| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249 | /* *  linux/arch/arm/mm/mmu.c * *  Copyright (C) 1995-2005 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/module.h>#include <linux/kernel.h>#include <linux/errno.h>#include <linux/init.h>#include <linux/mman.h>#include <linux/nodemask.h>#include <linux/memblock.h>#include <linux/fs.h>#include <linux/vmalloc.h>#include <linux/sizes.h>#include <asm/cp15.h>#include <asm/cputype.h>#include <asm/sections.h>#include <asm/cachetype.h>#include <asm/setup.h>#include <asm/smp_plat.h>#include <asm/tlb.h>#include <asm/highmem.h>#include <asm/system_info.h>#include <asm/traps.h>#include <asm/mach/arch.h>#include <asm/mach/map.h>#include <asm/mach/pci.h>#include "mm.h"/* * empty_zero_page is a special page that is used for * zero-initialized data and COW. */struct page *empty_zero_page;EXPORT_SYMBOL(empty_zero_page);/* * The pmd table for the upper-most set of pages. */pmd_t *top_pmd;#define CPOLICY_UNCACHED	0#define CPOLICY_BUFFERED	1#define CPOLICY_WRITETHROUGH	2#define CPOLICY_WRITEBACK	3#define CPOLICY_WRITEALLOC	4static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;static unsigned int ecc_mask __initdata = 0;pgprot_t pgprot_user;pgprot_t pgprot_kernel;EXPORT_SYMBOL(pgprot_user);EXPORT_SYMBOL(pgprot_kernel);struct cachepolicy {	const char	policy[16];	unsigned int	cr_mask;	pmdval_t	pmd;	pteval_t	pte;};static struct cachepolicy cache_policies[] __initdata = {	{		.policy		= "uncached",		.cr_mask	= CR_W|CR_C,		.pmd		= PMD_SECT_UNCACHED,		.pte		= L_PTE_MT_UNCACHED,	}, {		.policy		= "buffered",		.cr_mask	= CR_C,		.pmd		= PMD_SECT_BUFFERED,		.pte		= L_PTE_MT_BUFFERABLE,	}, {		.policy		= "writethrough",		.cr_mask	= 0,		.pmd		= PMD_SECT_WT,		.pte		= L_PTE_MT_WRITETHROUGH,	}, {		.policy		= "writeback",		.cr_mask	= 0,		.pmd		= PMD_SECT_WB,		.pte		= L_PTE_MT_WRITEBACK,	}, {		.policy		= "writealloc",		.cr_mask	= 0,		.pmd		= PMD_SECT_WBWA,		.pte		= L_PTE_MT_WRITEALLOC,	}};/* * These are useful for identifying cache coherency * problems by allowing the cache or the cache and * writebuffer to be turned off.  (Note: the write * buffer should not be on and the cache off). */static int __init early_cachepolicy(char *p){	int i;	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {		int len = strlen(cache_policies[i].policy);		if (memcmp(p, cache_policies[i].policy, len) == 0) {			cachepolicy = i;			cr_alignment &= ~cache_policies[i].cr_mask;			cr_no_alignment &= ~cache_policies[i].cr_mask;			break;		}	}	if (i == ARRAY_SIZE(cache_policies))		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");	/*	 * This restriction is partly to do with the way we boot; it is	 * unpredictable to have memory mapped using two different sets of	 * memory attributes (shared, type, and cache attribs).  We can not	 * change these attributes once the initial assembly has setup the	 * page tables.	 */	if (cpu_architecture() >= CPU_ARCH_ARMv6) {		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");		cachepolicy = CPOLICY_WRITEBACK;	}	flush_cache_all();	set_cr(cr_alignment);	return 0;}early_param("cachepolicy", early_cachepolicy);static int __init early_nocache(char *__unused){	char *p = "buffered";	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);	early_cachepolicy(p);	return 0;}early_param("nocache", early_nocache);static int __init early_nowrite(char *__unused){	char *p = "uncached";	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);	early_cachepolicy(p);	return 0;}early_param("nowb", early_nowrite);#ifndef CONFIG_ARM_LPAEstatic int __init early_ecc(char *p){	if (memcmp(p, "on", 2) == 0)		ecc_mask = PMD_PROTECTION;	else if (memcmp(p, "off", 3) == 0)		ecc_mask = 0;	return 0;}early_param("ecc", early_ecc);#endifstatic int __init noalign_setup(char *__unused){	cr_alignment &= ~CR_A;	cr_no_alignment &= ~CR_A;	set_cr(cr_alignment);	return 1;}__setup("noalign", noalign_setup);#ifndef CONFIG_SMPvoid adjust_cr(unsigned long mask, unsigned long set){	unsigned long flags;	mask &= ~CR_A;	set &= mask;	local_irq_save(flags);	cr_no_alignment = (cr_no_alignment & ~mask) | set;	cr_alignment = (cr_alignment & ~mask) | set;	set_cr((get_cr() & ~mask) | set);	local_irq_restore(flags);}#endif#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITEstatic