| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776 | 
							- /*
 
- ===============================================================================
 
- This C source file is part of the SoftFloat IEC/IEEE Floating-point
 
- Arithmetic Package, Release 2.
 
- Written by John R. Hauser.  This work was made possible in part by the
 
- International Computer Science Institute, located at Suite 600, 1947 Center
 
- Street, Berkeley, California 94704.  Funding was partially provided by the
 
- National Science Foundation under grant MIP-9311980.  The original version
 
- of this code was written as part of a project to build a fixed-point vector
 
- processor in collaboration with the University of California at Berkeley,
 
- overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 
- is available through the web page
 
- http://www.jhauser.us/arithmetic/SoftFloat-2b/SoftFloat-source.txt
 
- THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 
- has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 
- TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 
- PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 
- AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 
- Derivative works are acceptable, even for commercial purposes, so long as
 
- (1) they include prominent notice that the work is derivative, and (2) they
 
- include prominent notice akin to these three paragraphs for those parts of
 
- this code that are retained.
 
- ===============================================================================
 
- */
 
- #include <asm/div64.h>
 
- #include "fpa11.h"
 
- //#include "milieu.h"
 
- //#include "softfloat.h"
 
- /*
 
- -------------------------------------------------------------------------------
 
- Primitive arithmetic functions, including multi-word arithmetic, and
 
- division and square root approximations.  (Can be specialized to target if
 
- desired.)
 
- -------------------------------------------------------------------------------
 
- */
 
- #include "softfloat-macros"
 
- /*
 
- -------------------------------------------------------------------------------
 
- Functions and definitions to determine:  (1) whether tininess for underflow
 
- is detected before or after rounding by default, (2) what (if anything)
 
- happens when exceptions are raised, (3) how signaling NaNs are distinguished
 
- from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 
- are propagated from function inputs to output.  These details are target-
 
- specific.
 
- -------------------------------------------------------------------------------
 
- */
 
- #include "softfloat-specialize"
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 
- and 7, and returns the properly rounded 32-bit integer corresponding to the
 
- input.  If `zSign' is nonzero, the input is negated before being converted
 
- to an integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point
 
- input is simply rounded to an integer, with the inexact exception raised if
 
- the input cannot be represented exactly as an integer.  If the fixed-point
 
- input is too large, however, the invalid exception is raised and the largest
 
- positive or negative integer is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- static int32 roundAndPackInt32( struct roundingData *roundData, flag zSign, bits64 absZ )
 
- {
 
-     int8 roundingMode;
 
-     flag roundNearestEven;
 
-     int8 roundIncrement, roundBits;
 
-     int32 z;
 
-     roundingMode = roundData->mode;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     roundIncrement = 0x40;
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = 0x7F;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = absZ & 0x7F;
 
-     absZ = ( absZ + roundIncrement )>>7;
 
-     absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 
-     z = absZ;
 
-     if ( zSign ) z = - z;
 
-     if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 
-         roundData->exception |= float_flag_invalid;
 
-         return zSign ? 0x80000000 : 0x7FFFFFFF;
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the fraction bits of the single-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE bits32 extractFloat32Frac( float32 a )
 
- {
 
-     return a & 0x007FFFFF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the exponent bits of the single-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE int16 extractFloat32Exp( float32 a )
 
- {
 
-     return ( a>>23 ) & 0xFF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the sign bit of the single-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- #if 0	/* in softfloat.h */
 
- INLINE flag extractFloat32Sign( float32 a )
 
- {
 
-     return a>>31;
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Normalizes the subnormal single-precision floating-point value represented
 
- by the denormalized significand `aSig'.  The normalized exponent and
 
- significand are stored at the locations pointed to by `zExpPtr' and
 
- `zSigPtr', respectively.
 
- -------------------------------------------------------------------------------
 
- */
 
- static void
 
-  normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros32( aSig ) - 8;
 
-     *zSigPtr = aSig<<shiftCount;
 
-     *zExpPtr = 1 - shiftCount;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 
- single-precision floating-point value, returning the result.  After being
 
- shifted into the proper positions, the three fields are simply added
 
- together to form the result.  This means that any integer portion of `zSig'
 
- will be added into the exponent.  Since a properly normalized significand
 
- will have an integer portion equal to 1, the `zExp' input should be 1 less
 
- than the desired result exponent whenever `zSig' is a complete, normalized
 
- significand.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
 
- {
 
- #if 0
 
-    float32 f;
 
-    __asm__("@ packFloat32				\n\
 
-    	    mov %0, %1, asl #31				\n\
 
-    	    orr %0, %2, asl #23				\n\
 
-    	    orr %0, %3"
 
-    	    : /* no outputs */
 
-    	    : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig)
 
-    	    : "cc");
 
-    return f;
 
- #else
 
-     return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
 
- #endif 
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper single-precision floating-
 
- point value corresponding to the abstract input.  Ordinarily, the abstract
 
- value is simply rounded and packed into the single-precision format, with
 
- the inexact exception raised if the abstract input cannot be represented
 
- exactly.  If the abstract value is too large, however, the overflow and
 
- inexact exceptions are raised and an infinity or maximal finite value is
 
- returned.  If the abstract value is too small, the input value is rounded to
 
- a subnormal number, and the underflow and inexact exceptions are raised if
 
- the abstract input cannot be represented exactly as a subnormal single-
 
- precision floating-point number.
 
-     The input significand `zSig' has its binary point between bits 30
 
- and 29, which is 7 bits to the left of the usual location.  This shifted
 
- significand must be normalized or smaller.  If `zSig' is not normalized,
 
- `zExp' must be 0; in that case, the result returned is a subnormal number,
 
- and it must not require rounding.  In the usual case that `zSig' is
 
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 
- The handling of underflow and overflow follows the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32 roundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
 
- {
 
-     int8 roundingMode;
 
-     flag roundNearestEven;
 
-     int8 roundIncrement, roundBits;
 
-     flag isTiny;
 
-     roundingMode = roundData->mode;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     roundIncrement = 0x40;
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = 0x7F;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = zSig & 0x7F;
 
-     if ( 0xFD <= (bits16) zExp ) {
 
-         if (    ( 0xFD < zExp )
 
-              || (    ( zExp == 0xFD )
 
-                   && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
 
-            ) {
 
-             roundData->exception |= float_flag_overflow | float_flag_inexact;
 
-             return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
 
-         }
 
-         if ( zExp < 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < -1 )
 
-                 || ( zSig + roundIncrement < 0x80000000 );
 
-             shift32RightJamming( zSig, - zExp, &zSig );
 
-             zExp = 0;
 
-             roundBits = zSig & 0x7F;
 
-             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 
-         }
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     zSig = ( zSig + roundIncrement )>>7;
 
-     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 
-     if ( zSig == 0 ) zExp = 0;
 
-     return packFloat32( zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper single-precision floating-
 
- point value corresponding to the abstract input.  This routine is just like
 
- `roundAndPackFloat32' except that `zSig' does not have to be normalized in
 
- any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 
- point exponent.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32
 
-  normalizeRoundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros32( zSig ) - 1;
 
-     return roundAndPackFloat32( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the fraction bits of the double-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE bits64 extractFloat64Frac( float64 a )
 
- {
 
-     return a & LIT64( 0x000FFFFFFFFFFFFF );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the exponent bits of the double-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE int16 extractFloat64Exp( float64 a )
 
- {
 
-     return ( a>>52 ) & 0x7FF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the sign bit of the double-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- #if 0	/* in softfloat.h */
 
- INLINE flag extractFloat64Sign( float64 a )
 
- {
 
-     return a>>63;
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Normalizes the subnormal double-precision floating-point value represented
 
- by the denormalized significand `aSig'.  The normalized exponent and
 
- significand are stored at the locations pointed to by `zExpPtr' and
 
- `zSigPtr', respectively.
 
