| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 | /* *  linux/arch/arm/vfp/vfp.h * *  Copyright (C) 2004 ARM Limited. *  Written by Deep Blue Solutions Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift){	if (shift) {		if (shift < 32)			val = val >> shift | ((val << (32 - shift)) != 0);		else			val = val != 0;	}	return val;}static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift){	if (shift) {		if (shift < 64)			val = val >> shift | ((val << (64 - shift)) != 0);		else			val = val != 0;	}	return val;}static inline u32 vfp_hi64to32jamming(u64 val){	u32 v;	asm(	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"	"movcc	%0, %R1\n\t"	"orrcs	%0, %R1, #1"	: "=r" (v) : "r" (val) : "cc");	return v;}static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml){	asm(	"adds	%Q0, %Q2, %Q4\n\t"		"adcs	%R0, %R2, %R4\n\t"		"adcs	%Q1, %Q3, %Q5\n\t"		"adc	%R1, %R3, %R5"	    : "=r" (nl), "=r" (nh)	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)	    : "cc");	*resh = nh;	*resl = nl;}static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml){	asm(	"subs	%Q0, %Q2, %Q4\n\t"		"sbcs	%R0, %R2, %R4\n\t"		"sbcs	%Q1, %Q3, %Q5\n\t"		"sbc	%R1, %R3, %R5\n\t"	    : "=r" (nl), "=r" (nh)	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)	    : "cc");	*resh = nh;	*resl = nl;}static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m){	u32 nh, nl, mh, ml;	u64 rh, rma, rmb, rl;	nl = n;	ml = m;	rl = (u64)nl * ml;	nh = n >> 32;	rma = (u64)nh * ml;	mh = m >> 32;	rmb = (u64)nl * mh;	rma += rmb;	rh = (u64)nh * mh;	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);	rma <<= 32;	rl += rma;	rh += (rl < rma);	*resl = rl;	*resh = rh;}static inline void shift64left(u64 *resh, u64 *resl, u64 n){	*resh = n >> 63;	*resl = n << 1;}static inline u64 vfp_hi64multiply64(u64 n, u64 m){	u64 rh, rl;	mul64to128(&rh, &rl, n, m);	return rh | (rl != 0);}static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m){	u64 mh, ml, remh, reml, termh, terml, z;	if (nh >= m)		return ~0ULL;	mh = m >> 32;	if (mh << 32 <= nh) {		z = 0xffffffff00000000ULL;	} else {		z = nh;		do_div(z, mh);		z <<= 32;	}	mul64to128(&termh, &terml, m, z);	sub128(&remh, &reml, nh, nl, termh, terml);	ml = m << 32;	while ((s64)remh < 0) {		z -= 0x100000000ULL;		add128(&remh, &reml, remh, reml, mh, ml);	}	remh = (remh << 32) | (reml >> 32);	if (mh << 32 <= remh) {		z |= 0xffffffff;	} else {		do_div(remh, mh);		z |= remh;	}	return z;}/* * Operations on unpacked elements */#define vfp_sign_negate(sign)	(sign ^ 0x8000)/* * Single-precision */struct vfp_single {	s16	exponent;	u16	sign;	u32	significand;};extern s32 vfp_get_float(unsigned int reg);extern void vfp_put_float(s32 val, unsigned int reg);/* * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand *  which are not propagated to the float upon packing. */#define VFP_SINGLE_MANTISSA_BITS	(23)#define VFP_SINGLE_EXPONENT_BITS	(8)#define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)#define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)/* * The bit in an unpacked float which indicates that it is a quiet NaN */#define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))/* * Operations on packed single-precision numbers */#define vfp_single_packed_sign(v)	((v) & 0x80000000)#define vfp_single_packed_negate(v)	((v) ^ 0x80000000)#define vfp_single_packed_abs(v)	((v) & ~0x80000000)#define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))#define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))/* * Unpack a single-precision float.  Note that this returns the magnitude * of the single-precision float mantissa with the 1. if necessary, * aligned to bit 30. */static inline void vfp_single_unpack(struct vfp_single *s, s32 val){	u32 significand;	s->sign = vfp_single_packed_sign(val) >> 16,	s->exponent = vfp_single_packed_exponent(val);	significand = (u32) val;	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;	if (s->exponent && s->exponent != 255)		significand |= 0x40000000;	s->significand = significand;}/* * Re-pack a single-precision float.  This assumes that the float is * already normalised such that the MSB is bit 30, _not_ bit 31. */static inline s32 vfp_single_pack(struct vfp_single *s){	u32 val;	val = (s->sign << 16) +	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +	      (s->significand >> VFP_SINGLE_LOW_BITS);	return (s32)val;}#define VFP_NUMBER		(1<<0)#define VFP_ZERO		(1<<1)#define VFP_DENORMAL		(1<<2)#define VFP_INFINITY		(1<<3)#define VFP_NAN			(1<<4)#define VFP_NAN_SIGNAL		(1<<5)#define VFP_QNAN		(VFP_NAN)#define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)static inline int vfp_single_type(struct vfp_single *s){	int type = VFP_NUMBER;	if (s->exponent == 255) {		if (s->significand == 0)			type = VFP_INFINITY;		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)			type = VFP_QNAN;		else			type = VFP_SNAN;	} else if (s->exponent == 0) {		if (s->significand == 0)			type |= VFP_ZERO;		else			type |= VFP_DENORMAL;	}	return type;}#ifndef DEBUG#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);#elseu32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);#endif/* * Double-precision */struct vfp_double {	s16	exponent;	u16	sign;	u64	significand;};/* * VFP_REG_ZERO is a special register number for vfp_get_double * which returns (double)0.0.  This is useful for the compare with * zero instructions. */#ifdef CONFIG_VFPv3#define VFP_REG_ZERO	32#else#define VFP_REG_ZERO	16#endifextern u64 vfp_get_double(unsigned int reg);extern void vfp_put_double(u64 val, unsigned int reg);#define VFP_DOUBLE_MANTISSA_BITS	(52)#define VFP_DOUBLE_EXPONENT_BITS	(11)#define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)#define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)/* * The bit in an unpacked double which indicates that it is a quiet NaN */#define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))/* * Operations on packed single-precision numbers */#define vfp_double_packed_sign(v)	((v) & (1ULL << 63))#define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))#define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))#define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))#define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))/* * Unpack a double-precision float.  Note that this returns the magnitude * of the double-precision float mantissa with the 1. if necessary, * aligned to bit 62. */static inline void vfp_double_unpack(struct vfp_double *s, s64 val){	u64 significand;	s->sign = vfp_double_packed_sign(val) >> 48;	s->exponent = vfp_double_packed_exponent(val);	significand = (u64) val;	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;	if (s->exponent && s->exponent != 2047)		significand |= (1ULL << 62);
 |