| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030 | /* *  linux/arch/arm/mm/dma-mapping.c * *  Copyright (C) 2000-2004 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * *  DMA uncached mapping support. */#include <linux/module.h>#include <linux/mm.h>#include <linux/gfp.h>#include <linux/errno.h>#include <linux/list.h>#include <linux/init.h>#include <linux/device.h>#include <linux/dma-mapping.h>#include <linux/dma-contiguous.h>#include <linux/highmem.h>#include <linux/memblock.h>#include <linux/slab.h>#include <linux/iommu.h>#include <linux/io.h>#include <linux/vmalloc.h>#include <linux/sizes.h>#include <asm/memory.h>#include <asm/highmem.h>#include <asm/cacheflush.h>#include <asm/tlbflush.h>#include <asm/mach/arch.h>#include <asm/dma-iommu.h>#include <asm/mach/map.h>#include <asm/system_info.h>#include <asm/dma-contiguous.h>#include "mm.h"/* * The DMA API is built upon the notion of "buffer ownership".  A buffer * is either exclusively owned by the CPU (and therefore may be accessed * by it) or exclusively owned by the DMA device.  These helper functions * represent the transitions between these two ownership states. * * Note, however, that on later ARMs, this notion does not work due to * speculative prefetches.  We model our approach on the assumption that * the CPU does do speculative prefetches, which means we clean caches * before transfers and delay cache invalidation until transfer completion. * */static void __dma_page_cpu_to_dev(struct page *, unsigned long,		size_t, enum dma_data_direction);static void __dma_page_dev_to_cpu(struct page *, unsigned long,		size_t, enum dma_data_direction);/** * arm_dma_map_page - map a portion of a page for streaming DMA * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @page: page that buffer resides in * @offset: offset into page for start of buffer * @size: size of buffer to map * @dir: DMA transfer direction * * Ensure that any data held in the cache is appropriately discarded * or written back. * * The device owns this memory once this call has completed.  The CPU * can regain ownership by calling dma_unmap_page(). */static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,	     unsigned long offset, size_t size, enum dma_data_direction dir,	     struct dma_attrs *attrs){	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))		__dma_page_cpu_to_dev(page, offset, size, dir);	return pfn_to_dma(dev, page_to_pfn(page)) + offset;}static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,	     unsigned long offset, size_t size, enum dma_data_direction dir,	     struct dma_attrs *attrs){	return pfn_to_dma(dev, page_to_pfn(page)) + offset;}/** * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @handle: DMA address of buffer * @size: size of buffer (same as passed to dma_map_page) * @dir: DMA transfer direction (same as passed to dma_map_page) * * Unmap a page streaming mode DMA translation.  The handle and size * must match what was provided in the previous dma_map_page() call. * All other usages are undefined. * * After this call, reads by the CPU to the buffer are guaranteed to see * whatever the device wrote there. */static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,		size_t size, enum dma_data_direction dir,		struct dma_attrs *attrs){	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),				      handle & ~PAGE_MASK, size, dir);}static void arm_dma_sync_single_for_cpu(struct device *dev,		dma_addr_t handle, size_t size, enum dma_data_direction dir){	unsigned int offset = handle & (PAGE_SIZE - 1);	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));	__dma_page_dev_to_cpu(page, offset, size, dir);}static void arm_dma_sync_single_for_device(struct device *dev,		dma_addr_t handle, size_t size, enum dma_data_direction dir){	unsigned int offset = handle & (PAGE_SIZE - 1);	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));	__dma_page_cpu_to_dev(page, offset, size, dir);}struct dma_map_ops arm_dma_ops = {	.alloc			= arm_dma_alloc,	.free			= arm_dma_free,	.mmap			= arm_dma_mmap,	.get_sgtable		= arm_dma_get_sgtable,	.map_page		= arm_dma_map_page,	.unmap_page		= arm_dma_unmap_page,	.map_sg			= arm_dma_map_sg,	.unmap_sg		