- -------------------------------------------------------------------------------
 
- */
 
- static void
 
-  normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros64( aSig ) - 11;
 
-     *zSigPtr = aSig<<shiftCount;
 
-     *zExpPtr = 1 - shiftCount;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 
- double-precision floating-point value, returning the result.  After being
 
- shifted into the proper positions, the three fields are simply added
 
- together to form the result.  This means that any integer portion of `zSig'
 
- will be added into the exponent.  Since a properly normalized significand
 
- will have an integer portion equal to 1, the `zExp' input should be 1 less
 
- than the desired result exponent whenever `zSig' is a complete, normalized
 
- significand.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
 
- {
 
-     return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper double-precision floating-
 
- point value corresponding to the abstract input.  Ordinarily, the abstract
 
- value is simply rounded and packed into the double-precision format, with
 
- the inexact exception raised if the abstract input cannot be represented
 
- exactly.  If the abstract value is too large, however, the overflow and
 
- inexact exceptions are raised and an infinity or maximal finite value is
 
- returned.  If the abstract value is too small, the input value is rounded to
 
- a subnormal number, and the underflow and inexact exceptions are raised if
 
- the abstract input cannot be represented exactly as a subnormal double-
 
- precision floating-point number.
 
-     The input significand `zSig' has its binary point between bits 62
 
- and 61, which is 10 bits to the left of the usual location.  This shifted
 
- significand must be normalized or smaller.  If `zSig' is not normalized,
 
- `zExp' must be 0; in that case, the result returned is a subnormal number,
 
- and it must not require rounding.  In the usual case that `zSig' is
 
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 
- The handling of underflow and overflow follows the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float64 roundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
 
- {
 
-     int8 roundingMode;
 
-     flag roundNearestEven;
 
-     int16 roundIncrement, roundBits;
 
-     flag isTiny;
 
-     roundingMode = roundData->mode;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     roundIncrement = 0x200;
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = 0x3FF;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = zSig & 0x3FF;
 
-     if ( 0x7FD <= (bits16) zExp ) {
 
-         if (    ( 0x7FD < zExp )
 
-              || (    ( zExp == 0x7FD )
 
-                   && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
 
-            ) {
 
-             //register int lr = __builtin_return_address(0);
 
-             //printk("roundAndPackFloat64 called from 0x%08x\n",lr);
 
-             roundData->exception |= float_flag_overflow | float_flag_inexact;
 
-             return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
 
-         }
 
-         if ( zExp < 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < -1 )
 
-                 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
 
-             shift64RightJamming( zSig, - zExp, &zSig );
 
-             zExp = 0;
 
-             roundBits = zSig & 0x3FF;
 
-             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 
-         }
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     zSig = ( zSig + roundIncrement )>>10;
 
-     zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
 
-     if ( zSig == 0 ) zExp = 0;
 
-     return packFloat64( zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper double-precision floating-
 
- point value corresponding to the abstract input.  This routine is just like
 
- `roundAndPackFloat64' except that `zSig' does not have to be normalized in
 
- any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 
- point exponent.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float64
 
-  normalizeRoundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros64( zSig ) - 1;
 
-     return roundAndPackFloat64( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the fraction bits of the extended double-precision floating-point
 
- value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE bits64 extractFloatx80Frac( floatx80 a )
 
- {
 
-     return a.low;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the exponent bits of the extended double-precision floating-point
 
- value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE int32 extractFloatx80Exp( floatx80 a )
 
- {
 
-     return a.high & 0x7FFF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the sign bit of the extended double-precision floating-point value
 
- `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE flag extractFloatx80Sign( floatx80 a )
 
- {
 
-     return a.high>>15;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Normalizes the subnormal extended double-precision floating-point value
 
- represented by the denormalized significand `aSig'.  The normalized exponent
 
- and significand are stored at the locations pointed to by `zExpPtr' and
 
- `zSigPtr', respectively.
 
- -------------------------------------------------------------------------------
 
- */
 
- static void
 
-  normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros64( aSig );
 
-     *zSigPtr = aSig<<shiftCount;
 
-     *zExpPtr = 1 - shiftCount;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
 
- extended double-precision floating-point value, returning the result.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
 
- {
 
-     floatx80 z;
 
-     z.low = zSig;
 
-     z.high = ( ( (bits16) zSign )<<15 ) + zExp;
 
-     z.__padding = 0;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and extended significand formed by the concatenation of `zSig0' and `zSig1',
 
- and returns the proper extended double-precision floating-point value
 
- corresponding to the abstract input.  Ordinarily, the abstract value is
 
- rounded and packed into the extended double-precision format, with the
 
- inexact exception raised if the abstract input cannot be represented
 
- exactly.  If the abstract value is too large, however, the overflow and
 
- inexact exceptions are raised and an infinity or maximal finite value is
 
- returned.  If the abstract value is too small, the input value is rounded to
 
- a subnormal number, and the underflow and inexact exceptions are raised if
 
- the abstract input cannot be represented exactly as a subnormal extended
 
- double-precision floating-point number.
 
-     If `roundingPrecision' is 32 or 64, the result is rounded to the same
 
- number of bits as single or double precision, respectively.  Otherwise, the
 
- result is rounded to the full precision of the extended double-precision
 
- format.
 
-     The input significand must be normalized or smaller.  If the input
 
- significand is not normalized, `zExp' must be 0; in that case, the result
 
- returned is a subnormal number, and it must not require rounding.  The
 
- handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static floatx80
 
-  roundAndPackFloatx80(
 
-      struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 
-  )
 
- {
 
-     int8 roundingMode, roundingPrecision;
 
-     flag roundNearestEven, increment, isTiny;
 
-     int64 roundIncrement, roundMask, roundBits;
 
-     roundingMode = roundData->mode;
 
-     roundingPrecision = roundData->precision;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     if ( roundingPrecision == 80 ) goto precision80;
 
-     if ( roundingPrecision == 64 ) {
 
-         roundIncrement = LIT64( 0x0000000000000400 );
 
-         roundMask = LIT64( 0x00000000000007FF );
 
-     }
 
-     else if ( roundingPrecision == 32 ) {
 
-         roundIncrement = LIT64( 0x0000008000000000 );
 
-         roundMask = LIT64( 0x000000FFFFFFFFFF );
 
-     }
 
-     else {
 
-         goto precision80;
 
-     }
 
-     zSig0 |= ( zSig1 != 0 );
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = roundMask;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = zSig0 & roundMask;
 
-     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 
-         if (    ( 0x7FFE < zExp )
 
-              || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 
-            ) {
 
-             goto overflow;
 
-         }
 
-         if ( zExp <= 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < 0 )
 
-                 || ( zSig0 <= zSig0 + roundIncrement );
 
-             shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 
-             zExp = 0;
 
-             roundBits = zSig0 & roundMask;
 
-             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 
-             if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-             zSig0 += roundIncrement;
 
-             if ( (sbits64) zSig0 < 0 ) zExp = 1;
 
-             roundIncrement = roundMask + 1;
 
-             if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 
-                 roundMask |= roundIncrement;
 
-             }
 
-             zSig0 &= ~ roundMask;
 
-             return packFloatx80( zSign, zExp, zSig0 );
 
-         }
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     zSig0 += roundIncrement;
 
-     if ( zSig0 < roundIncrement ) {
 
-         ++zExp;
 
-         zSig0 = LIT64( 0x8000000000000000 );
 
-     }
 
-     roundIncrement = roundMask + 1;
 
-     if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 
-         roundMask |= roundIncrement;
 
-     }
 
-     zSig0 &= ~ roundMask;
 
-     if ( zSig0 == 0 ) zExp = 0;
 
-     return packFloatx80( zSign, zExp, zSig0 );
 
-  precision80:
 
-     increment = ( (sbits64) zSig1 < 0 );
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             increment = 0;
 
-         }
 
-         else {
 
-             if ( zSign ) {
 
-                 increment = ( roundingMode == float_round_down ) && zSig1;
 
-             }
 
-             else {
 
-                 increment = ( roundingMode == float_round_up ) && zSig1;
 
-             }
 
-         }
 
-     }
 
-     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 
-         if (    ( 0x7FFE < zExp )
 
-              || (    ( zExp == 0x7FFE )
 
-                   && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
 
-                   && increment
 
-                 )
 
-            ) {
 
-             roundMask = 0;
 
-  overflow:
 
-             roundData->exception |= float_flag_overflow | float_flag_inexact;
 
-             if (    ( roundingMode == float_round_to_zero )
 
-                  || ( zSign && ( roundingMode == float_round_up ) )
 
-                  || ( ! zSign && ( roundingMode == float_round_down ) )
 
-                ) {
 
-                 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 
-             }
 
-             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
-         }
 
-         if ( zExp <= 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < 0 )
 
-                 || ! increment
 
-                 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
 
-             shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 
-             zExp = 0;
 
-             if ( isTiny && zSig1 ) roundData->exception |= float_flag_underflow;
 
-             if ( zSig1 ) roundData->exception |= float_flag_inexact;
 
