| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524 | /* *  linux/arch/arm/kernel/arch_timer.c * *  Copyright (C) 2011 ARM Ltd. *  All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/init.h>#include <linux/kernel.h>#include <linux/delay.h>#include <linux/device.h>#include <linux/smp.h>#include <linux/cpu.h>#include <linux/jiffies.h>#include <linux/clockchips.h>#include <linux/interrupt.h>#include <linux/of_irq.h>#include <linux/io.h>#include <asm/cputype.h>#include <asm/delay.h>#include <asm/localtimer.h>#include <asm/arch_timer.h>#include <asm/system_info.h>#include <asm/sched_clock.h>static unsigned long arch_timer_rate;enum ppi_nr {	PHYS_SECURE_PPI,	PHYS_NONSECURE_PPI,	VIRT_PPI,	HYP_PPI,	MAX_TIMER_PPI};static int arch_timer_ppi[MAX_TIMER_PPI];static struct clock_event_device __percpu **arch_timer_evt;static struct delay_timer arch_delay_timer;static bool arch_timer_use_virtual = true;/* * Architected system timer support. */#define ARCH_TIMER_CTRL_ENABLE		(1 << 0)#define ARCH_TIMER_CTRL_IT_MASK		(1 << 1)#define ARCH_TIMER_CTRL_IT_STAT		(1 << 2)#define ARCH_TIMER_REG_CTRL		0#define ARCH_TIMER_REG_FREQ		1#define ARCH_TIMER_REG_TVAL		2#define ARCH_TIMER_PHYS_ACCESS		0#define ARCH_TIMER_VIRT_ACCESS		1/* * These register accessors are marked inline so the compiler can * nicely work out which register we want, and chuck away the rest of * the code. At least it does so with a recent GCC (4.6.3). */static inline void arch_timer_reg_write(const int access, const int reg, u32 val){	if (access == ARCH_TIMER_PHYS_ACCESS) {		switch (reg) {		case ARCH_TIMER_REG_CTRL:			asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));			break;		case ARCH_TIMER_REG_TVAL:			asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));			break;		}	}	if (access == ARCH_TIMER_VIRT_ACCESS) {		switch (reg) {		case ARCH_TIMER_REG_CTRL:			asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));			break;		case ARCH_TIMER_REG_TVAL:			asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val));			break;		}	}	isb();}static inline u32 arch_timer_reg_read(const int access, const int reg){	u32 val = 0;	if (access == ARCH_TIMER_PHYS_ACCESS) {		switch (reg) {		case ARCH_TIMER_REG_CTRL:			asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));			break;		case ARCH_TIMER_REG_TVAL:			asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));			break;		case ARCH_TIMER_REG_FREQ:			asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));			break;		}	}	if (access == ARCH_TIMER_VIRT_ACCESS) {		switch (reg) {		case ARCH_TIMER_REG_CTRL:			asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));			break;		case ARCH_TIMER_REG_TVAL:			asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val));			break;		}	}	return val;}static inline cycle_t arch_timer_counter_read(const int access){	cycle_t cval = 0;	if (access == ARCH_TIMER_PHYS_ACCESS)		asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));	if (access == ARCH_TIMER_VIRT_ACCESS)		asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval));	return cval;}static inline cycle_t arch_counter_get_cntpct(void){	return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS);}static inline cycle_t arch_counter_get_cntvct(void){	return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS);}static irqreturn_t inline timer_handler(const int access,					struct clock_event_device *evt){	unsigned long ctrl;	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {		ctrl |= ARCH_TIMER_CTRL_IT_MASK;		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);		evt->event_handler(evt);		return IRQ_HANDLED;	}	return IRQ_NONE;}static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id){	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);}static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id){	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);}static inline void timer_set_mode(const int access, int mode){	unsigned long ctrl;	switch (mode) {	case CLOCK_EVT_MODE_UNUSED:	case CLOCK_EVT_MODE_SHUTDOWN:		