| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 | 
							- /*
 
-  *  linux/arch/arm/vfp/vfp.h
 
-  *
 
-  *  Copyright (C) 2004 ARM Limited.
 
-  *  Written by Deep Blue Solutions Limited.
 
-  *
 
-  * This program is free software; you can redistribute it and/or modify
 
-  * it under the terms of the GNU General Public License version 2 as
 
-  * published by the Free Software Foundation.
 
-  */
 
- static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
 
- {
 
- 	if (shift) {
 
- 		if (shift < 32)
 
- 			val = val >> shift | ((val << (32 - shift)) != 0);
 
- 		else
 
- 			val = val != 0;
 
- 	}
 
- 	return val;
 
- }
 
- static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
 
- {
 
- 	if (shift) {
 
- 		if (shift < 64)
 
- 			val = val >> shift | ((val << (64 - shift)) != 0);
 
- 		else
 
- 			val = val != 0;
 
- 	}
 
- 	return val;
 
- }
 
- static inline u32 vfp_hi64to32jamming(u64 val)
 
- {
 
- 	u32 v;
 
- 	asm(
 
- 	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"
 
- 	"movcc	%0, %R1\n\t"
 
- 	"orrcs	%0, %R1, #1"
 
- 	: "=r" (v) : "r" (val) : "cc");
 
- 	return v;
 
- }
 
- static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 
- {
 
- 	asm(	"adds	%Q0, %Q2, %Q4\n\t"
 
- 		"adcs	%R0, %R2, %R4\n\t"
 
- 		"adcs	%Q1, %Q3, %Q5\n\t"
 
- 		"adc	%R1, %R3, %R5"
 
- 	    : "=r" (nl), "=r" (nh)
 
- 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
 
- 	    : "cc");
 
- 	*resh = nh;
 
- 	*resl = nl;
 
- }
 
- static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 
- {
 
- 	asm(	"subs	%Q0, %Q2, %Q4\n\t"
 
- 		"sbcs	%R0, %R2, %R4\n\t"
 
- 		"sbcs	%Q1, %Q3, %Q5\n\t"
 
- 		"sbc	%R1, %R3, %R5\n\t"
 
- 	    : "=r" (nl), "=r" (nh)
 
- 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
 
- 	    : "cc");
 
- 	*resh = nh;
 
- 	*resl = nl;
 
- }
 
- static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
 
- {
 
- 	u32 nh, nl, mh, ml;
 
- 	u64 rh, rma, rmb, rl;
 
- 	nl = n;
 
- 	ml = m;
 
- 	rl = (u64)nl * ml;
 
- 	nh = n >> 32;
 
- 	rma = (u64)nh * ml;
 
- 	mh = m >> 32;
 
- 	rmb = (u64)nl * mh;
 
- 	rma += rmb;
 
- 	rh = (u64)nh * mh;
 
- 	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
 
- 	rma <<= 32;
 
- 	rl += rma;
 
- 	rh += (rl < rma);
 
- 	*resl = rl;
 
- 	*resh = rh;
 
- }
 
- static inline void shift64left(u64 *resh, u64 *resl, u64 n)
 
- {
 
- 	*resh = n >> 63;
 
- 	*resl = n << 1;
 
- }
 
- static inline u64 vfp_hi64multiply64(u64 n, u64 m)
 
- {
 
- 	u64 rh, rl;
 
- 	mul64to128(&rh, &rl, n, m);
 
- 	return rh | (rl != 0);
 
- }
 
- static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
 
- {
 
- 	u64 mh, ml, remh, reml, termh, terml, z;
 
- 	if (nh >= m)
 
- 		return ~0ULL;
 
- 	mh = m >> 32;
 
- 	if (mh << 32 <= nh) {
 
- 		z = 0xffffffff00000000ULL;
 
- 	} else {
 
- 		z = nh;
 
- 		do_div(z, mh);
 
- 		z <<= 32;
 
- 	}
 
- 	mul64to128(&termh, &terml, m, z);
 
- 	sub128(&remh, &reml, nh, nl, termh, terml);
 
- 	ml = m << 32;
 
- 	while ((s64)remh < 0) {
 
- 		z -= 0x100000000ULL;
 
- 		add128(&remh, &reml, remh, reml, mh, ml);
 
- 	}
 
- 	remh = (remh << 32) | (reml >> 32);
 
- 	if (mh << 32 <= remh) {
 
- 		z |= 0xffffffff;
 
- 	} else {
 
- 		do_div(remh, mh);
 
- 		z |= remh;
 
- 	}
 
- 	return z;
 
- }
 
- /*
 
-  * Operations on unpacked elements
 
-  */
 
- #define vfp_sign_negate(sign)	(sign ^ 0x8000)
 
- /*
 
-  * Single-precision
 
-  */
 
- struct vfp_single {
 
- 	s16	exponent;
 
- 	u16	sign;
 
- 	u32	significand;
 
- };
 
- extern s32 vfp_get_float(unsigned int reg);
 
- extern void vfp_put_float(s32 val, unsigned int reg);
 
- /*
 
-  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 
-  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 
-  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 
-  *  which are not propagated to the float upon packing.
 