-             if ( roundNearestEven ) {
 
-                 increment = ( (sbits64) zSig1 < 0 );
 
-             }
 
-             else {
 
-                 if ( zSign ) {
 
-                     increment = ( roundingMode == float_round_down ) && zSig1;
 
-                 }
 
-                 else {
 
-                     increment = ( roundingMode == float_round_up ) && zSig1;
 
-                 }
 
-             }
 
-             if ( increment ) {
 
-                 ++zSig0;
 
-                 zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
 
-                 if ( (sbits64) zSig0 < 0 ) zExp = 1;
 
-             }
 
-             return packFloatx80( zSign, zExp, zSig0 );
 
-         }
 
-     }
 
-     if ( zSig1 ) roundData->exception |= float_flag_inexact;
 
-     if ( increment ) {
 
-         ++zSig0;
 
-         if ( zSig0 == 0 ) {
 
-             ++zExp;
 
-             zSig0 = LIT64( 0x8000000000000000 );
 
-         }
 
-         else {
 
-             zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
 
-         }
 
-     }
 
-     else {
 
-         if ( zSig0 == 0 ) zExp = 0;
 
-     }
 
-     
 
-     return packFloatx80( zSign, zExp, zSig0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent
 
- `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 
- and returns the proper extended double-precision floating-point value
 
- corresponding to the abstract input.  This routine is just like
 
- `roundAndPackFloatx80' except that the input significand does not have to be
 
- normalized.
 
- -------------------------------------------------------------------------------
 
- */
 
- static floatx80
 
-  normalizeRoundAndPackFloatx80(
 
-      struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 
-  )
 
- {
 
-     int8 shiftCount;
 
-     if ( zSig0 == 0 ) {
 
-         zSig0 = zSig1;
 
-         zSig1 = 0;
 
-         zExp -= 64;
 
-     }
 
-     shiftCount = countLeadingZeros64( zSig0 );
 
-     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 
-     zExp -= shiftCount;
 
-     return
 
-         roundAndPackFloatx80( roundData, zSign, zExp, zSig0, zSig1 );
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the 32-bit two's complement integer `a' to
 
- the single-precision floating-point format.  The conversion is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 int32_to_float32(struct roundingData *roundData, int32 a)
 
- {
 
-     flag zSign;
 
-     if ( a == 0 ) return 0;
 
-     if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
 
-     zSign = ( a < 0 );
 
-     return normalizeRoundAndPackFloat32( roundData, zSign, 0x9C, zSign ? - a : a );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the 32-bit two's complement integer `a' to
 
- the double-precision floating-point format.  The conversion is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 int32_to_float64( int32 a )
 
- {
 
-     flag aSign;
 
-     uint32 absA;
 
-     int8 shiftCount;
 
-     bits64 zSig;
 
-     if ( a == 0 ) return 0;
 
-     aSign = ( a < 0 );
 
-     absA = aSign ? - a : a;
 
-     shiftCount = countLeadingZeros32( absA ) + 21;
 
-     zSig = absA;
 
-     return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the 32-bit two's complement integer `a'
 
- to the extended double-precision floating-point format.  The conversion
 
- is performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- floatx80 int32_to_floatx80( int32 a )
 
- {
 
-     flag zSign;
 
-     uint32 absA;
 
-     int8 shiftCount;
 
-     bits64 zSig;
 
-     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 
-     zSign = ( a < 0 );
 
-     absA = zSign ? - a : a;
 
-     shiftCount = countLeadingZeros32( absA ) + 32;
 
-     zSig = absA;
 
-     return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the 32-bit two's complement integer format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic---which means in particular that the conversion is rounded
 
- according to the current rounding mode.  If `a' is a NaN, the largest
 
- positive integer is returned.  Otherwise, if the conversion overflows, the
 
- largest integer with the same sign as `a' is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float32_to_int32( struct roundingData *roundData, float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits32 aSig;
 
-     bits64 zSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 
-     if ( aExp ) aSig |= 0x00800000;
 
-     shiftCount = 0xAF - aExp;
 
-     zSig = aSig;
 
-     zSig <<= 32;
 
-     if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig );
 
-     return roundAndPackInt32( roundData, aSign, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the 32-bit two's complement integer format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic, except that the conversion is always rounded toward zero.  If
 
- `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 
- conversion overflows, the largest integer with the same sign as `a' is
 
- returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float32_to_int32_round_to_zero( float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits32 aSig;
 
-     int32 z;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     shiftCount = aExp - 0x9E;
 
-     if ( 0 <= shiftCount ) {
 
-         if ( a == 0xCF000000 ) return 0x80000000;
 
-         float_raise( float_flag_invalid );
 
-         if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
 
-         return 0x80000000;
 
-     }
 
-     else if ( aExp <= 0x7E ) {
 
-         if ( aExp | aSig ) float_raise( float_flag_inexact );
 
-         return 0;
 
-     }
 
-     aSig = ( aSig | 0x00800000 )<<8;
 
-     z = aSig>>( - shiftCount );
 
-     if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
 
-         float_raise( float_flag_inexact );
 
-     }
 
-     return aSign ? - z : z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the double-precision floating-point format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float32_to_float64( float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits32 aSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
 
-         return packFloat64( aSign, 0x7FF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-         --aExp;
 
-     }
 
-     return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the extended double-precision floating-point format.  The conversion
 
- is performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- floatx80 float32_to_floatx80( float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits32 aSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
 
-         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     aSig |= 0x00800000;
 
-     return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Rounds the single-precision floating-point value `a' to an integer, and
 
- returns the result as a single-precision floating-point value.  The
 
- operation is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_round_to_int( struct roundingData *roundData, float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits32 lastBitMask, roundBitsMask;
 
-     int8 roundingMode;
 
-     float32 z;
 
-     aExp = extractFloat32Exp( a );
 
-     if ( 0x96 <= aExp ) {
 
-         if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
 
-             return propagateFloat32NaN( a, a );
 
-         }
 
-         return a;
 
-     }
 
-     roundingMode = roundData->mode;
 
-     if ( aExp <= 0x7E ) {
 
-         if ( (bits32) ( a<<1 ) == 0 ) return a;
 
-         roundData->exception |= float_flag_inexact;
 
-         aSign = extractFloat32Sign( a );
 
-         switch ( roundingMode ) {
 
-          case float_round_nearest_even:
 
-             if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
 
-                 return packFloat32( aSign, 0x7F, 0 );
 
-             }
 
-             break;
 
-          case float_round_down:
 
-             return aSign ? 0xBF800000 : 0;
 
-          case float_round_up:
 
-             return aSign ? 0x80000000 : 0x3F800000;
 
-         }
 
-         return packFloat32( aSign, 0, 0 );
 
-     }
 
-     lastBitMask = 1;
 
-     lastBitMask <<= 0x96 - aExp;
 
-     roundBitsMask = lastBitMask - 1;
 
-     z = a;
 
-     if ( roundingMode == float_round_nearest_even ) {
 
-         z += lastBitMask>>1;
 
-         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 
-     }
 
-     else if ( roundingMode != float_round_to_zero ) {
 
-         if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 
-             z += roundBitsMask;
 
-         }
 
-     }
 
-     z &= ~ roundBitsMask;
 
-     if ( z != a ) roundData->exception |= float_flag_inexact;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of adding the absolute values of the single-precision
 
- floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
 
- before being returned.  `zSign' is ignored if the result is a NaN.  The
 
- addition is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32 addFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
 
- {
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig, zSig;
 
-     int16 expDiff;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     expDiff = aExp - bExp;
 
-     aSig <<= 6;
 
-     bSig <<= 6;
 
-     if ( 0 < expDiff ) {
 
-         if ( aExp == 0xFF ) {
 
-             if ( aSig ) return propagateFloat32NaN( a, b );
 
-             return a;
 
-         }
 
-         if ( bExp == 0 ) {
 
-             --expDiff;
 
-         }
 
-         else {
 
-             bSig |= 0x20000000;
 
-         }
 
-         shift32RightJamming( bSig, expDiff, &bSig );
 
-         zExp = aExp;
 
-     }
 
-     else if ( expDiff < 0 ) {
 
-         if ( bExp == 0xFF ) {
 
-             if ( bSig ) return propagateFloat32NaN( a, b );
 
-             return packFloat32( zSign, 0xFF, 0 );
 
-         }
 
-         if ( aExp == 0 ) {
 
-             ++expDiff;
 