struct mem_type mem_types[] = {	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |				  L_PTE_SHARED,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,		.domain		= DOMAIN_IO,	},	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE,		.domain		= DOMAIN_IO,	},	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,		.domain		= DOMAIN_IO,	},	[MT_DEVICE_WC] = {	/* ioremap_wc */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE,		.domain		= DOMAIN_IO,	},	[MT_UNCACHED] = {		.prot_pte	= PROT_PTE_DEVICE,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,		.domain		= DOMAIN_IO,	},	[MT_CACHECLEAN] = {		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,		.domain    = DOMAIN_KERNEL,	},#ifndef CONFIG_ARM_LPAE	[MT_MINICLEAN] = {		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,		.domain    = DOMAIN_KERNEL,	},#endif	[MT_LOW_VECTORS] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_RDONLY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_USER,	},	[MT_HIGH_VECTORS] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_USER | L_PTE_RDONLY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_USER,	},	[MT_MEMORY] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,		.domain    = DOMAIN_KERNEL,	},	[MT_ROM] = {		.prot_sect = PMD_TYPE_SECT,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_NONCACHED] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_MT_BUFFERABLE,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_DTCM] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_XN,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_ITCM] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_SO] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_MT_UNCACHED | L_PTE_XN,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |				PMD_SECT_UNCACHED | PMD_SECT_XN,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_DMA_READY] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_KERNEL,	},};const struct mem_type *get_mem_type(unsigned int type){	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;}EXPORT_SYMBOL(get_mem_type);/* * Adjust the PMD section entries according to the CPU in use. */static void __init build_mem_type_table(void){	struct cachepolicy *cp;	unsigned int cr = get_cr();	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;	int cpu_arch = cpu_architecture();	int i;	if (cpu_arch < CPU_ARCH_ARMv6) {#if defined(CONFIG_CPU_DCACHE_DISABLE)		if (cachepolicy > CPOLICY_BUFFERED)			cachepolicy = CPOLICY_BUFFERED;#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)		if (cachepolicy > CPOLICY_WRITETHROUGH)			cachepolicy = CPOLICY_WRITETHROUGH;#endif	}	if (cpu_arch < CPU_ARCH_ARMv5) {		if (cachepolicy >= CPOLICY_WRITEALLOC)			cachepolicy = CPOLICY_WRITEBACK;		ecc_mask = 0;	}	if (is_smp())		cachepolicy = CPOLICY_WRITEALLOC;	/*	 * Strip out features not present on earlier architectures.	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those	 * without extended page tables don't have the 'Shared' bit.	 */	if (cpu_arch < CPU_ARCH_ARMv5)		for (i = 0; i < ARRAY_SIZE(mem_types); i++)			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())		for (i = 0; i < ARRAY_SIZE(mem_types); i++)			mem_types[i].prot_sect &= ~PMD_SECT_S;	/*	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache	 * "update-able on write" bit on ARM610).  However, Xscale and	 * Xscale3 require this bit to be cleared.	 */	if (cpu_is_xscale() || cpu_is_xsc3()) {		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {			mem_types[i].prot_sect &= ~PMD_BIT4;			mem_types[i].prot_l1 &= ~PMD_BIT4;		}	} else if (cpu_arch < CPU_ARCH_ARMv6) {		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {			if (mem_types[i].prot_l1)				mem_types[i].prot_l1 |= PMD_BIT4;			if (mem_types[i].prot_sect)				mem_types[i].prot_sect |= PMD_BIT4;		}	}	/*	 * Mark the device areas according to the CPU/architecture.	 */	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {		if (!cpu_is_xsc3()) {			/*			 * Mark device regions on ARMv6+ as execute-never			 * to prevent speculative instruction fetches.			