| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594 | /* *  linux/arch/arm/mm/mmu.c * *  Copyright (C) 1995-2005 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/module.h>#include <linux/kernel.h>#include <linux/errno.h>#include <linux/init.h>#include <linux/mman.h>#include <linux/nodemask.h>#include <linux/memblock.h>#include <linux/fs.h>#include <linux/vmalloc.h>#include <linux/sizes.h>#include <asm/cp15.h>#include <asm/cputype.h>#include <asm/sections.h>#include <asm/cachetype.h>#include <asm/setup.h>#include <asm/smp_plat.h>#include <asm/tlb.h>#include <asm/highmem.h>#include <asm/system_info.h>#include <asm/traps.h>#include <asm/mach/arch.h>#include <asm/mach/map.h>#include <asm/mach/pci.h>#include "mm.h"/* * empty_zero_page is a special page that is used for * zero-initialized data and COW. */struct page *empty_zero_page;EXPORT_SYMBOL(empty_zero_page);/* * The pmd table for the upper-most set of pages. */pmd_t *top_pmd;#define CPOLICY_UNCACHED	0#define CPOLICY_BUFFERED	1#define CPOLICY_WRITETHROUGH	2#define CPOLICY_WRITEBACK	3#define CPOLICY_WRITEALLOC	4static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;static unsigned int ecc_mask __initdata = 0;pgprot_t pgprot_user;pgprot_t pgprot_kernel;EXPORT_SYMBOL(pgprot_user);EXPORT_SYMBOL(pgprot_kernel);struct cachepolicy {	const char	policy[16];	unsigned int	cr_mask;	pmdval_t	pmd;	pteval_t	pte;};static struct cachepolicy cache_policies[] __initdata = {	{		.policy		= "uncached",		.cr_mask	= CR_W|CR_C,		.pmd		= PMD_SECT_UNCACHED,		.pte		= L_PTE_MT_UNCACHED,	}, {		.policy		= "buffered",		.cr_mask	= CR_C,		.pmd		= PMD_SECT_BUFFERED,		.pte		= L_PTE_MT_BUFFERABLE,	}, {		.policy		= "writethrough",		.cr_mask	= 0,		.pmd		= PMD_SECT_WT,		.pte		= L_PTE_MT_WRITETHROUGH,	}, {		.policy		= "writeback",		.cr_mask	= 0,		.pmd		= PMD_SECT_WB,		.pte		= L_PTE_MT_WRITEBACK,	}, {		.policy		= "writealloc",		.cr_mask	= 0,		.pmd		= PMD_SECT_WBWA,		.pte		= L_PTE_MT_WRITEALLOC,	}};/* * These are useful for identifying cache coherency * problems by allowing the cache or the cache and * writebuffer to be turned off.  (Note: the write * buffer should not be on and the cache off). */static int __init early_cachepolicy(char *p){	int i;	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {		int len = strlen(cache_policies[i].policy);		if (memcmp(p, cache_policies[i].policy, len) == 0) {			cachepolicy = i;			cr_alignment &= ~cache_policies[i].cr_mask;			cr_no_alignment &= ~cache_policies[i].cr_mask;			break;		}	}	if (i == ARRAY_SIZE(cache_policies))		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");	/*	 * This restriction is partly to do with the way we boot; it is	 * unpredictable to have memory mapped using two different sets of	 * memory attributes (shared, type, and cache attribs).  We can not	 * change these attributes once the initial assembly has setup the	 * page tables.	 */	if (cpu_architecture() >= CPU_ARCH_ARMv6) {		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");		cachepolicy = CPOLICY_WRITEBACK;	}	flush_cache_all();	set_cr(cr_alignment);	return 0;}early_param("cachepolicy", early_cachepolicy);static int __init early_nocache(char *__unused){	char *p = "buffered";	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);	early_cachepolicy(p);	return 0;}early_param("nocache", early_nocache);static int __init early_nowrite(char *__unused){	char *p = "uncached";	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);	early_cachepolicy(p);	return 0;}early_param("nowb", early_nowrite);#ifndef CONFIG_ARM_LPAEstatic int __init early_ecc(char *p){	if (memcmp(p, "on", 2) == 0)		ecc_mask = PMD_PROTECTION;	else if (memcmp(p, "off", 3) == 0)		ecc_mask = 0;	return 0;}early_param("ecc", early_ecc);#endifstatic int __init noalign_setup(char *__unused){	cr_alignment &= ~CR_A;	cr_no_alignment &= ~CR_A;	set_cr(cr_alignment);	return 1;}__setup("noalign", noalign_setup);#ifndef CONFIG_SMPvoid adjust_cr(unsigned long mask, unsigned long set){	unsigned long flags;	mask &= ~CR_A;	set &= mask;	local_irq_save(flags);	cr_no_alignment = (cr_no_alignment & ~mask) | set;	cr_alignment = (cr_alignment & ~mask) | set;	set_cr((get_cr() & ~mask) | set);	local_irq_restore(flags);}#endif#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITEstatic struct mem_type mem_types[] = {	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |				  L_PTE_SHARED,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,		.domain		= DOMAIN_IO,	},	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE,		.domain		= DOMAIN_IO,	},	