-         }
 
-         else {
 
-             aSig |= 0x20000000;
 
-         }
 
-         shift32RightJamming( aSig, - expDiff, &aSig );
 
-         zExp = bExp;
 
-     }
 
-     else {
 
-         if ( aExp == 0xFF ) {
 
-             if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 
-             return a;
 
-         }
 
-         if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
 
-         zSig = 0x40000000 + aSig + bSig;
 
-         zExp = aExp;
 
-         goto roundAndPack;
 
-     }
 
-     aSig |= 0x20000000;
 
-     zSig = ( aSig + bSig )<<1;
 
-     --zExp;
 
-     if ( (sbits32) zSig < 0 ) {
 
-         zSig = aSig + bSig;
 
-         ++zExp;
 
-     }
 
-  roundAndPack:
 
-     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of subtracting the absolute values of the single-
 
- precision floating-point values `a' and `b'.  If `zSign' is true, the
 
- difference is negated before being returned.  `zSign' is ignored if the
 
- result is a NaN.  The subtraction is performed according to the IEC/IEEE
 
- Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32 subFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
 
- {
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig, zSig;
 
-     int16 expDiff;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     expDiff = aExp - bExp;
 
-     aSig <<= 7;
 
-     bSig <<= 7;
 
-     if ( 0 < expDiff ) goto aExpBigger;
 
-     if ( expDiff < 0 ) goto bExpBigger;
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( aExp == 0 ) {
 
-         aExp = 1;
 
-         bExp = 1;
 
-     }
 
-     if ( bSig < aSig ) goto aBigger;
 
-     if ( aSig < bSig ) goto bBigger;
 
-     return packFloat32( roundData->mode == float_round_down, 0, 0 );
 
-  bExpBigger:
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         return packFloat32( zSign ^ 1, 0xFF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         ++expDiff;
 
-     }
 
-     else {
 
-         aSig |= 0x40000000;
 
-     }
 
-     shift32RightJamming( aSig, - expDiff, &aSig );
 
-     bSig |= 0x40000000;
 
-  bBigger:
 
-     zSig = bSig - aSig;
 
-     zExp = bExp;
 
-     zSign ^= 1;
 
-     goto normalizeRoundAndPack;
 
-  aExpBigger:
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return propagateFloat32NaN( a, b );
 
-         return a;
 
-     }
 
-     if ( bExp == 0 ) {
 
-         --expDiff;
 
-     }
 
-     else {
 
-         bSig |= 0x40000000;
 
-     }
 
-     shift32RightJamming( bSig, expDiff, &bSig );
 
-     aSig |= 0x40000000;
 
-  aBigger:
 
-     zSig = aSig - bSig;
 
-     zExp = aExp;
 
-  normalizeRoundAndPack:
 
-     --zExp;
 
-     return normalizeRoundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of adding the single-precision floating-point values `a'
 
- and `b'.  The operation is performed according to the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_add( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign == bSign ) {
 
-         return addFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
-     else {
 
-         return subFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of subtracting the single-precision floating-point values
 
- `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 
- for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_sub( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign == bSign ) {
 
-         return subFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
-     else {
 
-         return addFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of multiplying the single-precision floating-point values
 
- `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 
- for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_mul( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig;
 
-     bits64 zSig64;
 
-     bits32 zSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     bSign = extractFloat32Sign( b );
 
-     zSign = aSign ^ bSign;
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 
-             return propagateFloat32NaN( a, b );
 
-         }
 
-         if ( ( bExp | bSig ) == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         return packFloat32( zSign, 0xFF, 0 );
 
-     }
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         if ( ( aExp | aSig ) == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         return packFloat32( zSign, 0xFF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 
-         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     zExp = aExp + bExp - 0x7F;
 
-     aSig = ( aSig | 0x00800000 )<<7;
 
-     bSig = ( bSig | 0x00800000 )<<8;
 
-     shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
 
-     zSig = zSig64;
 
-     if ( 0 <= (sbits32) ( zSig<<1 ) ) {
 
-         zSig <<= 1;
 
-         --zExp;
 
-     }
 
-     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of dividing the single-precision floating-point value `a'
 
- by the corresponding value `b'.  The operation is performed according to the
 
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_div( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig, zSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     bSign = extractFloat32Sign( b );
 
-     zSign = aSign ^ bSign;
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return propagateFloat32NaN( a, b );
 
-         if ( bExp == 0xFF ) {
 
-             if ( bSig ) return propagateFloat32NaN( a, b );
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         return packFloat32( zSign, 0xFF, 0 );
 
-     }
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         return packFloat32( zSign, 0, 0 );
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) {
 
-             if ( ( aExp | aSig ) == 0 ) {
 
-                 roundData->exception |= float_flag_invalid;
 
-                 return float32_default_nan;
 
-             }
 
-             roundData->exception |= float_flag_divbyzero;
 
-             return packFloat32( zSign, 0xFF, 0 );
 
-         }
 
-         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     zExp = aExp - bExp + 0x7D;
 
-     aSig = ( aSig | 0x00800000 )<<7;
 
-     bSig = ( bSig | 0x00800000 )<<8;
 
-     if ( bSig <= ( aSig + aSig ) ) {
 
-         aSig >>= 1;
 
-         ++zExp;
 
-     }
 
-     {
 
-         bits64 tmp = ( (bits64) aSig )<<32;
 
-         do_div( tmp, bSig );
 
-         zSig = tmp;
 
-     }
 
-     if ( ( zSig & 0x3F ) == 0 ) {
 
-         zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 );
 
-     }
 
-     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the remainder of the single-precision floating-point value `a'
 
- with respect to the corresponding value `b'.  The operation is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_rem( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, expDiff;
 
-     bits32 aSig, bSig;
 
-     bits32 q;
 
-     bits64 aSig64, bSig64, q64;
 
-     bits32 alternateASig;
 
-     sbits32 sigMean;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 
-             return propagateFloat32NaN( a, b );
 
-         }
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         return a;
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return a;
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     expDiff = aExp - bExp;
 
-     aSig |= 0x00800000;
 
-     bSig |= 0x00800000;
 
-     if ( expDiff < 32 ) {
 
-         aSig <<= 8;
 
-         bSig <<= 8;
 
-         if ( expDiff < 0 ) {
 
-             if ( expDiff < -1 ) return a;
 
-             aSig >>= 1;
 
-         }
 
-         q = ( bSig <= aSig );
 
-         if ( q ) aSig -= bSig;
 
-         if ( 0 < expDiff ) {
 
-             bits64 tmp = ( (bits64) aSig )<<32;
 
-             do_div( tmp, bSig );
 
-             q = tmp;
 
-             q >>= 32 - expDiff;
 
-             bSig >>= 2;
 
-             aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 
-         }
 
-         else {
 
-             aSig >>= 2;
 
-             bSig >>= 2;
 
-         }
 
-     }
 
-     else {
 
-         if ( bSig <= aSig ) aSig -= bSig;
 
-         aSig64 = ( (bits64) aSig )<<40;
 
-         bSig64 = ( (bits64) bSig )<<40;
 
-         expDiff -= 64;
 
-         while ( 0 < expDiff ) {
 
-             q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 
-             q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 
-             aSig64 = - ( ( bSig * q64 )<<38 );
 
-             expDiff -= 62;
 
-         }
 
-         expDiff += 64;
 
-         q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 
-         q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 
-         q = q64>>( 64 - expDiff );
 
-         bSig <<= 6;
 
-         aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 
-     }
 
-     do {
 
-         alternateASig = aSig;
 
-         ++q;
 
-         aSig -= bSig;
 
-     } while ( 0 <= (sbits32) aSig );
 
-     sigMean = aSig + alternateASig;
 
-     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 
-         aSig = alternateASig;
 
-     }
 
-     zSign = ( (sbits32) aSig < 0 );
 
-     if ( zSign ) aSig = - aSig;
 
-     return normalizeRoundAndPackFloat32( roundData, aSign ^ zSign, bExp, aSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the square root of the single-precision floating-point value `a'.
 