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;		}		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {			/*			 * For ARMv7 with TEX remapping,			 * - shared device is SXCB=1100			 * - nonshared device is SXCB=0100			 * - write combine device mem is SXCB=0001			 * (Uncached Normal memory)			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;		} else if (cpu_is_xsc3()) {			/*			 * For Xscale3,			 * - shared device is TEXCB=00101			 * - nonshared device is TEXCB=01000			 * - write combine device mem is TEXCB=00100			 * (Inner/Outer Uncacheable in xsc3 parlance)			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);		} else {			/*			 * For ARMv6 and ARMv7 without TEX remapping,			 * - shared device is TEXCB=00001			 * - nonshared device is TEXCB=01000			 * - write combine device mem is TEXCB=00100			 * (Uncached Normal in ARMv6 parlance).			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);		}	} else {		/*		 * On others, write combining is "Uncached/Buffered"		 */		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;	}	/*	 * Now deal with the memory-type mappings	 */	cp = &cache_policies[cachepolicy];	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;	/*	 * ARMv6 and above have extended page tables.	 */	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {#ifndef CONFIG_ARM_LPAE		/*		 * Mark cache clean areas and XIP ROM read only		 * from SVC mode and no access from userspace.		 */		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;#endif		if (is_smp()) {			/*			 * Mark memory with the "shared" attribute			 * for SMP systems			 */			user_pgprot |= L_PTE_SHARED;			kern_pgprot |= L_PTE_SHARED;			vecs_pgprot |= L_PTE_SHARED;			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;		}	}	/*	 * Non-cacheable Normal - intended for memory areas that must	 * not cause dirty cache line writebacks when used	 */	if (cpu_arch >= CPU_ARCH_ARMv6) {		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {			/* Non-cacheable Normal is XCB = 001 */			mem_types[MT_MEMORY_NONCACHED].prot_sect |=				PMD_SECT_BUFFERED;		} else {			/* For both ARMv6 and non-TEX-remapping ARMv7 */			mem_types[MT_MEMORY_NONCACHED].prot_sect |=				PMD_SECT_TEX(1);		}	} else {		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;	}#ifdef CONFIG_ARM_LPAE	/*	 * Do not generate access flag faults for the kernel mappings.	 */	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {		mem_types[i].prot_pte |= PTE_EXT_AF;		if (mem_types[i].prot_sect)			mem_types[i].prot_sect |= PMD_SECT_AF;	}	kern_pgprot |= PTE_EXT_AF;	vecs_pgprot |= PTE_EXT_AF;#endif	for (i = 0; i < 16; i++) {		pteval_t v = pgprot_val(protection_map[i]);		protection_map[i] = __pgprot(v | user_pgprot);	}	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |				 L_PTE_DIRTY | kern_pgprot);	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;	mem_types[MT_ROM].prot_sect |= cp->pmd;	switch (cp->pmd) {	case PMD_SECT_WT:		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;		break;	case PMD_SECT_WB:	case PMD_SECT_WBWA:		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;		break;	}	printk("Memory policy: ECC %sabled, Data cache %s\n",		ecc_mask ? "en" : "dis", cp->policy);	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {		struct mem_type *t = &mem_types[i];		if (t->prot_l1)			t->prot_l1 |= PMD_DOMAIN(t->domain);		if (t->prot_sect)			t->prot_sect |= PMD_DOMAIN(t->domain);	}}#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLEpgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,			      unsigned long size, pgprot_t vma_prot){	if (!pfn_valid(pfn))		return pgprot_noncached(vma_prot);	else if (file->f_flags & O_SYNC)		return pgprot_writecombine(vma_prot);	return vma_prot;}EXPORT_SYMBOL(phys_mem_access_prot);#endif#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)static void __init *early_alloc_aligned(unsigned long sz, unsigned long align){	void *ptr = __va(memblock_alloc(sz, align));	memset(ptr, 0, sz);	return ptr;}static void __init *early_alloc(unsigned long sz){	return early_alloc_aligned(sz, sz);}static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot){	if (pmd_none(*pmd)) {		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);		__pmd_populate(pmd, __pa(pte), prot);	}	BUG_ON(pmd_bad(*pmd));	return pte_offset_kernel(pmd, addr);}static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,				  unsigned long end, unsigned long pfn,				  const struct mem_type *type){	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);	do {		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);		pfn++;	} while (pte++, addr += PAGE_SIZE, addr != end);}static void __init alloc_init_section(pud_t *pud, unsigned long addr,				      unsigned long end, phys_addr_t phys,				      const struct mem_type *type){	pmd_t *pmd = pmd_offset(pud, addr);	/*	 * Try a section mapping - end, addr and phys must all be aligned	 * to a section boundary.  