= arm_dma_unmap_sg,	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,	.sync_single_for_device	= arm_dma_sync_single_for_device,	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,	.sync_sg_for_device	= arm_dma_sync_sg_for_device,	.set_dma_mask		= arm_dma_set_mask,};EXPORT_SYMBOL(arm_dma_ops);static void *arm_coherent_dma_alloc(struct device *dev, size_t size,	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,				  dma_addr_t handle, struct dma_attrs *attrs);struct dma_map_ops arm_coherent_dma_ops = {	.alloc			= arm_coherent_dma_alloc,	.free			= arm_coherent_dma_free,	.mmap			= arm_dma_mmap,	.get_sgtable		= arm_dma_get_sgtable,	.map_page		= arm_coherent_dma_map_page,	.map_sg			= arm_dma_map_sg,	.set_dma_mask		= arm_dma_set_mask,};EXPORT_SYMBOL(arm_coherent_dma_ops);static u64 get_coherent_dma_mask(struct device *dev){	u64 mask = (u64)arm_dma_limit;	if (dev) {		mask = dev->coherent_dma_mask;		/*		 * Sanity check the DMA mask - it must be non-zero, and		 * must be able to be satisfied by a DMA allocation.		 */		if (mask == 0) {			dev_warn(dev, "coherent DMA mask is unset\n");			return 0;		}		if ((~mask) & (u64)arm_dma_limit) {			dev_warn(dev, "coherent DMA mask %#llx is smaller "				 "than system GFP_DMA mask %#llx\n",				 mask, (u64)arm_dma_limit);			return 0;		}	}	return mask;}static void __dma_clear_buffer(struct page *page, size_t size){	void *ptr;	/*	 * Ensure that the allocated pages are zeroed, and that any data	 * lurking in the kernel direct-mapped region is invalidated.	 */	ptr = page_address(page);	if (ptr) {		memset(ptr, 0, size);		dmac_flush_range(ptr, ptr + size);		outer_flush_range(__pa(ptr), __pa(ptr) + size);	}}/* * Allocate a DMA buffer for 'dev' of size 'size' using the * specified gfp mask.  Note that 'size' must be page aligned. */static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp){	unsigned long order = get_order(size);	struct page *page, *p, *e;	page = alloc_pages(gfp, order);	if (!page)		return NULL;	/*	 * Now split the huge page and free the excess pages	 */	split_page(page, order);	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)		__free_page(p);	__dma_clear_buffer(page, size);	return page;}/* * Free a DMA buffer.  'size' must be page aligned. */static void __dma_free_buffer(struct page *page, size_t size){	struct page *e = page + (size >> PAGE_SHIFT);	while (page < e) {		__free_page(page);		page++;	}}#ifdef CONFIG_MMU#ifdef CONFIG_HUGETLB_PAGE#error ARM Coherent DMA allocator does not (yet) support huge TLB#endifstatic void *__alloc_from_contiguous(struct device *dev, size_t size,				     pgprot_t prot, struct page **ret_page);static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,				 pgprot_t prot, struct page **ret_page,				 const void *caller);static void *__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,	const void *caller){	struct vm_struct *area;	unsigned long addr;	/*	 * DMA allocation can be mapped to user space, so lets	 * set VM_USERMAP flags too.	 */	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,				  caller);	if (!area)		return NULL;	addr = (unsigned long)area->addr;	area->phys_addr = __pfn_to_phys(page_to_pfn(page));	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {		vunmap((void *)addr);		return NULL;	}	return (void *)addr;}static void __dma_free_remap(void *cpu_addr, size_t size){	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;	struct vm_struct *area = find_vm_area(cpu_addr);	if (!area || (area->flags & flags) != flags) {		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);		return;	}	unmap_kernel_range((unsigned long)cpu_addr, size);	vunmap(cpu_addr);}#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256Kstruct dma_pool {	size_t size;	spinlock_t lock;	unsigned long *bitmap;	unsigned long nr_pages;	void *vaddr;	struct page **pages;};static struct dma_pool atomic_pool = {	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,};static int __init early_coherent_pool(char *p){	atomic_pool.size = memparse(p, &p);	return 0;}early_param("coherent_pool", early_coherent_pool);void __init init_dma_coherent_pool_size(unsigned long size){	/*	 * Catch any attempt to set the pool size too late.	 */	BUG_ON(atomic_pool.vaddr);	/*	 * Set architecture specific coherent pool size only if	 * it has not been changed by kernel command line parameter.	 */	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)		atomic_pool.size = size;}/* * Initialise the coherent pool for atomic allocations. */static int __init atomic_pool_init(void){	struct dma_pool *pool = &atomic_pool;	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);	gfp_t gfp = GFP_KERNEL | GFP_DMA;	unsigned long nr_pages = pool->size >> PAGE_SHIFT;	unsigned long *bitmap;	struct page *page;	struct page **pages;	void *ptr;	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);	bitmap = kzalloc(bitmap_size, GFP_KERNEL);	if (!bitmap)		goto no_bitmap;	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);	if (!pages)		goto no_pages;	if (IS_ENABLED(CONFIG_CMA))		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);	else		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,					   NULL);	if (ptr) {		int i;		for (i = 0; i < nr_pages; i++)			pages[i] = page + i;		spin_lock_init(&pool->lock);		pool->vaddr = ptr;		pool->pages = pages;		pool->bitmap = bitmap;		pool->nr_pages = nr_pages;		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",		       (unsigned)pool->size / 1024);		return 0;	}	kfree(pages);no_pages:	kfree(bitmap);no_bitmap:	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",	       (unsigned)pool->size / 1024);	return -ENOMEM;}/* * CMA is activated by core_initcall, so we must be called after it. */postcore_initcall(atomic_pool_init);struct dma_contig_early_reserve {	phys_addr_t base;	unsigned long size;};static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;static int dma_mmu_remap_num __initdata;void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size){	dma_mmu_remap[dma_mmu_remap_num].base = base;	dma_mmu_remap[dma_mmu_remap_num].size = size;	dma_mmu_remap_num++;}void __init dma_contiguous_remap(void){	int i;	for (i = 0; i < dma_mmu_remap_num; i++) {		phys_addr_t start = dma_mmu_remap[i].base;		phys_addr_t end = start + dma_mmu_remap[i].size;		struct map_desc map;		unsigned long addr;		if (end > arm_lowmem_limit)			end = arm_lowmem_limit;		if (start >= end)			continue;		map.pfn = __phys_to_pfn(start);		map.virtual = __phys_to_virt(start);		map.length = end - start;		map.type = MT_MEMORY_DMA_READY;		/*		 * Clear previous low-memory mapping		 */		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);		     addr += PMD_SIZE)			pmd_clear(pmd_off_k(addr));		iotable_init(&map, 1);	}}static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,			    void *data){	struct page *page = virt_to_page(addr);	pgprot_t prot = *(pgprot_t *)data;	set_pte_ext(pte, mk_pte(page, prot), 0);	return 0;}static void __dma_remap(struct page *page, size_t size, pgprot_t prot){	unsigned long start = (unsigned long) page_address(page);	unsigned end = start + size;	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);	dsb();	flush_tlb_kernel_range(start, end);}static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,				 pgprot_t prot, struct page **ret_page,				 const void *caller){	struct page *page;	void *ptr;	page = __dma_alloc_buffer(dev, size, gfp);	if (!page)		return NULL;	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);	if (!ptr) {		__dma_free_buffer(page, size);		return NULL;	}	*ret_page = page;	return ptr;}static void *__alloc_from_pool(size_t size, struct page **ret_page){	struct dma_pool *pool = &atomic_pool;	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;	unsigned int pageno;	unsigned long flags;	void *ptr = NULL;	unsigned long align_mask;	if (!pool->vaddr) {		WARN(1, "coherent pool not initialised!\n");		return NULL;	}	/*	 * Align the region allocation - allocations from pool are rather	 * small, so align them to their order in pages, minimum is a page	 * size. This helps reduce fragmentation of the DMA space.	 */	align_mask = (1 << get_order(size)) - 1;	spin_lock_irqsave(&pool->lock, flags);	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,					    0, count, align_mask);	if (pageno < pool->nr_pages) {		bitmap_set(pool->bitmap, pageno, count);		ptr = pool->vaddr + PAGE_SIZE * pageno;		*ret_page = pool->pages[pageno];	} else {		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"			    "Please increase it with coherent_pool= kernel parameter!