- The operation is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_sqrt( struct roundingData *roundData, float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, zExp;
 
-     bits32 aSig, zSig;
 
-     bits64 rem, term;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return propagateFloat32NaN( a, 0 );
 
-         if ( ! aSign ) return a;
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( aSign ) {
 
-         if ( ( aExp | aSig ) == 0 ) return a;
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return 0;
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 
-     aSig = ( aSig | 0x00800000 )<<8;
 
-     zSig = estimateSqrt32( aExp, aSig ) + 2;
 
-     if ( ( zSig & 0x7F ) <= 5 ) {
 
-         if ( zSig < 2 ) {
 
-             zSig = 0xFFFFFFFF;
 
-         }
 
-         else {
 
-             aSig >>= aExp & 1;
 
-             term = ( (bits64) zSig ) * zSig;
 
-             rem = ( ( (bits64) aSig )<<32 ) - term;
 
-             while ( (sbits64) rem < 0 ) {
 
-                 --zSig;
 
-                 rem += ( ( (bits64) zSig )<<1 ) | 1;
 
-             }
 
-             zSig |= ( rem != 0 );
 
-         }
 
-     }
 
-     shift32RightJamming( zSig, 1, &zSig );
 
-     return roundAndPackFloat32( roundData, 0, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is equal to the
 
- corresponding value `b', and 0 otherwise.  The comparison is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float32_eq( float32 a, float32 b )
 
- {
 
-     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 
-          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 
-        ) {
 
-         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 
-             float_raise( float_flag_invalid );
 
-         }
 
-         return 0;
 
-     }
 
-     return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is less than or
 
- equal to the corresponding value `b', and 0 otherwise.  The comparison is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float32_le( float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 
-          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 
-        ) {
 
-         float_raise( float_flag_invalid );
 
-         return 0;
 
-     }
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 
-     return ( a == b ) || ( aSign ^ ( a < b ) );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is less than
 
- the corresponding value `b', and 0 otherwise.  The comparison is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float32_lt( float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 
-          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 
-        ) {
 
-         float_raise( float_flag_invalid );
 
-         return 0;
 
-     }
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 
-     return ( a != b ) && ( aSign ^ ( a < b ) );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is equal to the
 
- corresponding value `b', and 0 otherwise.  The invalid exception is raised
 
- if either operand is a NaN.  Otherwise, the comparison is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float32_eq_signaling( float32 a, float32 b )
 
- {
 
-     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 
-          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 
-        ) {
 
-         float_raise( float_flag_invalid );
 
-         return 0;
 
-     }
 
-     return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is less than or
 
- equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 
- cause an exception.  Otherwise, the comparison is performed according to the
 
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float32_le_quiet( float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     //int16 aExp, bExp;
 
-     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 
-          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 
-        ) {
 
-         /* Do nothing, even if NaN as we're quiet */
 
-         return 0;
 
-     }
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 
-     return ( a == b ) || ( aSign ^ ( a < b ) );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is less than
 
- the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 
- exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 
- Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float32_lt_quiet( float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 
-          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 
-        ) {
 
-         /* Do nothing, even if NaN as we're quiet */
 
-         return 0;
 
-     }
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 
-     return ( a != b ) && ( aSign ^ ( a < b ) );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the double-precision floating-point value
 
- `a' to the 32-bit two's complement integer format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic---which means in particular that the conversion is rounded
 
- according to the current rounding mode.  If `a' is a NaN, the largest
 
- positive integer is returned.  Otherwise, if the conversion overflows, the
 
- largest integer with the same sign as `a' is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float64_to_int32( struct roundingData *roundData, float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits64 aSig;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 
-     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 
-     shiftCount = 0x42C - aExp;
 
-     if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
 
-     return roundAndPackInt32( roundData, aSign, aSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the double-precision floating-point value
 
- `a' to the 32-bit two's complement integer format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic, except that the conversion is always rounded toward zero.  If
 
- `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 
- conversion overflows, the largest integer with the same sign as `a' is
 
- returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float64_to_int32_round_to_zero( float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits64 aSig, savedASig;
 
-     int32 z;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     shiftCount = 0x433 - aExp;
 
-     if ( shiftCount < 21 ) {
 
-         if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 
-         goto invalid;
 
-     }
 
-     else if ( 52 < shiftCount ) {
 
-         if ( aExp || aSig ) float_raise( float_flag_inexact );
 
-         return 0;
 
-     }
 
-     aSig |= LIT64( 0x0010000000000000 );
 
-     savedASig = aSig;
 
-     aSig >>= shiftCount;
 
-     z = aSig;
 
-     if ( aSign ) z = - z;
 
-     if ( ( z < 0 ) ^ aSign ) {
 
-  invalid:
 
-         float_raise( float_flag_invalid );
 
-         return aSign ? 0x80000000 : 0x7FFFFFFF;
 
-     }
 
-     if ( ( aSig<<shiftCount ) != savedASig ) {
 
-         float_raise( float_flag_inexact );
 
-     }
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the double-precision floating-point value
 
- `a' to the 32-bit two's complement unsigned integer format.  The conversion
 
- is performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic---which means in particular that the conversion is rounded
 
- according to the current rounding mode.  If `a' is a NaN, the largest
 
- positive integer is returned.  Otherwise, if the conversion overflows, the
 
- largest positive integer is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float64_to_uint32( struct roundingData *roundData, float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits64 aSig;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = 0; //extractFloat64Sign( a );
 
-     //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 
-     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 
-     shiftCount = 0x42C - aExp;
 
-     if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
 
-     return roundAndPackInt32( roundData, aSign, aSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the double-precision floating-point value
 
- `a' to the 32-bit two's complement integer format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic, except that the conversion is always rounded toward zero.  If
 
- `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 
- conversion overflows, the largest positive integer is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float64_to_uint32_round_to_zero( float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits64 aSig, savedASig;
 
-     int32 z;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     shiftCount = 0x433 - aExp;
 
-     if ( shiftCount < 21 ) {
 
-         if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 
-         goto invalid;
 
-     }
 
-     else if ( 52 < shiftCount ) {
 
-         if ( aExp || aSig ) float_raise( float_flag_inexact );
 
-         return 0;
 
-     }
 
-     aSig |= LIT64( 0x0010000000000000 );
 
-     savedASig = aSig;
 
-     aSig >>= shiftCount;
 
-     z = aSig;
 
-     if ( aSign ) z = - z;
 
-     if ( ( z < 0 ) ^ aSign ) {
 
-  invalid:
 
-         float_raise( float_flag_invalid );
 
-         return aSign ? 0x80000000 : 0x7FFFFFFF;
 
-     }
 
-     if ( ( aSig<<shiftCount ) != savedASig ) {
 
-         float_raise( float_flag_inexact );
 
-     }
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the double-precision floating-point value
 
- `a' to the single-precision floating-point format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float64_to_float32( struct roundingData *roundData, float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits64 aSig;
 
-     bits32 zSig;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
 
-         return packFloat32( aSign, 0xFF, 0 );
 
-     }
 
-     shift64RightJamming( aSig, 22, &aSig );
 
-     zSig = aSig;
 
-     if ( aExp || zSig ) {
 
-         zSig |= 0x40000000;
 
-         aExp -= 0x381;
 
-     }
 
-     return roundAndPackFloat32( roundData, aSign, aExp, zSig );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the double-precision floating-point value
 
- `a' to the extended double-precision floating-point format.  The conversion
 
- is performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- floatx80 float64_to_floatx80( float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits64 aSig;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
 
-         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 
-         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     return
 
-         packFloatx80(
 
-             aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Rounds the double-precision floating-point value `a' to an integer, and
 
- returns the result as a double-precision floating-point value.  The
 
- operation is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float64_round_to_int( struct roundingData *roundData, float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits64 lastBitMask, roundBitsMask;
 
-     int8 roundingMode;
 
-     float64 z;
 
-     aExp = extractFloat64Exp( a );
 
-     if ( 0x433 <= aExp ) {
 
-         if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
 
-             return propagateFloat64NaN( a, a );
 
-         }
 
-         return a;
 
-     }
 
-     if ( aExp <= 0x3FE ) {
 
-         if ( (bits64) ( a<<1 ) == 0 ) return a;
 
-         roundData->exception |= float_flag_inexact;
 
-         aSign = extractFloat64Sign( a );
 
-         switch ( roundData->mode ) {
 
-          case float_round_nearest_even:
 
-             if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
 
-                 return packFloat64( aSign, 0x3FF, 0 );
 
-             }
 
-             break;
 
-          case float_round_down:
 
-             return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
 
-          case float_round_up:
 
-             return
 
-             aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
 
-         }
 
-         return packFloat64( aSign, 0, 0 );
 
-     }
 
-     lastBitMask = 1;
 