Note that PMDs refer to the individual	 * L1 entries, whereas PGDs refer to a group of L1 entries making	 * up one logical pointer to an L2 table.	 */	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {		pmd_t *p = pmd;#ifndef CONFIG_ARM_LPAE		if (addr & SECTION_SIZE)			pmd++;#endif		do {			*pmd = __pmd(phys | type->prot_sect);			phys += SECTION_SIZE;		} while (pmd++, addr += SECTION_SIZE, addr != end);		flush_pmd_entry(p);	} else {		/*		 * No need to loop; pte's aren't interested in the		 * individual L1 entries.		 */		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);	}}static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,	unsigned long end, unsigned long phys, const struct mem_type *type){	pud_t *pud = pud_offset(pgd, addr);	unsigned long next;	do {		next = pud_addr_end(addr, end);		alloc_init_section(pud, addr, next, phys, type);		phys += next - addr;	} while (pud++, addr = next, addr != end);}#ifndef CONFIG_ARM_LPAEstatic void __init create_36bit_mapping(struct map_desc *md,					const struct mem_type *type){	unsigned long addr, length, end;	phys_addr_t phys;	pgd_t *pgd;	addr = md->virtual;	phys = __pfn_to_phys(md->pfn);	length = PAGE_ALIGN(md->length);	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {		printk(KERN_ERR "MM: CPU does not support supersection "		       "mapping for 0x%08llx at 0x%08lx\n",		       (long long)__pfn_to_phys((u64)md->pfn), addr);		return;	}	/* N.B.	ARMv6 supersections are only defined to work with domain 0.	 *	Since domain assignments can in fact be arbitrary, the	 *	'domain == 0' check below is required to insure that ARMv6	 *	supersections are only allocated for domain 0 regardless	 *	of the actual domain assignments in use.	 */	if (type->domain) {		printk(KERN_ERR "MM: invalid domain in supersection "		       "mapping for 0x%08llx at 0x%08lx\n",		       (long long)__pfn_to_phys((u64)md->pfn), addr);		return;	}	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"		       " at 0x%08lx invalid alignment\n",		       (long long)__pfn_to_phys((u64)md->pfn), addr);		return;	}	/*	 * Shift bits [35:32] of address into bits [23:20] of PMD	 * (See ARMv6 spec).	 */	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);	pgd = pgd_offset_k(addr);	end = addr + length;	do {		pud_t *pud = pud_offset(pgd, addr);		pmd_t *pmd = pmd_offset(pud, addr);		int i;		for (i = 0; i < 16; i++)			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);		addr += SUPERSECTION_SIZE;		phys += SUPERSECTION_SIZE;		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;	} while (addr != end);}#endif	/* !CONFIG_ARM_LPAE *//* * Create the page directory entries and any necessary * page tables for the mapping specified by `md'.  We * are able to cope here with varying sizes and address * offsets, and we take full advantage of sections and * supersections. */static void __init create_mapping(struct map_desc *md){	unsigned long addr, length, end;	phys_addr_t phys;	const struct mem_type *type;	pgd_t *pgd;	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"		       " at 0x%08lx in user region\n",		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);		return;	}	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&	    md->virtual >= PAGE_OFFSET &&	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {		printk(KERN_WARNING "BUG: mapping for 0x%08llx"		       " at 0x%08lx out of vmalloc space\n",		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);	}	type = &mem_types[md->type];#ifndef CONFIG_ARM_LPAE	/*	 * Catch 36-bit addresses	 */	if (md->pfn >= 0x100000) {		create_36bit_mapping(md, type);		return;	}#endif	addr = md->virtual & PAGE_MASK;	phys = __pfn_to_phys(md->pfn);	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "		       "be mapped using pages, ignoring.