| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651 | /* * Interface for controlling IO bandwidth on a request queue * * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> */#include <linux/module.h>#include <linux/slab.h>#include <linux/blkdev.h>#include <linux/bio.h>#include <linux/blktrace_api.h>#include "blk-cgroup.h"#include "blk.h"/* Max dispatch from a group in 1 round */static int throtl_grp_quantum = 8;/* Total max dispatch from all groups in one round */static int throtl_quantum = 32;/* Throttling is performed over 100ms slice and after that slice is renewed */static unsigned long throtl_slice = HZ/10;	/* 100 ms */static struct blkcg_policy blkcg_policy_throtl;/* A workqueue to queue throttle related work */static struct workqueue_struct *kthrotld_workqueue;static void throtl_schedule_delayed_work(struct throtl_data *td,				unsigned long delay);struct throtl_rb_root {	struct rb_root rb;	struct rb_node *left;	unsigned int count;	unsigned long min_disptime;};#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \			.count = 0, .min_disptime = 0}#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)/* Per-cpu group stats */struct tg_stats_cpu {	/* total bytes transferred */	struct blkg_rwstat		service_bytes;	/* total IOs serviced, post merge */	struct blkg_rwstat		serviced;};struct throtl_grp {	/* must be the first member */	struct blkg_policy_data pd;	/* active throtl group service_tree member */	struct rb_node rb_node;	/*	 * Dispatch time in jiffies. This is the estimated time when group	 * will unthrottle and is ready to dispatch more bio. It is used as	 * key to sort active groups in service tree.	 */	unsigned long disptime;	unsigned int flags;	/* Two lists for READ and WRITE */	struct bio_list bio_lists[2];	/* Number of queued bios on READ and WRITE lists */	unsigned int nr_queued[2];	/* bytes per second rate limits */	uint64_t bps[2];	/* IOPS limits */	unsigned int iops[2];	/* Number of bytes disptached in current slice */	uint64_t bytes_disp[2];	/* Number of bio's dispatched in current slice */	unsigned int io_disp[2];	/* When did we start a new slice */	unsigned long slice_start[2];	unsigned long slice_end[2];	/* Some throttle limits got updated for the group */	int limits_changed;	/* Per cpu stats pointer */	struct tg_stats_cpu __percpu *stats_cpu;	/* List of tgs waiting for per cpu stats memory to be allocated */	struct list_head stats_alloc_node;};struct throtl_data{	/* service tree for active throtl groups */	struct throtl_rb_root tg_service_tree;	struct request_queue *queue;	/* Total Number of queued bios on READ and WRITE lists */	unsigned int nr_queued[2];	/*	 * number of total undestroyed groups	 */	unsigned int nr_undestroyed_grps;	/* Work for dispatching throttled bios */	struct delayed_work throtl_work;	int limits_changed;};/* list and work item to allocate percpu group stats */static DEFINE_SPINLOCK(tg_stats_alloc_lock);static LIST_HEAD(tg_stats_alloc_list);static void tg_stats_alloc_fn(struct work_struct *);static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd){	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;}static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg){	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));}static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg){	return pd_to_blkg(&tg->pd);}static inline struct throtl_grp *td_root_tg(struct throtl_data *td){	return blkg_to_tg(td->queue->root_blkg);}enum tg_state_flags {	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */};#define THROTL_TG_FNS(name)						\static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\{									\	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\}									\static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\{									\	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\}									\static inline int throtl_tg_##name(const struct throtl_grp *tg)		\{									\	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\}THROTL_TG_FNS(on_rr);#define throtl_log_tg(td, tg, fmt, args...)	do {			\	char __pbuf[128];						\									\	blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf));		\	blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \} while (0)#define throtl_log(td, fmt, args...)	\	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)static inline unsigned int total_nr_queued(struct throtl_data *td){	return td->nr_queued[0] + td->nr_queued[1];}/* * Worker for allocating per cpu stat for tgs. This is scheduled on the * system_wq once there are some groups on the alloc_list waiting for * allocation. */static void tg_stats_alloc_fn(struct work_struct *work){	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */	struct delayed_work *dwork = to_delayed_work(work);	bool empty = false;alloc_stats:	if (!stats_cpu) {		stats_cpu = alloc_percpu(struct tg_stats_cpu);		if (!stats_cpu) {			/* allocation failed, try again after some time */			schedule_delayed_work(dwork, msecs_to_jiffies(10));			return;		}	}	spin_lock_irq(&tg_stats_alloc_lock);	if (!list_empty(&tg_stats_alloc_list)) {		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,							 struct throtl_grp,							 stats_alloc_node);		swap(tg->stats_cpu, stats_cpu);		list_del_init(&tg->stats_alloc_node);	}	empty = list_empty(&tg_stats_alloc_list);	spin_unlock_irq(&tg_stats_alloc_lock);	if (!empty)		goto alloc_stats;}static void throtl_pd_init(struct blkcg_gq *blkg){	struct throtl_grp *tg = blkg_to_tg(blkg);	unsigned long flags;	RB_CLEAR_NODE(&tg->rb_node);	bio_list_init(&tg->bio_lists[0]);	bio_list_init(&tg->bio_lists[1]);	tg->limits_changed = false;	tg->bps[READ] = -1;	tg->bps[WRITE] = -1;	tg->iops[READ] = -1;	tg->iops[WRITE] = -1;	/*	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu	 * but percpu allocator can't be called from IO path.  