-     lastBitMask <<= 0x433 - aExp;
 
-     roundBitsMask = lastBitMask - 1;
 
-     z = a;
 
-     roundingMode = roundData->mode;
 
-     if ( roundingMode == float_round_nearest_even ) {
 
-         z += lastBitMask>>1;
 
-         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 
-     }
 
-     else if ( roundingMode != float_round_to_zero ) {
 
-         if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 
-             z += roundBitsMask;
 
-         }
 
-     }
 
-     z &= ~ roundBitsMask;
 
-     if ( z != a ) roundData->exception |= float_flag_inexact;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of adding the absolute values of the double-precision
 
- floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
 
- before being returned.  `zSign' is ignored if the result is a NaN.  The
 
- addition is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float64 addFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
 
- {
 
-     int16 aExp, bExp, zExp;
 
-     bits64 aSig, bSig, zSig;
 
-     int16 expDiff;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     bSig = extractFloat64Frac( b );
 
-     bExp = extractFloat64Exp( b );
 
-     expDiff = aExp - bExp;
 
-     aSig <<= 9;
 
-     bSig <<= 9;
 
-     if ( 0 < expDiff ) {
 
-         if ( aExp == 0x7FF ) {
 
-             if ( aSig ) return propagateFloat64NaN( a, b );
 
-             return a;
 
-         }
 
-         if ( bExp == 0 ) {
 
-             --expDiff;
 
-         }
 
-         else {
 
-             bSig |= LIT64( 0x2000000000000000 );
 
-         }
 
-         shift64RightJamming( bSig, expDiff, &bSig );
 
-         zExp = aExp;
 
-     }
 
-     else if ( expDiff < 0 ) {
 
-         if ( bExp == 0x7FF ) {
 
-             if ( bSig ) return propagateFloat64NaN( a, b );
 
-             return packFloat64( zSign, 0x7FF, 0 );
 
-         }
 
-         if ( aExp == 0 ) {
 
-             ++expDiff;
 
-         }
 
-         else {
 
-             aSig |= LIT64( 0x2000000000000000 );
 
-         }
 
-         shift64RightJamming( aSig, - expDiff, &aSig );
 
-         zExp = bExp;
 
-     }
 
-     else {
 
-         if ( aExp == 0x7FF ) {
 
-             if ( aSig | bSig ) return propagateFloat64NaN( a, b );
 
-             return a;
 
-         }
 
-         if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
 
-         zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
 
-         zExp = aExp;
 
-         goto roundAndPack;
 
-     }
 
-     aSig |= LIT64( 0x2000000000000000 );
 
-     zSig = ( aSig + bSig )<<1;
 
-     --zExp;
 
-     if ( (sbits64) zSig < 0 ) {
 
-         zSig = aSig + bSig;
 
-         ++zExp;
 
-     }
 
-  roundAndPack:
 
-     return roundAndPackFloat64( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of subtracting the absolute values of the double-
 
- precision floating-point values `a' and `b'.  If `zSign' is true, the
 
- difference is negated before being returned.  `zSign' is ignored if the
 
- result is a NaN.  The subtraction is performed according to the IEC/IEEE
 
- Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float64 subFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
 
- {
 
-     int16 aExp, bExp, zExp;
 
-     bits64 aSig, bSig, zSig;
 
-     int16 expDiff;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     bSig = extractFloat64Frac( b );
 
-     bExp = extractFloat64Exp( b );
 
-     expDiff = aExp - bExp;
 
-     aSig <<= 10;
 
-     bSig <<= 10;
 
-     if ( 0 < expDiff ) goto aExpBigger;
 
-     if ( expDiff < 0 ) goto bExpBigger;
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig | bSig ) return propagateFloat64NaN( a, b );
 
-         roundData->exception |= float_flag_invalid;
 
-         return float64_default_nan;
 
-     }
 
-     if ( aExp == 0 ) {
 
-         aExp = 1;
 
-         bExp = 1;
 
-     }
 
-     if ( bSig < aSig ) goto aBigger;
 
-     if ( aSig < bSig ) goto bBigger;
 
-     return packFloat64( roundData->mode == float_round_down, 0, 0 );
 
-  bExpBigger:
 
-     if ( bExp == 0x7FF ) {
 
-         if ( bSig ) return propagateFloat64NaN( a, b );
 
-         return packFloat64( zSign ^ 1, 0x7FF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         ++expDiff;
 
-     }
 
-     else {
 
-         aSig |= LIT64( 0x4000000000000000 );
 
-     }
 
-     shift64RightJamming( aSig, - expDiff, &aSig );
 
-     bSig |= LIT64( 0x4000000000000000 );
 
-  bBigger:
 
-     zSig = bSig - aSig;
 
-     zExp = bExp;
 
-     zSign ^= 1;
 
-     goto normalizeRoundAndPack;
 
-  aExpBigger:
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig ) return propagateFloat64NaN( a, b );
 
-         return a;
 
-     }
 
-     if ( bExp == 0 ) {
 
-         --expDiff;
 
-     }
 
-     else {
 
-         bSig |= LIT64( 0x4000000000000000 );
 
-     }
 
-     shift64RightJamming( bSig, expDiff, &bSig );
 
-     aSig |= LIT64( 0x4000000000000000 );
 
-  aBigger:
 
-     zSig = aSig - bSig;
 
-     zExp = aExp;
 
-  normalizeRoundAndPack:
 
-     --zExp;
 
-     return normalizeRoundAndPackFloat64( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of adding the double-precision floating-point values `a'
 
- and `b'.  The operation is performed according to the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float64_add( struct roundingData *roundData, float64 a, float64 b )
 
- {
 
-     flag aSign, bSign;
 
-     aSign = extractFloat64Sign( a );
 
-     bSign = extractFloat64Sign( b );
 
-     if ( aSign == bSign ) {
 
-         return addFloat64Sigs( roundData, a, b, aSign );
 
-     }
 
-     else {
 
-         return subFloat64Sigs( roundData, a, b, aSign );
 
-     }
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of subtracting the double-precision floating-point values
 
- `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 
- for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float64_sub( struct roundingData *roundData, float64 a, float64 b )
 
- {
 
-     flag aSign, bSign;
 
-     aSign = extractFloat64Sign( a );
 
-     bSign = extractFloat64Sign( b );
 
-     if ( aSign == bSign ) {
 
-         return subFloat64Sigs( roundData, a, b, aSign );
 
-     }
 
-     else {
 
-         return addFloat64Sigs( roundData, a, b, aSign );
 
-     }
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of multiplying the double-precision floating-point values
 
- `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 
- for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float64_mul( struct roundingData *roundData, float64 a, float64 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, zExp;
 
-     bits64 aSig, bSig, zSig0, zSig1;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     bSig = extractFloat64Frac( b );
 
-     bExp = extractFloat64Exp( b );
 
-     bSign = extractFloat64Sign( b );
 
-     zSign = aSign ^ bSign;
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 
-             return propagateFloat64NaN( a, b );
 
-         }
 
-         if ( ( bExp | bSig ) == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float64_default_nan;
 
-         }
 
-         return packFloat64( zSign, 0x7FF, 0 );
 
-     }
 
-     if ( bExp == 0x7FF ) {
 
-         if ( bSig ) return propagateFloat64NaN( a, b );
 
-         if ( ( aExp | aSig ) == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float64_default_nan;
 
-         }
 
-         return packFloat64( zSign, 0x7FF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 
-         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
 
-         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     zExp = aExp + bExp - 0x3FF;
 
-     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 
-     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 
-     mul64To128( aSig, bSig, &zSig0, &zSig1 );
 
-     zSig0 |= ( zSig1 != 0 );
 
-     if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
 
-         zSig0 <<= 1;
 
-         --zExp;
 
-     }
 
-     return roundAndPackFloat64( roundData, zSign, zExp, zSig0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of dividing the double-precision floating-point value `a'
 
- by the corresponding value `b'.  The operation is performed according to
 
- the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float64_div( struct roundingData *roundData, float64 a, float64 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, zExp;
 
-     bits64 aSig, bSig, zSig;
 
-     bits64 rem0, rem1;
 
-     bits64 term0, term1;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     bSig = extractFloat64Frac( b );
 
-     bExp = extractFloat64Exp( b );
 
-     bSign = extractFloat64Sign( b );
 
-     zSign = aSign ^ bSign;
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig ) return propagateFloat64NaN( a, b );
 