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,		.domain		= DOMAIN_IO,	},	[MT_DEVICE_WC] = {	/* ioremap_wc */		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PROT_SECT_DEVICE,		.domain		= DOMAIN_IO,	},	[MT_UNCACHED] = {		.prot_pte	= PROT_PTE_DEVICE,		.prot_l1	= PMD_TYPE_TABLE,		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,		.domain		= DOMAIN_IO,	},	[MT_CACHECLEAN] = {		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,		.domain    = DOMAIN_KERNEL,	},#ifndef CONFIG_ARM_LPAE	[MT_MINICLEAN] = {		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,		.domain    = DOMAIN_KERNEL,	},#endif	[MT_LOW_VECTORS] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_RDONLY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_USER,	},	[MT_HIGH_VECTORS] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_USER | L_PTE_RDONLY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_USER,	},	[MT_MEMORY] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,		.domain    = DOMAIN_KERNEL,	},	[MT_ROM] = {		.prot_sect = PMD_TYPE_SECT,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_NONCACHED] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_MT_BUFFERABLE,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_DTCM] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_XN,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_ITCM] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_SO] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |				L_PTE_MT_UNCACHED | L_PTE_XN,		.prot_l1   = PMD_TYPE_TABLE,		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |				PMD_SECT_UNCACHED | PMD_SECT_XN,		.domain    = DOMAIN_KERNEL,	},	[MT_MEMORY_DMA_READY] = {		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,		.prot_l1   = PMD_TYPE_TABLE,		.domain    = DOMAIN_KERNEL,	},};const struct mem_type *get_mem_type(unsigned int type){	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;}EXPORT_SYMBOL(get_mem_type);/* * Adjust the PMD section entries according to the CPU in use. */static void __init build_mem_type_table(void){	struct cachepolicy *cp;	unsigned int cr = get_cr();	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;	int cpu_arch = cpu_architecture();	int i;	if (cpu_arch < CPU_ARCH_ARMv6) {#if defined(CONFIG_CPU_DCACHE_DISABLE)		if (cachepolicy > CPOLICY_BUFFERED)			cachepolicy = CPOLICY_BUFFERED;#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)		if (cachepolicy > CPOLICY_WRITETHROUGH)			cachepolicy = CPOLICY_WRITETHROUGH;#endif	}	if (cpu_arch < CPU_ARCH_ARMv5) {		if (cachepolicy >= CPOLICY_WRITEALLOC)			cachepolicy = CPOLICY_WRITEBACK;		ecc_mask = 0;	}	if (is_smp())		cachepolicy = CPOLICY_WRITEALLOC;	/*	 * Strip out features not present on earlier architectures.	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those	 * without extended page tables don't have the 'Shared' bit.	 */	if (cpu_arch < CPU_ARCH_ARMv5)		for (i = 0; i < ARRAY_SIZE(mem_types); i++)			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())		for (i = 0; i < ARRAY_SIZE(mem_types); i++)			mem_types[i].prot_sect &= ~PMD_SECT_S;	/*	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache	 * "update-able on write" bit on ARM610).  However, Xscale and	 * Xscale3 require this bit to be cleared.	 */	if (cpu_is_xscale() || cpu_is_xsc3()) {		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {			mem_types[i].prot_sect &= ~PMD_BIT4;			mem_types[i].prot_l1 &= ~PMD_BIT4;		}	} else if (cpu_arch < CPU_ARCH_ARMv6) {		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {			if (mem_types[i].prot_l1)				mem_types[i].prot_l1 |= PMD_BIT4;			if (mem_types[i].prot_sect)				mem_types[i].prot_sect |= PMD_BIT4;		}	}	/*	 * Mark the device areas according to the CPU/architecture.	 */	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {		if (!cpu_is_xsc3()) {			/*			 * Mark device regions on ARMv6+ as execute-never			 * to prevent speculative instruction fetches.			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;		}		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {			/*			 * For ARMv7 with TEX remapping,			 * - shared device is SXCB=1100			 * - nonshared device is SXCB=0100			 * - write combine device mem is SXCB=0001			 * (Uncached Normal memory)			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;		} else if (cpu_is_xsc3()) {			/*			 * For Xscale3,			 * - shared device is TEXCB=00101			 * - nonshared device is TEXCB=01000			 * - write combine device mem is TEXCB=00100			 * (Inner/Outer Uncacheable in xsc3 parlance)			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);		} else {			/*			 * For ARMv6 and ARMv7 without TEX remapping,			 * - shared device is TEXCB=00001			 * - nonshared device is TEXCB=01000			 * - write combine device mem is TEXCB=00100			 * (Uncached Normal in ARMv6 parlance).			 */			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);		}	} else {		/*		 * On others, write combining is "Uncached/Buffered"		 */		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;	}	/*	 * Now deal with the memory-type mappings	 */	cp = &cache_policies[cachepolicy];	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;	/*	 * ARMv6 and above have extended page tables.	 */	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {#ifndef CONFIG_ARM_LPAE		/*		 * Mark cache clean areas and XIP ROM read only		 * from SVC mode and no access from userspace.		 */		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;#endif		if (is_smp()) {			/*			 * Mark memory with the "shared" attribute			 * for SMP systems			 */			user_pgprot |= L_PTE_SHARED;			kern_pgprot |= L_PTE_SHARED;			vecs_pgprot |= L_PTE_SHARED;			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;		}	}	/*	 * Non-cacheable Normal - intended for memory areas that must	 * not cause dirty cache line writebacks when used	 */	if (cpu_arch >= CPU_ARCH_ARMv6) {		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {			/* Non-cacheable Normal is XCB = 001 */			mem_types[MT_MEMORY_NONCACHED].prot_sect |=				PMD_SECT_BUFFERED;		} else {			/* For both ARMv6 and non-TEX-remapping ARMv7 */			mem_types[MT_MEMORY_NONCACHED].prot_sect |=				PMD_SECT_TEX(1);		}	} else {		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;	}#ifdef CONFIG_ARM_LPAE	/*	 * Do not generate access flag faults for the kernel mappings.	 */	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {		mem_types[i].prot_pte |= PTE_EXT_AF;		if (mem_types[i].prot_sect)			mem_types[i].prot_sect |= PMD_SECT_AF;	}	kern_pgprot |= PTE_EXT_AF;	vecs_pgprot |= PTE_EXT_AF;#endif	for (i = 0; i < 16; i++) {		pteval_t v = pgprot_val(protection_map[i]);		protection_map[i] = __pgprot(v | user_pgprot);	}	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |				 L_PTE_DIRTY | kern_pgprot);	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;	mem_types[MT_ROM].prot_sect |= cp->pmd;	switch (cp->pmd) {	case PMD_SECT_WT:		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;		break;	case PMD_SECT_WB:	case PMD_SECT_WBWA:		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;		break;	}	printk("Memory policy: ECC %sabled, Data cache %s\n",		ecc_mask ? "en" : "dis", cp->policy);	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {		struct mem_type *t = &mem_types[i];		if (t->prot_l1)			t->prot_l1 |= PMD_DOMAIN(t->domain);		if (t->prot_sect)			t->prot_sect |= PMD_DOMAIN(t->domain);	}}#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLEpgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,			      unsigned long size, pgprot_t vma_prot){	if (!pfn_valid(pfn))		return pgprot_noncached(vma_prot);	else if (file->f_flags & O_SYNC)		return pgprot_writecombine(vma_prot);	return vma_prot;}EXPORT_SYMBOL(phys_mem_access_prot);#endif#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)static void __init *early_alloc_aligned(unsigned long sz, unsigned long align){	void *ptr = __va(memblock_alloc(sz, align));	memset(ptr, 0, sz);	return ptr;}static void __init *early_alloc(unsigned long sz){	return early_alloc_aligned(sz, sz);}static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot){	if (pmd_none(*pmd)) {		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);		__pmd_populate(pmd, __pa(pte), prot);	}	BUG_ON(pmd_bad(*pmd));	return pte_offset_kernel(pmd, addr);}static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,				  unsigned long end, unsigned long pfn,				  const struct mem_type *type){	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);	do {		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);		pfn++;	} while (pte++, addr += PAGE_SIZE, addr != end);}static void __init alloc_init_section(pud_t *pud, unsigned long addr,				      unsigned long end, phys_addr_t phys,				      const struct mem_type *type){	pmd_t *pmd = pmd_offset(pud, addr);	/*	 * Try a section mapping - end, addr and phys must all be aligned	 * to a section boundary.  Note that PMDs refer to the individual	 * L1 entries, whereas PGDs refer to a group of L1 entries making	 * up one logical pointer to an L2 table.	 */	if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {		pmd_t *p = pmd;#ifndef CONFIG_ARM_LPAE
 |