\n",			    (unsigned)pool->size / 1024);	}	spin_unlock_irqrestore(&pool->lock, flags);	return ptr;}static bool __in_atomic_pool(void *start, size_t size){	struct dma_pool *pool = &atomic_pool;	void *end = start + size;	void *pool_start = pool->vaddr;	void *pool_end = pool->vaddr + pool->size;	if (start < pool_start || start >= pool_end)		return false;	if (end <= pool_end)		return true;	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",	     start, end - 1, pool_start, pool_end - 1);	return false;}static int __free_from_pool(void *start, size_t size){	struct dma_pool *pool = &atomic_pool;	unsigned long pageno, count;	unsigned long flags;	if (!__in_atomic_pool(start, size))		return 0;	pageno = (start - pool->vaddr) >> PAGE_SHIFT;	count = size >> PAGE_SHIFT;	spin_lock_irqsave(&pool->lock, flags);	bitmap_clear(pool->bitmap, pageno, count);	spin_unlock_irqrestore(&pool->lock, flags);	return 1;}static void *__alloc_from_contiguous(struct device *dev, size_t size,				     pgprot_t prot, struct page **ret_page){	unsigned long order = get_order(size);	size_t count = size >> PAGE_SHIFT;	struct page *page;	page = dma_alloc_from_contiguous(dev, count, order);	if (!page)		return NULL;	__dma_clear_buffer(page, size);	__dma_remap(page, size, prot);	*ret_page = page;	return page_address(page);}static void __free_from_contiguous(struct device *dev, struct page *page,				   size_t size){	__dma_remap(page, size, pgprot_kernel);	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);}static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot){	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?			    pgprot_writecombine(prot) :			    pgprot_dmacoherent(prot);	return prot;}#define nommu() 0#else	/* !CONFIG_MMU */#define nommu() 1#define __get_dma_pgprot(attrs, prot)	__pgprot(0)#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL#define __alloc_from_pool(size, ret_page)			NULL#define __alloc_from_contiguous(dev, size, prot, ret)		NULL#define __free_from_pool(cpu_addr, size)			0#define __free_from_contiguous(dev, page, size)			do { } while (0)#define __dma_free_remap(cpu_addr, size)			do { } while (0)#endif	/* CONFIG_MMU */static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,				   struct page **ret_page){	struct page *page;	page = __dma_alloc_buffer(dev, size, gfp);	if (!page)		return NULL;	*ret_page = page;	return page_address(page);}static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller){	u64 mask = get_coherent_dma_mask(dev);	struct page *page = NULL;	void *addr;#ifdef CONFIG_DMA_API_DEBUG	u64 limit = (mask + 1) & ~mask;	if (limit && size >= limit) {		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",			size, mask);		return NULL;	}#endif	if (!mask)		return NULL;	if (mask < 0xffffffffULL)		gfp |= GFP_DMA;	/*	 * Following is a work-around (a.k.a. hack) to prevent pages	 * with __GFP_COMP being passed to split_page() which cannot	 * handle them.  The real problem is that this flag probably	 * should be 0 on ARM as it is not supported on this	 * platform; see CONFIG_HUGETLBFS.	 */	gfp &= ~(__GFP_COMP);	*handle = DMA_ERROR_CODE;	size = PAGE_ALIGN(size);	if (is_coherent || nommu())		addr = __alloc_simple_buffer(dev, size, gfp, &page);	else if (!(gfp & __GFP_WAIT))		addr = __alloc_from_pool(size, &page);	else if (!IS_ENABLED(CONFIG_CMA))		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);	else		addr = __alloc_from_contiguous(dev, size, prot, &page);	if (addr)		*handle = pfn_to_dma(dev, page_to_pfn(page));	return addr;}/* * Allocate DMA-coherent memory space and return both the kernel remapped * virtual and bus address for that space. */void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,		    gfp_t gfp, struct dma_attrs *attrs){	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);	void *memory;	if (dma_alloc_from_coherent(dev, size, handle, &memory))		return memory;	return __dma_alloc(dev, size, handle, gfp, prot, false,			   __builtin_return_address(0));}static void *arm_coherent_dma_alloc(struct device *dev, size_t size,	