-         if ( bExp == 0x7FF ) {
 
-             if ( bSig ) return propagateFloat64NaN( a, b );
 
-             roundData->exception |= float_flag_invalid;
 
-             return float64_default_nan;
 
-         }
 
-         return packFloat64( zSign, 0x7FF, 0 );
 
-     }
 
-     if ( bExp == 0x7FF ) {
 
-         if ( bSig ) return propagateFloat64NaN( a, b );
 
-         return packFloat64( zSign, 0, 0 );
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) {
 
-             if ( ( aExp | aSig ) == 0 ) {
 
-                 roundData->exception |= float_flag_invalid;
 
-                 return float64_default_nan;
 
-             }
 
-             roundData->exception |= float_flag_divbyzero;
 
-             return packFloat64( zSign, 0x7FF, 0 );
 
-         }
 
-         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 
-         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     zExp = aExp - bExp + 0x3FD;
 
-     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 
-     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 
-     if ( bSig <= ( aSig + aSig ) ) {
 
-         aSig >>= 1;
 
-         ++zExp;
 
-     }
 
-     zSig = estimateDiv128To64( aSig, 0, bSig );
 
-     if ( ( zSig & 0x1FF ) <= 2 ) {
 
-         mul64To128( bSig, zSig, &term0, &term1 );
 
-         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 
-         while ( (sbits64) rem0 < 0 ) {
 
-             --zSig;
 
-             add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 
-         }
 
-         zSig |= ( rem1 != 0 );
 
-     }
 
-     return roundAndPackFloat64( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the remainder of the double-precision floating-point value `a'
 
- with respect to the corresponding value `b'.  The operation is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float64_rem( struct roundingData *roundData, float64 a, float64 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, expDiff;
 
-     bits64 aSig, bSig;
 
-     bits64 q, alternateASig;
 
-     sbits64 sigMean;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     bSig = extractFloat64Frac( b );
 
-     bExp = extractFloat64Exp( b );
 
-     bSign = extractFloat64Sign( b );
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 
-             return propagateFloat64NaN( a, b );
 
-         }
 
-         roundData->exception |= float_flag_invalid;
 
-         return float64_default_nan;
 
-     }
 
-     if ( bExp == 0x7FF ) {
 
-         if ( bSig ) return propagateFloat64NaN( a, b );
 
-         return a;
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float64_default_nan;
 
-         }
 
-         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return a;
 
-         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     expDiff = aExp - bExp;
 
-     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
 
-     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 
-     if ( expDiff < 0 ) {
 
-         if ( expDiff < -1 ) return a;
 
-         aSig >>= 1;
 
-     }
 
-     q = ( bSig <= aSig );
 
-     if ( q ) aSig -= bSig;
 
-     expDiff -= 64;
 
-     while ( 0 < expDiff ) {
 
-         q = estimateDiv128To64( aSig, 0, bSig );
 
-         q = ( 2 < q ) ? q - 2 : 0;
 
-         aSig = - ( ( bSig>>2 ) * q );
 
-         expDiff -= 62;
 
-     }
 
-     expDiff += 64;
 
-     if ( 0 < expDiff ) {
 
-         q = estimateDiv128To64( aSig, 0, bSig );
 
-         q = ( 2 < q ) ? q - 2 : 0;
 
-         q >>= 64 - expDiff;
 
-         bSig >>= 2;
 
-         aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 
-     }
 
-     else {
 
-         aSig >>= 2;
 
-         bSig >>= 2;
 
-     }
 
-     do {
 
-         alternateASig = aSig;
 
-         ++q;
 
-         aSig -= bSig;
 
-     } while ( 0 <= (sbits64) aSig );
 
-     sigMean = aSig + alternateASig;
 
-     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 
-         aSig = alternateASig;
 
-     }
 
-     zSign = ( (sbits64) aSig < 0 );
 
-     if ( zSign ) aSig = - aSig;
 
-     return normalizeRoundAndPackFloat64( roundData, aSign ^ zSign, bExp, aSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the square root of the double-precision floating-point value `a'.
 
- The operation is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float64_sqrt( struct roundingData *roundData, float64 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, zExp;
 
-     bits64 aSig, zSig;
 
-     bits64 rem0, rem1, term0, term1; //, shiftedRem;
 
-     //float64 z;
 
-     aSig = extractFloat64Frac( a );
 
-     aExp = extractFloat64Exp( a );
 
-     aSign = extractFloat64Sign( a );
 
-     if ( aExp == 0x7FF ) {
 
-         if ( aSig ) return propagateFloat64NaN( a, a );
 
-         if ( ! aSign ) return a;
 
-         roundData->exception |= float_flag_invalid;
 
-         return float64_default_nan;
 
-     }
 
-     if ( aSign ) {
 
-         if ( ( aExp | aSig ) == 0 ) return a;
 
-         roundData->exception |= float_flag_invalid;
 
-         return float64_default_nan;
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return 0;
 
-         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
 
-     aSig |= LIT64( 0x0010000000000000 );
 
-     zSig = estimateSqrt32( aExp, aSig>>21 );
 
-     zSig <<= 31;
 
-     aSig <<= 9 - ( aExp & 1 );
 
-     zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2;
 
-     if ( ( zSig & 0x3FF ) <= 5 ) {
 
-         if ( zSig < 2 ) {
 
-             zSig = LIT64( 0xFFFFFFFFFFFFFFFF );
 
-         }
 
-         else {
 
-             aSig <<= 2;
 
-             mul64To128( zSig, zSig, &term0, &term1 );
 
-             sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 
-             while ( (sbits64) rem0 < 0 ) {
 
-                 --zSig;
 
-                 shortShift128Left( 0, zSig, 1, &term0, &term1 );
 
-                 term1 |= 1;
 
-                 add128( rem0, rem1, term0, term1, &rem0, &rem1 );
 
-             }
 
-             zSig |= ( ( rem0 | rem1 ) != 0 );
 
-         }
 
-     }
 
-     shift64RightJamming( zSig, 1, &zSig );
 
-     return roundAndPackFloat64( roundData, 0, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the double-precision floating-point value `a' is equal to the
 
- corresponding value `b', and 0 otherwise.  The comparison is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float64_eq( float64 a, float64 b )
 
- {
 
-     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 
-          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 
-        ) {
 
-         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 
-             float_raise( float_flag_invalid );
 
-         }
 
-         return 0;
 
-     }
 
-     return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the double-precision floating-point value `a' is less than or
 
- equal to the corresponding value `b', and 0 otherwise.  The comparison is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float64_le( float64 a, float64 b )
 
- {
 
-     flag aSign, bSign;
 
-     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 
-          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 
-        ) {
 
-         float_raise( float_flag_invalid );
 
-         return 0;
 
-     }
 
-     aSign = extractFloat64Sign( a );
 
-     bSign = extractFloat64Sign( b );
 
-     if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
 
-     return ( a == b ) || ( aSign ^ ( a < b ) );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the double-precision floating-point value `a' is less than
 
- the corresponding value `b', and 0 otherwise.  The comparison is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float64_lt( float64 a, float64 b )
 
- {
 
-     flag aSign, bSign;
 
-     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 
-          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 
-        ) {
 
-         float_raise( float_flag_invalid );
 
-         return 0;
 
-     }
 
-     aSign = extractFloat64Sign( a );
 
-     bSign = extractFloat64Sign( b );
 
-     if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
 
-     return ( a != b ) && ( aSign ^ ( a < b ) );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the double-precision floating-point value `a' is equal to the
 
- corresponding value `b', and 0 otherwise.  The invalid exception is raised
 
- if either operand is a NaN.  Otherwise, the comparison is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float64_eq_signaling( float64 a, float64 b )
 
- {
 
-     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 
-          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 
-        ) {
 
-         float_raise( float_flag_invalid );
 
-         return 0;
 
-     }
 
-     return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the double-precision floating-point value `a' is less than or
 
- equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 
- cause an exception.  Otherwise, the comparison is performed according to the
 
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float64_le_quiet( float64 a, float64 b )
 
- {
 
-     flag aSign, bSign;
 
-     //int16 aExp, bExp;
 
-     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 
-          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 
-        ) {
 
-         /* Do nothing, even if NaN as we're quiet */
 
-         return 0;
 
-     }
 
-     aSign = extractFloat64Sign( a );
 
-     bSign = extractFloat64Sign( b );
 
-     if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
 
-     return ( a == b ) || ( aSign ^ ( a < b ) );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the double-precision floating-point value `a' is less than
 