Queue tg on	 * tg_stats_alloc_list and allocate from work item.	 */	spin_lock_irqsave(&tg_stats_alloc_lock, flags);	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);	schedule_delayed_work(&tg_stats_alloc_work, 0);	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);}static void throtl_pd_exit(struct blkcg_gq *blkg){	struct throtl_grp *tg = blkg_to_tg(blkg);	unsigned long flags;	spin_lock_irqsave(&tg_stats_alloc_lock, flags);	list_del_init(&tg->stats_alloc_node);	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);	free_percpu(tg->stats_cpu);}static void throtl_pd_reset_stats(struct blkcg_gq *blkg){	struct throtl_grp *tg = blkg_to_tg(blkg);	int cpu;	if (tg->stats_cpu == NULL)		return;	for_each_possible_cpu(cpu) {		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);		blkg_rwstat_reset(&sc->service_bytes);		blkg_rwstat_reset(&sc->serviced);	}}static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,					   struct blkcg *blkcg){	/*	 * This is the common case when there are no blkcgs.  Avoid lookup	 * in this case	 */	if (blkcg == &blkcg_root)		return td_root_tg(td);	return blkg_to_tg(blkg_lookup(blkcg, td->queue));}static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,						  struct blkcg *blkcg){	struct request_queue *q = td->queue;	struct throtl_grp *tg = NULL;	/*	 * This is the common case when there are no blkcgs.  Avoid lookup	 * in this case	 */	if (blkcg == &blkcg_root) {		tg = td_root_tg(td);	} else {		struct blkcg_gq *blkg;		blkg = blkg_lookup_create(blkcg, q);		/* if %NULL and @q is alive, fall back to root_tg */		if (!IS_ERR(blkg))			tg = blkg_to_tg(blkg);		else if (!blk_queue_dying(q))			tg = td_root_tg(td);	}	return tg;}static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root){	/* Service tree is empty */	if (!root->count)		return NULL;	if (!root->left)		root->left = rb_first(&root->rb);	if (root->left)		return rb_entry_tg(root->left);	return NULL;}static void rb_erase_init(struct rb_node *n, struct rb_root *root){	rb_erase(n, root);	RB_CLEAR_NODE(n);}static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root){	if (root->left == n)		root->left = NULL;	rb_erase_init(n, &root->rb);	--root->count;}static void update_min_dispatch_time(struct throtl_rb_root *st){	struct throtl_grp *tg;	tg = throtl_rb_first(st);	if (!tg)		return;	st->min_disptime = tg->disptime;}static voidtg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg){	struct rb_node **node = &st->rb.rb_node;	struct rb_node *parent = NULL;	struct throtl_grp *__tg;	unsigned long key = tg->disptime;	int left = 1;	while (*node != NULL) {		parent = *node;		__tg = rb_entry_tg(parent);		if (time_before(key, __tg->disptime))			node = &parent->rb_left;		else {			node = &parent->rb_right;			left = 0;		}	}	if (left)		st->left = &tg->rb_node;	rb_link_node(&tg->rb_node, parent, node);	rb_insert_color(&tg->rb_node, &st->rb);}static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg){	struct throtl_rb_root *st = &td->tg_service_tree;	tg_service_tree_add(st, tg);	throtl_mark_tg_on_rr(tg);	st->count++;}static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg){	if (!throtl_tg_on_rr(tg))		__throtl_enqueue_tg(td, tg);}static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg){	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);	throtl_clear_tg_on_rr(tg);}static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg){	if (throtl_tg_on_rr(tg))		__throtl_dequeue_tg(td, tg);}static void throtl_schedule_next_dispatch(struct throtl_data *td){	struct throtl_rb_root *st = &td->tg_service_tree;	/*	 * If there are more bios pending, schedule more work.	 */	if (!total_nr_queued(td))		return;	BUG_ON(!st->count);	update_min_dispatch_time(st);	if (time_before_eq(st->min_disptime, jiffies))		throtl_schedule_delayed_work(td, 0);	else		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));}static inline voidthrotl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw){	tg->bytes_disp[rw] = 0;	tg->io_disp[rw] = 0;	tg->slice_start[rw] = jiffies;	tg->slice_end[rw] = jiffies + throtl_slice;	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",			rw == READ ? 