| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378 | #ifndef _M68K_BITOPS_H#define _M68K_BITOPS_H/* * Copyright 1992, Linus Torvalds. * * This file is subject to the terms and conditions of the GNU General Public * License.  See the file COPYING in the main directory of this archive * for more details. */#ifndef _LINUX_BITOPS_H#error only <linux/bitops.h> can be included directly#endif#include <linux/compiler.h>/* *	Bit access functions vary across the ColdFire and 68k families. *	So we will break them out here, and then macro in the ones we want. * *	ColdFire - supports standard bset/bclr/bchg with register operand only *	68000    - supports standard bset/bclr/bchg with memory operand *	>= 68020 - also supports the bfset/bfclr/bfchg instructions * *	Although it is possible to use only the bset/bclr/bchg with register *	operands on all platforms you end up with larger generated code. *	So we use the best form possible on a given platform. */static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	__asm__ __volatile__ ("bset %1,(%0)"		:		: "a" (p), "di" (nr & 7)		: "memory");}static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	__asm__ __volatile__ ("bset %1,%0"		: "+m" (*p)		: "di" (nr & 7));}static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr){	__asm__ __volatile__ ("bfset %1{%0:#1}"		:		: "d" (nr ^ 31), "o" (*vaddr)		: "memory");}#if defined(CONFIG_COLDFIRE)#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)#else#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \				bset_mem_set_bit(nr, vaddr) : \				bfset_mem_set_bit(nr, vaddr))#endif#define __set_bit(nr, vaddr)	set_bit(nr, vaddr)/* * clear_bit() doesn't provide any barrier for the compiler. */#define smp_mb__before_clear_bit()	barrier()#define smp_mb__after_clear_bit()	barrier()static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	__asm__ __volatile__ ("bclr %1,(%0)"		:		: "a" (p), "di" (nr & 7)		: "memory");}static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	__asm__ __volatile__ ("bclr %1,%0"		: "+m" (*p)		: "di" (nr & 7));}static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr){	__asm__ __volatile__ ("bfclr %1{%0:#1}"		:		: "d" (nr ^ 31), "o" (*vaddr)		: "memory");}#if defined(CONFIG_COLDFIRE)#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)#else#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \				bclr_mem_clear_bit(nr, vaddr) : \				bfclr_mem_clear_bit(nr, vaddr))#endif#define __clear_bit(nr, vaddr)	clear_bit(nr, vaddr)static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	__asm__ __volatile__ ("bchg %1,(%0)"		:		: "a" (p), "di" (nr & 7)		: "memory");}static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	__asm__ __volatile__ ("bchg %1,%0"		: "+m" (*p)		: "di" (nr & 7));}static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr){	__asm__ __volatile__ ("bfchg %1{%0:#1}"		:		: "d" (nr ^ 31), "o" (*vaddr)		: "memory");}#if defined(CONFIG_COLDFIRE)#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)#else#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \				bchg_mem_change_bit(nr, vaddr) : \				bfchg_mem_change_bit(nr, vaddr))#endif#define __change_bit(nr, vaddr)	change_bit(nr, vaddr)static inline int test_bit(int nr, const unsigned long *vaddr){	return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;}static inline int bset_reg_test_and_set_bit(int nr,					    volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	char retval;	__asm__ __volatile__ ("bset %2,(%1); sne %0"		: "=d" (retval)		: "a" (p), "di" (nr & 7)		: "memory");	return retval;}static inline int bset_mem_test_and_set_bit(int nr,					    volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	char retval;	__asm__ __volatile__ ("bset %2,%1; sne %0"		: "=d" (retval), "+m" (*p)		: "di" (nr & 7));	return retval;}static inline int bfset_mem_test_and_set_bit(int nr,					     volatile unsigned long *vaddr){	char retval;	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"		: "=d" (retval)		: "d" (nr ^ 31), "o" (*vaddr)		