- the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 
- exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 
- Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float64_lt_quiet( float64 a, float64 b )
 
- {
 
-     flag aSign, bSign;
 
-     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 
-          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 
-        ) {
 
-         /* Do nothing, even if NaN as we're quiet */
 
-         return 0;
 
-     }
 
-     aSign = extractFloat64Sign( a );
 
-     bSign = extractFloat64Sign( b );
 
-     if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
 
-     return ( a != b ) && ( aSign ^ ( a < b ) );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the extended double-precision floating-
 
- point value `a' to the 32-bit two's complement integer format.  The
 
- conversion is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic---which means in particular that the conversion
 
- is rounded according to the current rounding mode.  If `a' is a NaN, the
 
- largest positive integer is returned.  Otherwise, if the conversion
 
- overflows, the largest integer with the same sign as `a' is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 floatx80_to_int32( struct roundingData *roundData, floatx80 a )
 
- {
 
-     flag aSign;
 
-     int32 aExp, shiftCount;
 
-     bits64 aSig;
 
-     aSig = extractFloatx80Frac( a );
 
-     aExp = extractFloatx80Exp( a );
 
-     aSign = extractFloatx80Sign( a );
 
-     if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 
-     shiftCount = 0x4037 - aExp;
 
-     if ( shiftCount <= 0 ) shiftCount = 1;
 
-     shift64RightJamming( aSig, shiftCount, &aSig );
 
-     return roundAndPackInt32( roundData, aSign, aSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the extended double-precision floating-
 
- point value `a' to the 32-bit two's complement integer format.  The
 
- conversion is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic, except that the conversion is always rounded
 
- toward zero.  If `a' is a NaN, the largest positive integer is returned.
 
- Otherwise, if the conversion overflows, the largest integer with the same
 
- sign as `a' is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 floatx80_to_int32_round_to_zero( floatx80 a )
 
- {
 
-     flag aSign;
 
-     int32 aExp, shiftCount;
 
-     bits64 aSig, savedASig;
 
-     int32 z;
 
-     aSig = extractFloatx80Frac( a );
 
-     aExp = extractFloatx80Exp( a );
 
-     aSign = extractFloatx80Sign( a );
 
-     shiftCount = 0x403E - aExp;
 
-     if ( shiftCount < 32 ) {
 
-         if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 
-         goto invalid;
 
-     }
 
-     else if ( 63 < shiftCount ) {
 
-         if ( aExp || aSig ) float_raise( float_flag_inexact );
 
-         return 0;
 
-     }
 
-     savedASig = aSig;
 
-     aSig >>= shiftCount;
 
-     z = aSig;
 
-     if ( aSign ) z = - z;
 
-     if ( ( z < 0 ) ^ aSign ) {
 
-  invalid:
 
-         float_raise( float_flag_invalid );
 
-         return aSign ? 0x80000000 : 0x7FFFFFFF;
 
-     }
 
-     if ( ( aSig<<shiftCount ) != savedASig ) {
 
-         float_raise( float_flag_inexact );
 
-     }
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the extended double-precision floating-
 
- point value `a' to the single-precision floating-point format.  The
 
- conversion is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 floatx80_to_float32( struct roundingData *roundData, floatx80 a )
 
- {
 
-     flag aSign;
 
-     int32 aExp;
 
-     bits64 aSig;
 
-     aSig = extractFloatx80Frac( a );
 
-     aExp = extractFloatx80Exp( a );
 
-     aSign = extractFloatx80Sign( a );
 
-     if ( aExp == 0x7FFF ) {
 
-         if ( (bits64) ( aSig<<1 ) ) {
 
-             return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
 
-         }
 
-         return packFloat32( aSign, 0xFF, 0 );
 
-     }
 
-     shift64RightJamming( aSig, 33, &aSig );
 
-     if ( aExp || aSig ) aExp -= 0x3F81;
 
-     return roundAndPackFloat32( roundData, aSign, aExp, aSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the extended double-precision floating-
 
- point value `a' to the double-precision floating-point format.  The
 
- conversion is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 floatx80_to_float64( struct roundingData *roundData, floatx80 a )
 
- {
 
-     flag aSign;
 
-     int32 aExp;
 
-     bits64 aSig, zSig;
 
-     aSig = extractFloatx80Frac( a );
 
-     aExp = extractFloatx80Exp( a );
 
-     aSign = extractFloatx80Sign( a );
 
-     if ( aExp == 0x7FFF ) {
 
-         if ( (bits64) ( aSig<<1 ) ) {
 
-             return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
 
-         }
 
-         return packFloat64( aSign, 0x7FF, 0 );
 
-     }
 
-     shift64RightJamming( aSig, 1, &zSig );
 
-     if ( aExp || aSig ) aExp -= 0x3C01;
 
-     return roundAndPackFloat64( roundData, aSign, aExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Rounds the extended double-precision floating-point value `a' to an integer,
 
- and returns the result as an extended quadruple-precision floating-point
 
- value.  The operation is performed according to the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- floatx80 floatx80_round_to_int( struct roundingData *roundData, floatx80 a )
 
- {
 
-     flag aSign;
 
-     int32 aExp;
 
-     bits64 lastBitMask, roundBitsMask;
 
-     int8 roundingMode;
 
-     floatx80 z;
 
-     aExp = extractFloatx80Exp( a );
 
-     if ( 0x403E <= aExp ) {
 
-         if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
 
-             return propagateFloatx80NaN( a, a );
 
-         }
 
-         return a;
 
-     }
 
-     if ( aExp <= 0x3FFE ) {
 
-         if (    ( aExp == 0 )
 
-              && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
 
-             return a;
 
-         }
 
-         roundData->exception |= float_flag_inexact;
 
-         aSign = extractFloatx80Sign( a );
 
-         switch ( roundData->mode ) {
 
-          case float_round_nearest_even:
 
-             if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
 
-                ) {
 
-                 return
 
-                     packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
 
-             }
 
-             break;
 
-          case float_round_down:
 
-             return
 
-                   aSign ?
 
-                       packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
 
-                 : packFloatx80( 0, 0, 0 );
 
-          case float_round_up:
 
-             return
 
-                   aSign ? packFloatx80( 1, 0, 0 )
 
-                 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
 
-         }
 
-         return packFloatx80( aSign, 0, 0 );
 
-     }
 
-     lastBitMask = 1;
 
-     lastBitMask <<= 0x403E - aExp;
 
-     roundBitsMask = lastBitMask - 1;
 
-     z = a;
 
-     roundingMode = roundData->mode;
 
-     if ( roundingMode == float_round_nearest_even ) {
 
-         z.low += lastBitMask>>1;
 
-         if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 
-     }
 
-     else if ( roundingMode != float_round_to_zero ) {
 
-         if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 
-             z.low += roundBitsMask;
 
-         }
 
-     }
 
-     z.low &= ~ roundBitsMask;
 
-     if ( z.low == 0 ) {
 
-         ++z.high;
 
-         z.low = LIT64( 0x8000000000000000 );
 
-     }
 
-     if ( z.low != a.low ) roundData->exception |= float_flag_inexact;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of adding the absolute values of the extended double-
 
- precision floating-point values `a' and `b'.  If `zSign' is true, the sum is
 
- negated before being returned.  `zSign' is ignored if the result is a NaN.
 
- The addition is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static floatx80 addFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
 
- {
 
-     int32 aExp, bExp, zExp;
 
-     bits64 aSig, bSig, zSig0, zSig1;
 
-     int32 expDiff;
 
-     aSig = extractFloatx80Frac( a );
 
-     aExp = extractFloatx80Exp( a );
 
-     bSig = extractFloatx80Frac( b );
 
-     bExp = extractFloatx80Exp( b );
 
-     expDiff = aExp - bExp;
 
-     if ( 0 < expDiff ) {
 
-         if ( aExp == 0x7FFF ) {
 
-             if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
-             return a;
 
-         }
 
-         if ( bExp == 0 ) --expDiff;
 
-         shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 
-         zExp = aExp;
 
-     }
 
-     else if ( expDiff < 0 ) {
 
-         if ( bExp == 0x7FFF ) {
 
-             if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
-             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
-         }
 
-         if ( aExp == 0 ) ++expDiff;
 
-         shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 
-         zExp = bExp;
 
-     }
 
-     else {
 
-         if ( aExp == 0x7FFF ) {
 
-             if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 
 
  |