and invalidate the entire cache. * *     flush_kern_louis() * *             Flush data cache levels up to the level of unification *             inner shareable and invalidate the I-cache. *             Only needed from v7 onwards, falls back to flush_cache_all() *             for all other processor versions. * *	flush_user_all() * *		Clean and invalidate all user space cache entries *		before a change of page tables. * *	flush_user_range(start, end, flags) * *		Clean and invalidate a range of cache entries in the *		specified address space before a change of page tables. *		- start - user start address (inclusive, page aligned) *		- end   - user end address   (exclusive, page aligned) *		- flags - vma->vm_flags field * *	coherent_kern_range(start, end) * *		Ensure coherency between the Icache and the Dcache in the *		region described by start, end.  If you have non-snooping *		Harvard caches, you need to implement this function. *		- start  - virtual start address *		- end    - virtual end address * *	coherent_user_range(start, end) * *		Ensure coherency between the Icache and the Dcache in the *		region described by start, end.  If you have non-snooping *		Harvard caches, you need to implement this function. *		- start  - virtual start address *		- end    - virtual end address * *	flush_kern_dcache_area(kaddr, size) * *		Ensure that the data held in page is written back. *		- kaddr  - page address *		- size   - region size * *	DMA Cache Coherency *	=================== * *	dma_flush_range(start, end) * *		Clean and invalidate the specified virtual address range. *		- start  - virtual start address *		- end    - virtual end address */struct cpu_cache_fns {	void (*flush_icache_all)(void);	void (*flush_kern_all)(void);	void (*flush_kern_louis)(void);	void (*flush_user_all)(void);	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);	void (*coherent_kern_range)(unsigned long, unsigned long);	int  (*coherent_user_range)(unsigned long, unsigned long);	void (*flush_kern_dcache_area)(void *, size_t);	void (*dma_map_area)(const void *, size_t, int);	void (*dma_unmap_area)(const void *, size_t, int);	void (*dma_flush_range)(const void *, const void *);};/* * Select the calling method */#ifdef MULTI_CACHEextern struct cpu_cache_fns cpu_cache;#define __cpuc_flush_icache_all		cpu_cache.flush_icache_all#define __cpuc_flush_kern_all		cpu_cache.flush_kern_all#define __cpuc_flush_kern_louis		cpu_cache.flush_kern_louis#define __cpuc_flush_user_all		cpu_cache.flush_user_all#define __cpuc_flush_user_range		cpu_cache.flush_user_range#define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range#define __cpuc_coherent_user_range	cpu_cache.coherent_user_range#define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area/* * These are private to the dma-mapping API.  Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */#define dmac_map_area			cpu_cache.dma_map_area#define dmac_unmap_area			cpu_cache.dma_unmap_area#define dmac_flush_range		cpu_cache.dma_flush_range#elseextern void __cpuc_flush_icache_all(void);extern void __cpuc_flush_kern_all(void);extern void __cpuc_flush_kern_louis(void);extern void __cpuc_flush_user_all(void);extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);extern void __cpuc_flush_dcache_area(void *, size_t);/* * These are private to the dma-mapping API.  Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */extern void dmac_map_area(const void *, size_t, int);extern void dmac_unmap_area(const void *, size_t, int);extern void dmac_flush_range(const void *, const void *);#endif/* * Copy user data from/to a page which is mapped into a different * processes address space.  Really, we want to allow our "user * space" model to handle this. */extern void copy_to_user_page(struct vm_area_struct *, struct page *,	unsigned long, void *, const void *, unsigned long);#define copy_from_user_page(vma, page, vaddr, dst, src, len) \	do {							\		memcpy(dst, src, len);				\	} while (0)/* * Convert calls to our calling convention. *//* Invalidate I-cache */#define __flush_icache_all_generic()					\	asm("mcr	p15, 0, %0, c7, c5, 0"				\	    : : "r" (0));/* Invalidate I-cache inner shareable */#define __flush_icache_all_v7_smp()					\	asm("mcr	p15, 0, %0, c7, c1, 0"				\	    : : "r" (0));/* * Optimized __flush_icache_all for the common cases. Note that UP ARMv7 * will fall through to use __flush_icache_all_generic. */#if (defined(CONFIG_CPU_V7) && \     (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \	defined(CONFIG_SMP_ON_UP)#define __flush_icache_preferred	__cpuc_flush_icache_all#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)#define __flush_icache_preferred	__flush_icache_all_v7_smp#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)#define __flush_icache_preferred	__cpuc_flush_icache_all#else#define __flush_icache_preferred	__flush_icache_all_generic#endifstatic inline void __flush_icache_all(void){	__flush_icache_preferred();}/* * Flush caches up to Level of Unification Inner Shareable */#define flush_cache_louis()		__cpuc_flush_kern_louis()#define flush_cache_all()		__cpuc_flush_kern_all()static inline void vivt_flush_cache_mm(struct mm_struct *mm){	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))		__cpuc_flush_user_all();}static inline voidvivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end){	struct mm_struct *mm = vma->vm_mm;	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),					vma->vm_flags);}static inline voidvivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn){	struct mm_struct *mm = vma->vm_mm;	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {		unsigned long addr = user_addr & PAGE_MASK;		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);	}}#ifndef CONFIG_CPU_CACHE_VIPT#define flush_cache_mm(mm) \		vivt_flush_cache_mm(mm)#define flush_cache_range(vma,start,end) \		vivt_flush_cache_range(vma,start,end)#define flush_cache_page(vma,addr,pfn) \		vivt_flush_cache_page(vma,addr,pfn)#elseextern void flush_cache_mm(struct mm_struct *mm);extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);#endif#define flush_cache_dup_mm(mm) flush_cache_mm(mm)/* * flush_cache_user_range is used when we want to ensure that the * Harvard caches are synchronised for the user space address range. * This is used for the ARM private sys_cacheflush system call. */#define flush_cache_user_range(start,end) \	__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))/* * Perform necessary cache operations to ensure that data previously * stored within this range of addresses can be executed by the CPU. */#define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)/* * Perform necessary cache operations to ensure that the TLB will * see data written in the specified area. */#define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)/* * flush_dcache_page is used when the kernel has written to the page * cache page at virtual address page->virtual. * * If this page isn't mapped (ie, page_mapping == NULL), or it might * have userspace mappings, then we _must_ always clean + invalidate * the dcache entries associated with the kernel mapping. * * Otherwise we can defer the operation, and clean the cache when we are * about to change to user space.  This is the same method as used on SPARC64. * See update_mmu_cache for the user space part.
 |