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);		break;	default:		break;	}}static void arch_timer_set_mode_virt(enum clock_event_mode mode,				     struct clock_event_device *clk){	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);}static void arch_timer_set_mode_phys(enum clock_event_mode mode,				     struct clock_event_device *clk){	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);}static inline void set_next_event(const int access, unsigned long evt){	unsigned long ctrl;	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);	ctrl |= ARCH_TIMER_CTRL_ENABLE;	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);}static int arch_timer_set_next_event_virt(unsigned long evt,					  struct clock_event_device *unused){	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);	return 0;}static int arch_timer_set_next_event_phys(unsigned long evt,					  struct clock_event_device *unused){	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);	return 0;}static int __cpuinit arch_timer_setup(struct clock_event_device *clk){	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;	clk->name = "arch_sys_timer";	clk->rating = 450;	if (arch_timer_use_virtual) {		clk->irq = arch_timer_ppi[VIRT_PPI];		clk->set_mode = arch_timer_set_mode_virt;		clk->set_next_event = arch_timer_set_next_event_virt;	} else {		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];		clk->set_mode = arch_timer_set_mode_phys;		clk->set_next_event = arch_timer_set_next_event_phys;	}	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);	clockevents_config_and_register(clk, arch_timer_rate,					0xf, 0x7fffffff);	*__this_cpu_ptr(arch_timer_evt) = clk;	if (arch_timer_use_virtual)		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);	else {		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);		if (arch_timer_ppi[PHYS_NONSECURE_PPI])			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);	}	return 0;}/* Is the optional system timer available? */static int local_timer_is_architected(void){	return (cpu_architecture() >= CPU_ARCH_ARMv7) &&	       ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1;}static int arch_timer_available(void){	unsigned long freq;	if (!local_timer_is_architected())		return -ENXIO;	if (arch_timer_rate == 0) {		freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS,					   ARCH_TIMER_REG_FREQ);		/* Check the timer frequency. */		if (freq == 0) {			pr_warn("Architected timer frequency not available\n");			return -EINVAL;		}		arch_timer_rate = freq;	}	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",		     arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100,		     arch_timer_use_virtual ? "virt" : "phys");	return 0;}static u32 notrace arch_counter_get_cntpct32(void){	cycle_t cnt = arch_counter_get_cntpct();	/*	 * The sched_clock infrastructure only knows about counters	 * with at most 32bits. Forget about the upper 24 bits for the	 * time being...	 */	return (u32)cnt;}static u32 notrace arch_counter_get_cntvct32(void){	cycle_t cnt = arch_counter_get_cntvct();	/*	 * The sched_clock infrastructure only knows about counters	 * with at most 32bits. Forget about the upper 24 bits for the	 * time being...	 */	return (u32)cnt;}static cycle_t arch_counter_read(struct clocksource *cs){	/*	 * Always use the physical counter for the clocksource.	 * CNTHCTL.PL1PCTEN must be set to 1.	 */	return arch_counter_get_cntpct();}static unsigned long arch_timer_read_current_timer(void){	return arch_counter_get_cntpct();}static cycle_t arch_counter_read_cc(const struct cyclecounter *cc){	/*	 * Always use the physical counter for the clocksource.	 * CNTHCTL.PL1PCTEN must be set to 1.	 */	return arch_counter_get_cntpct();}static struct clocksource clocksource_counter = {	.name	= "arch_sys_counter",	.rating	= 400,	.read	= arch_counter_read,	.mask	= CLOCKSOURCE_MASK(56),	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,};static struct cyclecounter cyclecounter = {	.read	= arch_counter_read_cc,	.mask	= CLOCKSOURCE_MASK(56),};static struct timecounter timecounter;struct timecounter *arch_timer_get_timecounter(void){	return &timecounter;}static void __cpuinit arch_timer_stop(struct clock_event_device *clk){	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",		 clk->irq, smp_processor_id());	if (arch_timer_use_virtual)		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);	else {		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);		if (arch_timer_ppi[PHYS_NONSECURE_PPI])			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);	}	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);}static struct local_timer_ops arch_timer_ops __cpuinitdata = {	.setup	= arch_timer_setup,	.stop	= arch_timer_stop,};static struct clock_event_device arch_timer_global_evt;static int __init arch_timer_register(void){	int err;	int ppi;	err = arch_timer_available();	if (err)		goto out;	arch_timer_evt = alloc_percpu(struct clock_event_device *);	if (!arch_timer_evt) {		err = -ENOMEM;		goto out;	}	clocksource_register_hz(&clocksource_counter, arch_timer_rate);	cyclecounter.mult = clocksource_counter.mult;	cyclecounter.shift = clocksource_counter.shift;	timecounter_init(&timecounter, &cyclecounter,			 arch_counter_get_cntpct());	if (arch_timer_use_virtual) {		ppi = arch_timer_ppi[VIRT_PPI];		err = request_percpu_irq(ppi, arch_timer_handler_virt,					 "arch_timer", arch_timer_evt);	} else {		ppi = arch_timer_ppi[PHYS_SECURE_PPI];		err = request_percpu_irq(ppi, arch_timer_handler_phys,					 "arch_timer", arch_timer_evt);		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];			err = request_percpu_irq(ppi, arch_timer_handler_phys,						 "arch_timer", arch_timer_evt);			if (err)				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],						arch_timer_evt);		}	}	if (err) {		pr_err("arch_timer: can't register interrupt %d (%d)\n",		       ppi, err);		goto out_free;	}	err = local_timer_register(&arch_timer_ops);	if (err) {		/*		 * We couldn't register as a local timer (could be		 * because we're on a UP platform, or because some		 * other local timer is already present...). Try as a		 * global timer instead.		 */		arch_timer_global_evt.cpumask = cpumask_of(0);		err = arch_timer_setup(&arch_timer_global_evt);	}	if (err)		goto out_free_irq;	/* Use the architected timer for the delay loop. */	arch_delay_timer.read_current_timer = &arch_timer_read_current_timer;	arch_delay_timer.freq = arch_timer_rate;	register_current_timer_delay(&arch_delay_timer);	return 0;out_free_irq:	if (arch_timer_use_virtual)		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);	else {		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],				arch_timer_evt);		if (arch_timer_ppi[PHYS_NONSECURE_PPI])			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],					arch_timer_evt);	}out_free:	free_percpu(arch_timer_evt);out:	return err;}static const struct of_device_id arch_timer_of_match[] __initconst = {	{ .compatible	= "arm,armv7-timer",	},	{},};int __init arch_timer_of_register(void){	struct device_node *np;	u32 freq;	int i;	np = of_find_matching_node(NULL, arch_timer_of_match);	if (!np) {		pr_err("arch_timer: can't find DT node\n");		return -ENODEV;	}	/* Try to determine the frequency from the device tree or CNTFRQ */	if (!of_property_read_u32(np, "clock-frequency", &freq))		arch_timer_rate = freq;	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);	/*	 * If no interrupt provided for virtual timer, we'll have to	 * stick to the physical timer. It'd better be accessible...	 */	if (!arch_timer_ppi[VIRT_PPI]) {		arch_timer_use_virtual = false;		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {			pr_warn("arch_timer: No interrupt available, giving up\n");			return -EINVAL;		}	}	return arch_timer_register();}int __init arch_timer_sched_clock_init(void){	u32 (*cnt32)(void);	int err;	err = arch_timer_available();	if (err)		return err;	if (arch_timer_use_virtual)		cnt32 = arch_counter_get_cntvct32;	else		cnt32 = arch_counter_get_cntpct32;	setup_sched_clock(cnt32, 32, arch_timer_rate);	return 0;}
 |