\n",		       (long long)__pfn_to_phys(md->pfn), addr);		return;	}	pgd = pgd_offset_k(addr);	end = addr + length;	do {		unsigned long next = pgd_addr_end(addr, end);		alloc_init_pud(pgd, addr, next, phys, type);		phys += next - addr;		addr = next;	} while (pgd++, addr != end);}/* * Create the architecture specific mappings */void __init iotable_init(struct map_desc *io_desc, int nr){	struct map_desc *md;	struct vm_struct *vm;	if (!nr)		return;	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));	for (md = io_desc; nr; md++, nr--) {		create_mapping(md);		vm->addr = (void *)(md->virtual & PAGE_MASK);		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));		vm->phys_addr = __pfn_to_phys(md->pfn);		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;		vm->flags |= VM_ARM_MTYPE(md->type);		vm->caller = iotable_init;		vm_area_add_early(vm++);	}}void __init vm_reserve_area_early(unsigned long addr, unsigned long size,				  void *caller){	struct vm_struct *vm;	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));	vm->addr = (void *)addr;	vm->size = size;	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;	vm->caller = caller;	vm_area_add_early(vm);}#ifndef CONFIG_ARM_LPAE/* * The Linux PMD is made of two consecutive section entries covering 2MB * (see definition in include/asm/pgtable-2level.h).  However a call to * create_mapping() may optimize static mappings by using individual * 1MB section mappings.  This leaves the actual PMD potentially half * initialized if the top or bottom section entry isn't used, leaving it * open to problems if a subsequent ioremap() or vmalloc() tries to use * the virtual space left free by that unused section entry. * * Let's avoid the issue by inserting dummy vm entries covering the unused * PMD halves once the static mappings are in place. */static void __init pmd_empty_section_gap(unsigned long addr){	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);}static void __init fill_pmd_gaps(void){	struct vm_struct *vm;	unsigned long addr, next = 0;	pmd_t *pmd;	/* we're still single threaded hence no lock needed here */	for (vm = vmlist; vm; vm = vm->next) {		if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))			continue;		addr = (unsigned long)vm->addr;		if (addr < next)			continue;		/*		 * Check if this vm starts on an odd section boundary.		 * If so and the first section entry for this PMD is free		 * then we block the corresponding virtual address.		 */		if ((addr & ~PMD_MASK) == SECTION_SIZE) {			pmd = pmd_off_k(addr);			if (pmd_none(*pmd))				pmd_empty_section_gap(addr & PMD_MASK);		}		/*		 * Then check if this vm ends on an odd section boundary.		 * If so and the second section entry for this PMD is empty		 * then we block the corresponding virtual address.		 */		addr += vm->size;		if ((addr & ~PMD_MASK) == SECTION_SIZE) {			pmd = pmd_off_k(addr) + 1;			if (pmd_none(*pmd))				pmd_empty_section_gap(addr);		}		/* no need to look at any vm entry until we hit the next PMD */		next = (addr + PMD_SIZE - 1) & PMD_MASK;	}}#else#define fill_pmd_gaps() do { } while (0)#endif#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)static void __init pci_reserve_io(void){	struct vm_struct *vm;	unsigned long addr;	/* we're still single threaded hence no lock needed here */	for (vm = vmlist; vm; vm = vm->next) {		if (!(vm->flags & VM_ARM_STATIC_MAPPING))			continue;		addr = (unsigned long)vm->addr;		addr &= ~(SZ_2M - 1);		if (addr == PCI_IO_VIRT_BASE)			return;	}	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);}#else#define pci_reserve_io() do { } while (0)#endif#ifdef CONFIG_DEBUG_LLvoid __init debug_ll_io_init(void){	struct map_desc map;	debug_ll_addr(&map.pfn, &map.virtual);	if (!map.pfn || !map.virtual)		return;	map.pfn = __phys_to_pfn(map.pfn);	map.virtual &= PAGE_MASK;	map.length = PAGE_SIZE;	map.type = MT_DEVICE;	create_mapping(&map);}#endifstatic void * __initdata vmalloc_min =	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);/* * vmalloc=size forces the vmalloc area to be exactly 'size' * bytes. This can be used to increase (or decrease) the vmalloc * area - the default is 240m. */static int __init early_vmalloc(char *arg){	unsigned long vmalloc_reserve = memparse(arg, NULL);	if (vmalloc_reserve < SZ_16M) {		vmalloc_reserve = SZ_16M;		printk(KERN_WARNING			"vmalloc area too small, limiting to %luMB\n",			vmalloc_reserve >> 20);	}	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);		printk(KERN_WARNING			"vmalloc area is too big, limiting to %luMB\n",			vmalloc_reserve >> 20);	}	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);	return 0;}early_param("vmalloc", early_vmalloc);phys_addr_t arm_lowmem_limit __initdata = 0;void __init sanity_check_meminfo(void){	int i, j, highmem = 0;	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {		struct membank *bank = &meminfo.bank[j];		*bank = meminfo.bank[i];		if (bank->start > ULONG_MAX)			highmem = 1;#ifdef CONFIG_HIGHMEM		if (__va(bank->start) >= vmalloc_min ||		    __va(bank->start) < (void *)PAGE_OFFSET)			highmem = 1;		bank->highmem = highmem;		/*		 * Split those memory banks which are partially overlapping		 * the vmalloc area greatly simplifying things later.		 */		if (!highmem && __va(bank->start) < vmalloc_min &&		    bank->size > vmalloc_min - __va(bank->start)) {			if (meminfo.nr_banks >= NR_BANKS) {				printk(KERN_CRIT "NR_BANKS too low, "						 "ignoring high memory\n");			} else {				memmove(bank + 1, bank,					(meminfo.nr_banks - i) * sizeof(*bank));				meminfo.nr_banks++;				i++;				bank[1].size -= vmalloc_min - __va(bank->start);				bank[1].start = __pa(vmalloc_min - 1) + 1;				bank[1].highmem = highmem = 1;				j++;			}			bank->size = vmalloc_min - __va(bank->start);		}#else		bank->highmem = highmem;		/*		 * Highmem banks not allowed with !CONFIG_HIGHMEM.		 */		if (highmem) {			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "			       "(!CONFIG_HIGHMEM).\n",			       (unsigned long long)bank->start,			       (unsigned long long)bank->start + bank->size - 1);			continue;		}		/*		 * Check whether this memory bank would entirely overlap		 * the vmalloc area.		 */		if (__va(bank->start) >= vmalloc_min ||		    __va(bank->start) < (void *)PAGE_OFFSET) {			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "			       "(vmalloc region overlap).\n",			       (unsigned long long)bank->start,			       (unsigned long long)bank->start + bank->size - 1);			continue;		}		/*		 * Check whether this memory bank would partially overlap		 * the vmalloc area.		 */		if (__va(bank->start + bank->size - 1) >= vmalloc_min ||		    __va(bank->start + bank->size - 1) <= __va(bank->start)) {			unsigned long newsize = vmalloc_min - __va(bank->start);			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "			       "to -%.8llx (vmalloc region overlap).\n",			       (unsigned long long)bank->start,			       (unsigned long long)bank->start + bank->size - 1,			       (unsigned long long)bank->start + newsize - 1);			bank->size = newsize;		}#endif		if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)			arm_lowmem_limit = bank->start + bank->size;		j++;	}#ifdef CONFIG_HIGHMEM	if (highmem) {		const char *reason = NULL;		if (cache_is_vipt_aliasing()) {			/*			 * Interactions between kmap and other mappings			 * make highmem support with aliasing VIPT caches			 * rather difficult.			 */			reason = "with VIPT aliasing cache";		}		if (reason) {			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",				reason);			while (j > 0 && meminfo.bank[j - 1].highmem)				j--;		}	}#endif	meminfo.nr_banks = j;	high_memory = __va(arm_lowmem_limit - 1) + 1;	memblock_set_current_limit(arm_lowmem_limit);}static inline void prepare_page_table(void){	unsigned long addr;	phys_addr_t end;	/*	 * Clear out all the mappings below the kernel image.	 */	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)		pmd_clear(pmd_off_k(addr));#ifdef CONFIG_XIP_KERNEL	/* The XIP kernel is mapped in the module area -- skip over it */	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;#endif	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)		pmd_clear(pmd_off_k(addr));	/*	 * Find the end of the first block of lowmem.	 */	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;	if (end >= arm_lowmem_limit)		end = arm_lowmem_limit;	/*	 * Clear out all the kernel space mappings, except for the first	 * memory bank, up to the vmalloc region.	 */	for (addr = __phys_to_virt(end);	     addr < VMALLOC_START; addr += PMD_SIZE)		pmd_clear(pmd_off_k(addr));}#ifdef CONFIG_ARM_LPAE/* the first page is reserved for pgd */#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))#else#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))#endif/* * Reserve the special regions of memory */void __init arm_mm_memblock_reserve(void){	/*	 * Reserve the page tables.  These are already in use,	 * and can only be in node 0.	 */	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);#ifdef CONFIG_SA1111	/*	 * Because of the SA1111 DMA bug, we want to preserve our	 * precious DMA-able memory...	 */	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);#endif}/* * Set up the device mappings.  Since we clear out the page tables for all * mappings above VMALLOC_START, we will remove any debug device mappings. * This means you have to be careful how you debug this function, or any * called function.  This means you can't use any function or debugging * method which may touch any device, otherwise the kernel _will_ crash. */static void __init devicemaps_init(struct machine_desc *mdesc){	struct map_desc map;	unsigned long addr;	void *vectors;	/*	 * Allocate the vector page early.	 */	vectors = early_alloc(PAGE_SIZE);	early_trap_init(vectors);	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)		pmd_clear(pmd_off_k(addr));	/*	 * Map the kernel if it is XIP.	 * It is always first in the modulearea.	 */#ifdef CONFIG_XIP_KERNEL	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);	map.virtual = MODULES_VADDR;	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;	map.type = MT_ROM;	create_mapping(&map);#endif	/*	 * Map the cache flushing regions.	 */#ifdef FLUSH_BASE	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);	map.virtual = FLUSH_BASE;	map.length = SZ_1M;	map.type = MT_CACHECLEAN;	create_mapping(&map);#endif#ifdef FLUSH_BASE_MINICACHE	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);	map.virtual = FLUSH_BASE_MINICACHE;	map.length = SZ_1M;	map.type = MT_MINICLEAN;	create_mapping(&map);#endif	/*	 * Create a mapping for the machine vectors at the high-vectors	 * location (0xffff0000).  If we aren't using high-vectors, also	 * create a mapping at the low-vectors virtual address.	 */	map.pfn = __phys_to_pfn(virt_to_phys(vectors));	map.virtual = 0xffff0000;	map.length = PAGE_SIZE;	map.type = MT_HIGH_VECTORS;	create_mapping(&map);	if (!vectors_high()) {		map.virtual = 0;		map.type = MT_LOW_VECTORS;		create_mapping(&map);	}	/*	 * Ask the machine support to map in the statically mapped devices.	 */	if (mdesc->map_io)		mdesc->map_io();	fill_pmd_gaps();	/* Reserve fixed i/o space in VMALLOC region */	pci_reserve_io();	/*	 * Finally flush the caches and tlb to ensure that we're in a	 * consistent state wrt the writebuffer.  This also ensures that	 * any write-allocated cache lines in the vector page are written	 * back.  After this point, we can start to touch devices again.	 */	local_flush_tlb_all();	flush_cache_all();}static void __init kmap_init(void){#ifdef CONFIG_HIGHMEM	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),		PKMAP_BASE, _PAGE_KERNEL_TABLE);#endif}static void __init map_lowmem(void){	struct memblock_region *reg;	/* Map all the lowmem memory banks. */	for_each_memblock(memory, reg) {		phys_addr_t start = reg->base;		phys_addr_t end = start + reg->size;		struct map_desc map;		if (end > arm_lowmem_limit)			end = arm_lowmem_limit;		if (start >= end)			break;		map.pfn = __phys_to_pfn(start);		map.virtual = __phys_to_virt(start);		map.length = end - start;		map.type = MT_MEMORY;		create_mapping(&map);	}}/* * paging_init() sets up the page tables, initialises the zone memory * maps, and sets up the zero page, bad page and bad page tables. */void __init paging_init(struct machine_desc *mdesc){	void *zero_page;	memblock_set_current_limit(arm_lowmem_limit);	build_mem_type_table();	prepare_page_table();	map_lowmem();	dma_contiguous_remap();	devicemaps_init(mdesc);	kmap_init();	top_pmd = pmd_off_k(0xffff0000);	/* allocate the zero page. */	zero_page = early_alloc(PAGE_SIZE);	bootmem_init();	empty_zero_page = virt_to_page(zero_page);	__flush_dcache_page(NULL, empty_zero_page);}
 |