: "memory");	return retval;}#if defined(CONFIG_COLDFIRE)#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)#else#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \					bset_mem_test_and_set_bit(nr, vaddr) : \					bfset_mem_test_and_set_bit(nr, vaddr))#endif#define __test_and_set_bit(nr, vaddr)	test_and_set_bit(nr, vaddr)static inline int bclr_reg_test_and_clear_bit(int nr,					      volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	char retval;	__asm__ __volatile__ ("bclr %2,(%1); sne %0"		: "=d" (retval)		: "a" (p), "di" (nr & 7)		: "memory");	return retval;}static inline int bclr_mem_test_and_clear_bit(int nr,					      volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	char retval;	__asm__ __volatile__ ("bclr %2,%1; sne %0"		: "=d" (retval), "+m" (*p)		: "di" (nr & 7));	return retval;}static inline int bfclr_mem_test_and_clear_bit(int nr,					       volatile unsigned long *vaddr){	char retval;	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"		: "=d" (retval)		: "d" (nr ^ 31), "o" (*vaddr)		: "memory");	return retval;}#if defined(CONFIG_COLDFIRE)#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)#else#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \					bclr_mem_test_and_clear_bit(nr, vaddr) : \					bfclr_mem_test_and_clear_bit(nr, vaddr))#endif#define __test_and_clear_bit(nr, vaddr)	test_and_clear_bit(nr, vaddr)static inline int bchg_reg_test_and_change_bit(int nr,					       volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	char retval;	__asm__ __volatile__ ("bchg %2,(%1); sne %0"		: "=d" (retval)		: "a" (p), "di" (nr & 7)		: "memory");	return retval;}static inline int bchg_mem_test_and_change_bit(int nr,					       volatile unsigned long *vaddr){	char *p = (char *)vaddr + (nr ^ 31) / 8;	char retval;	__asm__ __volatile__ ("bchg %2,%1; sne %0"		: "=d" (retval), "+m" (*p)		: "di" (nr & 7));	return retval;}static inline int bfchg_mem_test_and_change_bit(int nr,						volatile unsigned long *vaddr){	char retval;	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"		: "=d" (retval)		: "d" (nr ^ 31), "o" (*vaddr)		: "memory");	return retval;}#if defined(CONFIG_COLDFIRE)#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)#else#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \					bchg_mem_test_and_change_bit(nr, vaddr) : \					bfchg_mem_test_and_change_bit(nr, vaddr))#endif#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)/* *	The true 68020 and more advanced processors support the "bfffo" *	instruction for finding bits. ColdFire and simple 68000 parts *	(including CPU32) do not support this. They simply use the generic *	functions. */#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)#include <asm-generic/bitops/find.h>#include <asm-generic/bitops/ffz.h>#elsestatic inline int find_first_zero_bit(const unsigned long *vaddr,				      unsigned size){	const unsigned long *p = vaddr;	int res = 32;	unsigned int words;	unsigned long num;	if (!size)		return 0;	words = (size + 31) >> 5;	while (!(num = ~*p++)) {		if (!--words)			goto out;	}	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"			      : "=d" (res) : "d" (num & -num));	res ^= 31;out:	res += ((long)p - (long)vaddr - 4) * 8;	return res < size ? res : size;}#define find_first_zero_bit find_first_zero_bitstatic inline int find_next_zero_bit(const unsigned long *vaddr, int size,				     int offset){	const unsigned long *p = vaddr + (offset >> 5);	int bit = offset & 31UL, res;	if (offset >= size)		return size;	if (bit) {		unsigned long num = ~*p++ & (~0UL << bit);		offset -= bit;		/* Look for zero in first longword */		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"				      : "=d" (res) : "d" (num & -num));		if (res < 32) {			offset += res ^ 31;			return offset < size ? offset : size;		}		offset += 32;		if (offset >= size)			return size;	}	/* No zero yet, search remaining full bytes for a zero */	return offset + find_first_zero_bit(p, size - offset);}#define find_next_zero_bit find_next_zero_bit
 |