-  */
 
- #define VFP_SINGLE_MANTISSA_BITS	(23)
 
- #define VFP_SINGLE_EXPONENT_BITS	(8)
 
- #define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
 
- #define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
 
- /*
 
-  * The bit in an unpacked float which indicates that it is a quiet NaN
 
-  */
 
- #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
 
- /*
 
-  * Operations on packed single-precision numbers
 
-  */
 
- #define vfp_single_packed_sign(v)	((v) & 0x80000000)
 
- #define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
 
- #define vfp_single_packed_abs(v)	((v) & ~0x80000000)
 
- #define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
 
- #define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
 
- /*
 
-  * Unpack a single-precision float.  Note that this returns the magnitude
 
-  * of the single-precision float mantissa with the 1. if necessary,
 
-  * aligned to bit 30.
 
-  */
 
- static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
 
- {
 
- 	u32 significand;
 
- 	s->sign = vfp_single_packed_sign(val) >> 16,
 
- 	s->exponent = vfp_single_packed_exponent(val);
 
- 	significand = (u32) val;
 
- 	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
 
- 	if (s->exponent && s->exponent != 255)
 
- 		significand |= 0x40000000;
 
- 	s->significand = significand;
 
- }
 
- /*
 
-  * Re-pack a single-precision float.  This assumes that the float is
 
-  * already normalised such that the MSB is bit 30, _not_ bit 31.
 
-  */
 
- static inline s32 vfp_single_pack(struct vfp_single *s)
 
- {
 
- 	u32 val;
 
- 	val = (s->sign << 16) +
 
- 	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
 
- 	      (s->significand >> VFP_SINGLE_LOW_BITS);
 
- 	return (s32)val;
 
- }
 
- #define VFP_NUMBER		(1<<0)
 
- #define VFP_ZERO		(1<<1)
 
- #define VFP_DENORMAL		(1<<2)
 
- #define VFP_INFINITY		(1<<3)
 
- #define VFP_NAN			(1<<4)
 
- #define VFP_NAN_SIGNAL		(1<<5)
 
- #define VFP_QNAN		(VFP_NAN)
 
- #define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
 
- static inline int vfp_single_type(struct vfp_single *s)
 
- {
 
- 	int type = VFP_NUMBER;
 
- 	if (s->exponent == 255) {
 
- 		if (s->significand == 0)
 
- 			type = VFP_INFINITY;
 
- 		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
 
- 			type = VFP_QNAN;
 
- 		else
 
- 			type = VFP_SNAN;
 
- 	} else if (s->exponent == 0) {
 
- 		if (s->significand == 0)
 
- 			type |= VFP_ZERO;
 
- 		else
 
- 			type |= VFP_DENORMAL;
 
- 	}
 
- 	return type;
 
- }
 
- #ifndef DEBUG
 
- #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
 
- u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
 
- #else
 
- u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
 
- #endif
 
- /*
 
-  * Double-precision
 
-  */
 
- struct vfp_double {
 
- 	s16	exponent;
 
- 	u16	sign;
 
- 	u64	significand;
 
- };
 
- /*
 
-  * VFP_REG_ZERO is a special register number for vfp_get_double
 
-  * which returns (double)0.0.  This is useful for the compare with
 
-  * zero instructions.
 
-  */
 
- #ifdef CONFIG_VFPv3
 
- #define VFP_REG_ZERO	32
 
- #else
 
- #define VFP_REG_ZERO	16
 
- #endif
 
- extern u64 vfp_get_double(unsigned int reg);
 
- extern void vfp_put_double(u64 val, unsigned int reg);
 
- #define VFP_DOUBLE_MANTISSA_BITS	(52)
 
- #define VFP_DOUBLE_EXPONENT_BITS	(11)
 
- #define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
 
- #define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
 
- /*
 
-  * The bit in an unpacked double which indicates that it is a quiet NaN
 
-  */
 
- #define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
 
- /*
 
-  * Operations on packed single-precision numbers
 
-  */
 
- #define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
 
- #define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
 
- #define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
 
- #define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
 
- #define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
 
- /*
 
-  * Unpack a double-precision float.  Note that this returns the magnitude
 
-  * of the double-precision float mantissa with the 1. if necessary,
 
-  * aligned to bit 62.
 
-  */
 
- static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
 
- {
 
- 	u64 significand;
 
- 	s->sign = vfp_double_packed_sign(val) >> 48;
 
- 	s->exponent = vfp_double_packed_exponent(val);
 
- 	significand = (u64) val;
 
- 	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
 
- 	if (s->exponent && s->exponent != 2047)
 
- 		significand |= (1ULL << 62);
 
 
  |