'R' : 'W', tg->slice_start[rw],			tg->slice_end[rw], jiffies);}static inline void throtl_set_slice_end(struct throtl_data *td,		struct throtl_grp *tg, bool rw, unsigned long jiffy_end){	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);}static inline void throtl_extend_slice(struct throtl_data *td,		struct throtl_grp *tg, bool rw, unsigned long jiffy_end){	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",			rw == READ ? 'R' : 'W', tg->slice_start[rw],			tg->slice_end[rw], jiffies);}/* Determine if previously allocated or extended slice is complete or not */static boolthrotl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw){	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))		return 0;	return 1;}/* Trim the used slices and adjust slice start accordingly */static inline voidthrotl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw){	unsigned long nr_slices, time_elapsed, io_trim;	u64 bytes_trim, tmp;	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));	/*	 * If bps are unlimited (-1), then time slice don't get	 * renewed. Don't try to trim the slice if slice is used. A new	 * slice will start when appropriate.	 */	if (throtl_slice_used(td, tg, rw))		return;	/*	 * A bio has been dispatched. Also adjust slice_end. It might happen	 * that initially cgroup limit was very low resulting in high	 * slice_end, but later limit was bumped up and bio was dispached	 * sooner, then we need to reduce slice_end. A high bogus slice_end	 * is bad because it does not allow new slice to start.	 */	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);	time_elapsed = jiffies - tg->slice_start[rw];	nr_slices = time_elapsed / throtl_slice;	if (!nr_slices)		return;	tmp = tg->bps[rw] * throtl_slice * nr_slices;	do_div(tmp, HZ);	bytes_trim = tmp;	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;	if (!bytes_trim && !io_trim)		return;	if (tg->bytes_disp[rw] >= bytes_trim)		tg->bytes_disp[rw] -= bytes_trim;	else		tg->bytes_disp[rw] = 0;	if (tg->io_disp[rw] >= io_trim)		tg->io_disp[rw] -= io_trim;	else		tg->io_disp[rw] = 0;	tg->slice_start[rw] += nr_slices * throtl_slice;	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"			" start=%lu end=%lu jiffies=%lu",			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,			tg->slice_start[rw], tg->slice_end[rw], jiffies);}static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,		struct bio *bio, unsigned long *wait){	bool rw = bio_data_dir(bio);	unsigned int io_allowed;	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;	u64 tmp;	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];	/* Slice has just started. Consider one slice interval */	if (!jiffy_elapsed)		jiffy_elapsed_rnd = throtl_slice;	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);	/*	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we	 * will allow dispatch after 1 second and after that slice should	 * have been trimmed.	 */	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;	do_div(tmp, HZ);	if (tmp > UINT_MAX)		io_allowed = UINT_MAX;	else		io_allowed = tmp;	if (tg->io_disp[rw] + 1 <= io_allowed) {		if (wait)			*wait = 0;		return 1;	}	/* Calc approx time to dispatch */	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;	if (jiffy_wait > jiffy_elapsed)		jiffy_wait = jiffy_wait - jiffy_elapsed;	else		jiffy_wait = 1;	if (wait)		*wait = jiffy_wait;	return 0;}static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,		struct bio *bio, unsigned long *wait){	bool rw = bio_data_dir(bio);	u64 bytes_allowed, extra_bytes, tmp;	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];	/* Slice has just started. Consider one slice interval */	if (!jiffy_elapsed)		jiffy_elapsed_rnd = throtl_slice;	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);	tmp = tg->bps[rw] * jiffy_elapsed_rnd;	do_div(tmp, HZ);	bytes_allowed = tmp;	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {		if (wait)			*wait = 0;		return 1;	}	/* Calc approx time to dispatch */	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);	if (!jiffy_wait)		jiffy_wait = 1;	/*	 * This wait time is without taking into consideration the rounding	 * up we did. Add that time also.	 */	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);	if (wait)		*wait = jiffy_wait;	return 0;}static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)		return 1;	return 0;}/* * Returns whether one can dispatch a bio or not. Also returns approx number * of jiffies to wait before this bio is with-in IO rate and can be dispatched */static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,				struct bio *bio, unsigned long *wait){	bool rw = bio_data_dir(bio);	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;	/* 	 * Currently whole state machine of group depends on first bio	 * queued in the group bio list. So one should not be calling	 * this function with a different bio if there are other bios	 * queued.	 */	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));	/* If tg->bps = -1, then BW is unlimited */	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {		if (wait)			*wait = 0;		return 1;	}	/*	 * If previous slice expired, start a new one otherwise renew/extend	 * existing slice to make sure it is at least throtl_slice interval	 * long since now.	 */
 |