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs){	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);	void *memory;	if (dma_alloc_from_coherent(dev, size, handle, &memory))		return memory;	return __dma_alloc(dev, size, handle, gfp, prot, true,			   __builtin_return_address(0));}/* * Create userspace mapping for the DMA-coherent memory. */int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,		 void *cpu_addr, dma_addr_t dma_addr, size_t size,		 struct dma_attrs *attrs){	int ret = -ENXIO;#ifdef CONFIG_MMU	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;	unsigned long pfn = dma_to_pfn(dev, dma_addr);	unsigned long off = vma->vm_pgoff;	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))		return ret;	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {		ret = remap_pfn_range(vma, vma->vm_start,				      pfn + off,				      vma->vm_end - vma->vm_start,				      vma->vm_page_prot);	}#endif	/* CONFIG_MMU */	return ret;}/* * Free a buffer as defined by the above mapping. */static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,			   dma_addr_t handle, struct dma_attrs *attrs,			   bool is_coherent){	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))		return;	size = PAGE_ALIGN(size);	if (is_coherent || nommu()) {		__dma_free_buffer(page, size);	} else if (__free_from_pool(cpu_addr, size)) {		return;	} else if (!IS_ENABLED(CONFIG_CMA)) {		__dma_free_remap(cpu_addr, size);		__dma_free_buffer(page, size);	} else {		/*		 * Non-atomic allocations cannot be freed with IRQs disabled		 */		WARN_ON(irqs_disabled());		__free_from_contiguous(dev, page, size);	}}void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,		  dma_addr_t handle, struct dma_attrs *attrs){	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);}static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,				  dma_addr_t handle, struct dma_attrs *attrs){	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);}int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,		 void *cpu_addr, dma_addr_t handle, size_t size,		 struct dma_attrs *attrs){	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));	int ret;	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);	if (unlikely(ret))		return ret;	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);	return 0;}static void dma_cache_maint_page(struct page *page, unsigned long offset,	size_t size, enum dma_data_direction dir,	void (*op)(const void *, size_t, int)){	unsigned long pfn;	size_t left = size;	pfn = page_to_pfn(page) + offset / PAGE_SIZE;	offset %= PAGE_SIZE;	/*	 * A single sg entry may refer to multiple physically contiguous	 * pages.  But we still need to process highmem pages individually.	 * If highmem is not configured then the bulk of this loop gets	 * optimized out.	 */	do {		size_t len = left;		void *vaddr;		page = pfn_to_page(pfn);		if (PageHighMem(page)) {			if (len + offset > PAGE_SIZE)				len = PAGE_SIZE - offset;			vaddr = kmap_high_get(page);			if (vaddr) {				vaddr += offset;				op(vaddr, len, dir);				kunmap_high(page);			} else if (cache_is_vipt()) {				/* unmapped pages might still be cached */				vaddr = kmap_atomic(page);				op(vaddr + offset, len, dir);				kunmap_atomic(vaddr);			}		} else {			vaddr = page_address(page) + offset;			op(vaddr, len, dir);		}		offset = 0;		pfn++;		left -= len;	} while (left);}/* * Make an area consistent for devices. * Note: Drivers should NOT use this function directly, as it will break * platforms with CONFIG_DMABOUNCE. * Use the driver DMA support - see dma-mapping.h (dma_sync_*) */static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,	size_t size, enum dma_data_direction dir){	unsigned long paddr;	dma_cache_maint_page(page, off, size, dir, dmac_map_area);	paddr = page_to_phys(page) + off;	if (dir == DMA_FROM_DEVICE) {		outer_inv_range(paddr, paddr + size);	} else {		outer_clean_range(paddr, paddr + size);	}	/* FIXME: non-speculating: flush on bidirectional mappings? */}static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,	size_t size, enum dma_data_direction dir){	unsigned long paddr = page_to_phys(page) + off;	/* FIXME: non-speculating: not required */	/* don't bother invalidating if DMA to device */	if (dir != DMA_TO_DEVICE)		outer_inv_range(paddr, paddr + size);	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);	/*	 * Mark the D-cache clean for this page to avoid extra flushing.	 */	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)		set_bit(PG_dcache_clean, &page->flags);}/** * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to map * @dir: DMA transfer direction * * Map a set of buffers described by scatterlist in streaming mode for DMA. * This is the scatter-gather version of the dma_map_single interface. * Here the scatter gather list elements are each tagged with the * appropriate dma address and length.  They are obtained via * sg_dma_{address,length}. * * Device ownership issues as mentioned for dma_map_single are the same * here. */int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,		enum dma_data_direction dir, struct dma_attrs *attrs){	struct dma_map_ops *ops = get_dma_ops(dev);	struct scatterlist *s;	int i, j;	for_each_sg(sg, s, nents, i) {#ifdef CONFIG_NEED_SG_DMA_LENGTH		s->dma_length = s->length;#endif		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,						s->length, dir, attrs);		if (dma_mapping_error(dev, s->dma_address))			goto bad_mapping;	}	return nents; bad_mapping:	for_each_sg(sg, s, i, j)		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);	return 0;}/** * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to unmap (same as was passed to dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) * * Unmap a set of streaming mode DMA translations.  Again, CPU access * rules concerning calls here are the same as for dma_unmap_single(). */void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,		enum dma_data_direction dir, struct dma_attrs *attrs){	struct dma_map_ops *ops = get_dma_ops(dev);	struct scatterlist *s;	int i;	for_each_sg(sg, s, nents, i)		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);}/** * arm_dma_sync_sg_for_cpu * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,			int nents, enum dma_data_direction dir){	struct dma_map_ops *ops = get_dma_ops(dev);	struct scatterlist *s;	int i;	for_each_sg(sg, s, nents, i)		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,					 dir);}/** * arm_dma_sync_sg_for_device * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,			int nents, enum dma_data_direction dir){	struct dma_map_ops *ops = get_dma_ops(dev);	struct scatterlist *s;	int i;	for_each_sg(sg, s, nents, i)		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,					    dir);}/* * Return whether the given device DMA address mask can be supported * properly.  For example, if your device can only drive the low 24-bits * during bus mastering, then you would pass 0x00ffffff as the mask * to this function. */int dma_supported(struct device *dev, u64 mask){	if (mask < (u64)arm_dma_limit)		return 0;	return 1;}EXPORT_SYMBOL(dma_supported);int arm_dma_set_mask(struct device *dev, u64 dma_mask){	if (!dev->dma_mask || !dma_supported(dev, dma_mask))		return -EIO;	*dev->dma_mask = dma_mask;	return 0;}#define PREALLOC_DMA_DEBUG_ENTRIES	4096static int __init dma_debug_do_init(void){	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);	return 0;}fs_initcall(dma_debug_do_init);#ifdef CONFIG_ARM_DMA_USE_IOMMU/* IOMMU */static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,				      size_t size){	unsigned int order = get_order(size);	unsigned int align = 0;	unsigned int count, start;	unsigned long flags;	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +		 (1 << mapping->order) - 1) >> mapping->order;	if (order > mapping->order)		align = (1 << (order - mapping->order)) - 1;	spin_lock_irqsave(&mapping->lock, flags);	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,					   count, align);	if (start > mapping->bits) {		spin_unlock_irqrestore(&mapping->lock, flags);		return DMA_ERROR_CODE;	}	bitmap_set(mapping->bitmap, start, count);	spin_unlock_irqrestore(&mapping->lock, flags);	return mapping->base + (start << (mapping->order + PAGE_SHIFT));}static inline void __free_iova(struct dma_iommu_mapping *mapping,			       dma_addr_t addr, size_t size){	unsigned int start = (addr - mapping->base) >>			     (mapping->order + PAGE_SHIFT);
 |