| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649 | /* *  linux/arch/arm/mm/init.c * *  Copyright (C) 1995-2005 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/kernel.h>#include <linux/errno.h>#include <linux/swap.h>#include <linux/init.h>#include <linux/bootmem.h>#include <linux/mman.h>#include <linux/export.h>#include <linux/nodemask.h>#include <linux/initrd.h>#include <linux/of_fdt.h>#include <linux/highmem.h>#include <linux/gfp.h>#include <linux/memblock.h>#include <linux/dma-contiguous.h>#include <linux/sizes.h>#include <asm/mach-types.h>#include <asm/memblock.h>#include <asm/prom.h>#include <asm/sections.h>#include <asm/setup.h>#include <asm/tlb.h>#include <asm/fixmap.h>#include <asm/mach/arch.h>#include <asm/mach/map.h>#include "mm.h"static unsigned long phys_initrd_start __initdata = 0;static unsigned long phys_initrd_size __initdata = 0;static int __init early_initrd(char *p){	unsigned long start, size;	char *endp;	start = memparse(p, &endp);	if (*endp == ',') {		size = memparse(endp + 1, NULL);		phys_initrd_start = start;		phys_initrd_size = size;	}	return 0;}early_param("initrd", early_initrd);static int __init parse_tag_initrd(const struct tag *tag){	printk(KERN_WARNING "ATAG_INITRD is deprecated; "		"please update your bootloader.\n");	phys_initrd_start = __virt_to_phys(tag->u.initrd.start);	phys_initrd_size = tag->u.initrd.size;	return 0;}__tagtable(ATAG_INITRD, parse_tag_initrd);static int __init parse_tag_initrd2(const struct tag *tag){	phys_initrd_start = tag->u.initrd.start;	phys_initrd_size = tag->u.initrd.size;	return 0;}__tagtable(ATAG_INITRD2, parse_tag_initrd2);#ifdef CONFIG_OF_FLATTREEvoid __init early_init_dt_setup_initrd_arch(unsigned long start, unsigned long end){	phys_initrd_start = start;	phys_initrd_size = end - start;}#endif /* CONFIG_OF_FLATTREE *//* * This keeps memory configuration data used by a couple memory * initialization functions, as well as show_mem() for the skipping * of holes in the memory map.  It is populated by arm_add_memory(). */struct meminfo meminfo;void show_mem(unsigned int filter){	int free = 0, total = 0, reserved = 0;	int shared = 0, cached = 0, slab = 0, i;	struct meminfo * mi = &meminfo;	printk("Mem-info:\n");	show_free_areas(filter);	for_each_bank (i, mi) {		struct membank *bank = &mi->bank[i];		unsigned int pfn1, pfn2;		struct page *page, *end;		pfn1 = bank_pfn_start(bank);		pfn2 = bank_pfn_end(bank);		page = pfn_to_page(pfn1);		end  = pfn_to_page(pfn2 - 1) + 1;		do {			total++;			if (PageReserved(page))				reserved++;			else if (PageSwapCache(page))				cached++;			else if (PageSlab(page))				slab++;			else if (!page_count(page))				free++;			else				shared += page_count(page) - 1;			page++;		} while (page < end);	}	printk("%d pages of RAM\n", total);	printk("%d free pages\n", free);	printk("%d reserved pages\n", reserved);	printk("%d slab pages\n", slab);	printk("%d pages shared\n", shared);	printk("%d pages swap cached\n", cached);}static void __init find_limits(unsigned long *min, unsigned long *max_low,			       unsigned long *max_high){	struct meminfo *mi = &meminfo;	int i;	/* This assumes the meminfo array is properly sorted */	*min = bank_pfn_start(&mi->bank[0]);	for_each_bank (i, mi)		if (mi->bank[i].highmem)				break;	*max_low = bank_pfn_end(&mi->bank[i - 1]);	*max_high = bank_pfn_end(&mi->bank[mi->nr_banks - 1]);}static void __init arm_bootmem_init(unsigned long start_pfn,	unsigned long end_pfn){	struct memblock_region *reg;	unsigned int boot_pages;	phys_addr_t bitmap;	pg_data_t *pgdat;	/*	 * Allocate the bootmem bitmap page.  This must be in a region	 * of memory which has already been mapped.	 */	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);	bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,				__pfn_to_phys(end_pfn));	/*	 * Initialise the bootmem allocator, handing the	 * memory banks over to bootmem.	 */	node_set_online(0);	pgdat = NODE_DATA(0);	init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);	/* Free the lowmem regions from memblock into bootmem. */	for_each_memblock(memory, reg) {		unsigned long start = memblock_region_memory_base_pfn(reg);		unsigned long end = memblock_region_memory_end_pfn(reg);		if (end >= end_pfn)			end = end_pfn;		if (start >= end)			break;		free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);	}	/* Reserve the lowmem memblock reserved regions in bootmem. */	for_each_memblock(reserved, reg) {		unsigned long start = memblock_region_reserved_base_pfn(reg);		unsigned long end = memblock_region_reserved_end_pfn(reg);		if (end >= end_pfn)			end = end_pfn;		if (start >= end)			break;		reserve_bootmem(__pfn_to_phys(start),			        (end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);	}}#ifdef CONFIG_ZONE_DMAunsigned long arm_dma_zone_size __read_mostly;EXPORT_SYMBOL(arm_dma_zone_size);/* * The DMA mask corresponding to the maximum bus address allocatable * using GFP_DMA.  The default here places no restriction on DMA * allocations.  This must be the smallest DMA mask in the system, * so a successful GFP_DMA allocation will always satisfy this. */phys_addr_t arm_dma_limit;static void __init arm_adjust_dma_zone(unsigned long *size, unsigned long *hole,	unsigned long dma_size){	if (size[0] <= dma_size)		return;	size[ZONE_NORMAL] = size[0] - dma_size;	size[ZONE_DMA] = dma_size;	hole[ZONE_NORMAL] = hole[0];	hole[ZONE_DMA] = 0;}#endifvoid __init setup_dma_zone(struct machine_desc *mdesc){#ifdef CONFIG_ZONE_DMA	if (mdesc->dma_zone_size) {		arm_dma_zone_size = mdesc->dma_zone_size;		arm_dma_limit = PHYS_OFFSET + arm_dma_zone_size - 1;	} else		arm_dma_limit = 0xffffffff;#endif}static void __init arm_bootmem_free(unsigned long min, unsigned long max_low,	unsigned long max_high){	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];	struct memblock_region *reg;	/*	 * initialise the zones.	 */	memset(zone_size, 0, sizeof(zone_size));	/*	 * The memory size has already been determined.  If we need	 * to do anything fancy with the allocation of this memory	 * to the zones, now is the time to do it.	 */	zone_size[0] = max_low - min;#ifdef CONFIG_HIGHMEM	zone_size[ZONE_HIGHMEM] = max_high - max_low;#endif	/*	 * Calculate the size of the holes.	 *  holes = node_size - sum(bank_sizes)	 */	memcpy(zhole_size, zone_size, sizeof(zhole_size));	for_each_memblock(memory, reg) {		unsigned long start = memblock_region_memory_base_pfn(reg);		unsigned long end = memblock_region_memory_end_pfn(reg);		if (start < max_low) {			unsigned long low_end = min(end, max_low);			zhole_size[0] -= low_end - start;		}#ifdef CONFIG_HIGHMEM		if (end > max_low) {			unsigned long high_start = max(start, max_low);			zhole_size[ZONE_HIGHMEM] -= end - high_start;		}#endif	}#ifdef CONFIG_ZONE_DMA	/*	 * Adjust the sizes according to any special requirements for	 * this machine type.	 */	if (arm_dma_zone_size)		arm_adjust_dma_zone(zone_size, zhole_size,			arm_dma_zone_size >> PAGE_SHIFT);#endif	free_area_init_node(0, zone_size, min, zhole_size);}#ifdef CONFIG_HAVE_ARCH_PFN_VALIDint pfn_valid(unsigned long pfn){	return memblock_is_memory(__pfn_to_phys(pfn));}EXPORT_SYMBOL(pfn_valid);#endif#ifndef CONFIG_SPARSEMEMstatic void __init arm_memory_present(void){}#elsestatic void __init arm_memory_present(void){	struct memblock_region *reg;	for_each_memblock(memory, reg)		memory_present(0, memblock_region_memory_base_pfn(reg),			       memblock_region_memory_end_pfn(reg));}#endifstatic bool arm_memblock_steal_permitted = true;phys_addr_t __init arm_memblock_steal(phys_addr_t size, phys_addr_t align){	phys_addr_t phys;	BUG_ON(!arm_memblock_steal_permitted);	phys = memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);	memblock_free(phys, size);	memblock_remove(phys, size);	return phys;}void __init arm_memblock_init(struct meminfo *mi, struct machine_desc *mdesc){	int i;	for (i = 0; i < mi->nr_banks; i++)		memblock_add(mi->bank[i].start, mi->bank[i].size);	/* Register the kernel text, kernel data and initrd with memblock. */#ifdef CONFIG_XIP_KERNEL	memblock_reserve(__pa(_sdata), _end - _sdata);#else	memblock_reserve(__pa(_stext), _end - _stext);#endif#ifdef CONFIG_BLK_DEV_INITRD	if (phys_initrd_size &&	    !memblock_is_region_memory(phys_initrd_start, phys_initrd_size)) {		pr_err("INITRD: 0x%08lx+0x%08lx is not a memory region - disabling initrd\n",		       phys_initrd_start, phys_initrd_size);		phys_initrd_start = phys_initrd_size = 0;	}	if (phys_initrd_size &&	    memblock_is_region_reserved(phys_initrd_start, phys_initrd_size)) {		pr_err("INITRD: 0x%08lx+0x%08lx overlaps in-use memory region - disabling initrd\n",		       phys_initrd_start, phys_initrd_size);		phys_initrd_start = phys_initrd_size = 0;	}	if (phys_initrd_size) {		memblock_reserve(phys_initrd_start, phys_initrd_size);		/* Now convert initrd to virtual addresses */		initrd_start = __phys_to_virt(phys_initrd_start);		initrd_end = initrd_start + phys_initrd_size;	}#endif	arm_mm_memblock_reserve();	arm_dt_memblock_reserve();	/* reserve any platform specific memblock areas */	if (mdesc->reserve)		mdesc->reserve();	/*	 * reserve memory for DMA contigouos allocations,	 * must come from DMA area inside low memory	 */	dma_contiguous_reserve(min(arm_dma_limit, arm_lowmem_limit));	arm_memblock_steal_permitted = false;	memblock_allow_resize();	memblock_dump_all();}void __init bootmem_init(void){	unsigned long min, max_low, max_high;	max_low = max_high = 0;	find_limits(&min, &max_low, &max_high);	arm_bootmem_init(min, max_low);	/*	 * Sparsemem tries to allocate bootmem in memory_present(),	 * so must be done after the fixed reservations	 */	arm_memory_present();	/*	 * sparse_init() needs the bootmem allocator up and running.	 */	sparse_init();	/*	 * Now free the memory - free_area_init_node needs	 * the sparse mem_map arrays initialized by sparse_init()	 * for memmap_init_zone(), otherwise all PFNs are invalid.	 */	arm_bootmem_free(min, max_low, max_high);	/*	 * This doesn't seem to be used by the Linux memory manager any	 * more, but is used by ll_rw_block.  If we can get rid of it, we	 * also get rid of some of the stuff above as well.	 *	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in	 * the system, not the maximum PFN.	 */	max_low_pfn = max_low - PHYS_PFN_OFFSET;	max_pfn = max_high - PHYS_PFN_OFFSET;}static inline int free_area(unsigned long pfn, unsigned long end, char *s){	unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);	for (; pfn < end; pfn++) {		struct page *page = pfn_to_page(pfn);		ClearPageReserved(page);		init_page_count(page);		__free_page(page);		pages++;	}	if (size && s)		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);	return pages;}/* * Poison init memory with an undefined instruction (ARM) or a branch to an * undefined instruction (Thumb). */static inline void poison_init_mem(void *s, size_t count){	u32 *p = (u32 *)s;	for (; count != 0; count -= 4)		*p++ = 0xe7fddef0;}static inline voidfree_memmap(unsigned long start_pfn, unsigned long end_pfn){	struct page *start_pg, *end_pg;	unsigned long pg, pgend;	/*	 * Convert start_pfn/end_pfn to a struct page pointer.	 */	start_pg = pfn_to_page(start_pfn - 1) + 1;	end_pg = pfn_to_page(end_pfn - 1) + 1;	/*	 * Convert to physical addresses, and	 * round start upwards and end downwards.	 */	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;	/*	 * If there are free pages between these,	 * free the section of the memmap array.	 */	if (pg < pgend)		free_bootmem(pg, pgend - pg);}/* * The mem_map array can get very big.  Free the unused area of the memory map. */static void __init free_unused_memmap(struct meminfo *mi){	unsigned long bank_start, prev_bank_end = 0;	unsigned int i;	/*	 * This relies on each bank being in address order.	 * The banks are sorted previously in bootmem_init().	 */	for_each_bank(i, mi) {		struct membank *bank = &mi->bank[i];		bank_start = bank_pfn_start(bank);#ifdef CONFIG_SPARSEMEM		/*		 * Take care not to free memmap entries that don't exist		 * due to SPARSEMEM sections which aren't present.		 */		bank_start = min(bank_start,				 ALIGN(prev_bank_end, PAGES_PER_SECTION));#else		/*		 * Align down here since the VM subsystem insists that the		 * memmap entries are valid from the bank start aligned to		 * MAX_ORDER_NR_PAGES.		 */		bank_start = round_down(bank_start, MAX_ORDER_NR_PAGES);#endif		/*		 * If we had a previous bank, and there is a space		 * between the current bank and the previous, free it.		 */		if (prev_bank_end && prev_bank_end < bank_start)			free_memmap(prev_bank_end, bank_start);		/*		 * Align up here since the VM subsystem insists that the		 * memmap entries are valid from the bank end aligned to		 * MAX_ORDER_NR_PAGES.		 */		prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);	}#ifdef CONFIG_SPARSEMEM	if (!IS_ALIGNED(prev_bank_end, PAGES_PER_SECTION))		free_memmap(prev_bank_end,			    ALIGN(prev_bank_end, PAGES_PER_SECTION));#endif}static void __init free_highpages(void){#ifdef CONFIG_HIGHMEM	unsigned long max_low = max_low_pfn + PHYS_PFN_OFFSET;	struct memblock_region *mem, *res;	/* set highmem page free */	for_each_memblock(memory, mem) {		unsigned long start = memblock_region_memory_base_pfn(mem);		unsigned long end = memblock_region_memory_end_pfn(mem);		/* Ignore complete lowmem entries */		if (end <= max_low)			continue;		/* Truncate partial highmem entries */		if (start < max_low)			start = max_low;		/* Find and exclude any reserved regions */		for_each_memblock(reserved, res) {			unsigned long res_start, res_end;			res_start = memblock_region_reserved_base_pfn(res);			res_end = memblock_region_reserved_end_pfn(res);			if (res_end < start)				continue;			if (res_start < start)				res_start = start;			if (res_start > end)				res_start = end;			if (res_end > end)				res_end = end;			if (res_start != start)				totalhigh_pages += free_area(start, res_start,							     NULL);			start = res_end;			if (start == end)				break;		}		/* And now free anything which remains */		if (start < end)			totalhigh_pages += free_area(start, end, NULL);	}	totalram_pages += totalhigh_pages;#endif}/* * mem_init() marks the free areas in the mem_map and tells us how much * memory is free.  This is done after various parts of the system have * claimed their memory after the kernel image. */void __init mem_init(void){	unsigned long reserved_pages, free_pages;	struct memblock_region *reg;	int i;#ifdef CONFIG_HAVE_TCM	/* These pointers are filled in on TCM detection */	extern u32 dtcm_end;	extern u32 itcm_end;#endif	max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;	/* this will put all unused low memory onto the freelists */	free_unused_memmap(&meminfo);	totalram_pages += free_all_bootmem();#ifdef CONFIG_SA1111	/* now that our DMA memory is actually so designated, we can free it */	totalram_pages += free_area(PHYS_PFN_OFFSET,				    __phys_to_pfn(__pa(swapper_pg_dir)), NULL);#endif	free_highpages();	reserved_pages = free_pages = 0;	for_each_bank(i, &meminfo) {		struct membank *bank = &meminfo.bank[i];		unsigned int pfn1, pfn2;		struct page *page, *end;		pfn1 = bank_pfn_start(bank);		pfn2 = bank_pfn_end(bank);		page = pfn_to_page(pfn1);		end  = pfn_to_page(pfn2 - 1) + 1;		do {			if (PageReserved(page))				reserved_pages++;			else if (!page_count(page))				free_pages++;			page++;		} while (page < end);	}	/*	 * Since our memory may not be contiguous, calculate the	 * real number of pages we have in this system	 */	printk(KERN_INFO "Memory:");	num_physpages = 0;	for_each_memblock(memory, reg) {		unsigned long pages = memblock_region_memory_end_pfn(reg) -			memblock_region_memory_base_pfn(reg);		num_physpages += pages;
 |