| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 | /* *  linux/arch/arm/mm/ioremap.c * * Re-map IO memory to kernel address space so that we can access it. * * (C) Copyright 1995 1996 Linus Torvalds * * Hacked for ARM by Phil Blundell <philb@gnu.org> * Hacked to allow all architectures to build, and various cleanups * by Russell King * * This allows a driver to remap an arbitrary region of bus memory into * virtual space.  One should *only* use readl, writel, memcpy_toio and * so on with such remapped areas. * * Because the ARM only has a 32-bit address space we can't address the * whole of the (physical) PCI space at once.  PCI huge-mode addressing * allows us to circumvent this restriction by splitting PCI space into * two 2GB chunks and mapping only one at a time into processor memory. * We use MMU protection domains to trap any attempt to access the bank * that is not currently mapped.  (This isn't fully implemented yet.) */#include <linux/module.h>#include <linux/errno.h>#include <linux/mm.h>#include <linux/vmalloc.h>#include <linux/io.h>#include <linux/sizes.h>#include <asm/cp15.h>#include <asm/cputype.h>#include <asm/cacheflush.h>#include <asm/mmu_context.h>#include <asm/pgalloc.h>#include <asm/tlbflush.h>#include <asm/system_info.h>#include <asm/mach/map.h>#include <asm/mach/pci.h>#include "mm.h"int ioremap_page(unsigned long virt, unsigned long phys,		 const struct mem_type *mtype){	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,				  __pgprot(mtype->prot_pte));}EXPORT_SYMBOL(ioremap_page);void __check_vmalloc_seq(struct mm_struct *mm){	unsigned int seq;	do {		seq = init_mm.context.vmalloc_seq;		memcpy(pgd_offset(mm, VMALLOC_START),		       pgd_offset_k(VMALLOC_START),		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -					pgd_index(VMALLOC_START)));		mm->context.vmalloc_seq = seq;	} while (seq != init_mm.context.vmalloc_seq);}#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)/* * Section support is unsafe on SMP - If you iounmap and ioremap a region, * the other CPUs will not see this change until their next context switch. * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs * which requires the new ioremap'd region to be referenced, the CPU will * reference the _old_ region. * * Note that get_vm_area_caller() allocates a guard 4K page, so we need to * mask the size back to 1MB aligned or we will overflow in the loop below. */static void unmap_area_sections(unsigned long virt, unsigned long size){	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));	pgd_t *pgd;	pud_t *pud;	pmd_t *pmdp;	flush_cache_vunmap(addr, end);	pgd = pgd_offset_k(addr);	pud = pud_offset(pgd, addr);	pmdp = pmd_offset(pud, addr);	do {		pmd_t pmd = *pmdp;		if (!pmd_none(pmd)) {			/*			 * Clear the PMD from the page table, and			 * increment the vmalloc sequence so others			 * notice this change.			 *			 * Note: this is still racy on SMP machines.			 */			pmd_clear(pmdp);			init_mm.context.vmalloc_seq++;			/*			 * Free the page table, if there was one.			 */			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));		}		addr += PMD_SIZE;		pmdp += 2;	} while (addr < end);	/*	 * Ensure that the active_mm is up to date - we want to	 * catch any use-after-iounmap cases.	 */	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)		__check_vmalloc_seq(current->active_mm);	flush_tlb_kernel_range(virt, end);}static intremap_area_sections(unsigned long virt, unsigned long pfn,		    size_t size, const struct mem_type *type){	unsigned long addr = virt, end = virt + size;	pgd_t *pgd;	pud_t *pud;	pmd_t *pmd;	/*	 * Remove and free any PTE-based mapping, and	 * sync the current kernel mapping.	 */	unmap_area_sections(virt, size);	pgd = pgd_offset_k(addr);	pud = pud_offset(pgd, addr);	pmd = pmd_offset(pud, addr);	do {		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);		pfn += SZ_1M >> PAGE_SHIFT;		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);		pfn += SZ_1M >> PAGE_SHIFT;		flush_pmd_entry(pmd);		addr += PMD_SIZE;		pmd += 2;	} while (addr < end);	return 0;}static intremap_area_supersections(unsigned long virt, unsigned long pfn,			 size_t size, const struct mem_type *type){	unsigned long addr = virt, end = virt + size;	pgd_t *pgd;	pud_t *pud;	pmd_t *pmd;	/*	 * Remove and free any PTE-based mapping, and	 * sync the current kernel mapping.	 */	unmap_area_sections(virt, size);	pgd = pgd_offset_k(virt);	pud = pud_offset(pgd, addr);	pmd = pmd_offset(pud, addr);	do {		unsigned long super_pmd_val, i;		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |				PMD_SECT_SUPER;		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;		for (i = 0; i < 8; i++) {			pmd[0] = __pmd(super_pmd_val);			pmd[1] = __pmd(super_pmd_val);			flush_pmd_entry(pmd);			addr += PMD_SIZE;			pmd += 2;		}		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;	} while (addr < end);	return 0;}#endifvoid __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,	unsigned long offset, size_t size, unsigned int mtype, void *caller){	const struct mem_type *type;	int err;	unsigned long addr; 	struct vm_struct * area;#ifndef CONFIG_ARM_LPAE	/*	 * High mappings must be supersection aligned	 */	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))		return NULL;#endif	type = get_mem_type(mtype);	if (!type)		return NULL;	/*	 * Page align the mapping size, taking account of any offset.	 */	size = PAGE_ALIGN(offset + size);	/*	 * Try to reuse one of the static mapping whenever possible.	 */	read_lock(&vmlist_lock);	for (area = vmlist; area; area = area->next) {		if (!size || (sizeof(phys_addr_t) == 4 && pfn >= 0x100000))			break;		if (!(area->flags & VM_ARM_STATIC_MAPPING))			continue;		if ((area->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))			continue;		if (__phys_to_pfn(area->phys_addr) > pfn ||		    __pfn_to_phys(pfn) + size-1 > area->phys_addr + area->size-1)			continue;		/* we can drop the lock here as we know *area is static */		read_unlock(&vmlist_lock);		addr = (unsigned long)area->addr;		addr += __pfn_to_phys(pfn) - area->phys_addr;		return (void __iomem *) (offset + addr);	}	read_unlock(&vmlist_lock);	/*	 * Don't allow RAM to be mapped - this causes problems with ARMv6+	 */	if (WARN_ON(pfn_valid(pfn)))		return NULL;	area = get_vm_area_caller(size, VM_IOREMAP, caller); 	if (!area) 		return NULL; 	addr = (unsigned long)area->addr;	area->phys_addr = __pfn_to_phys(pfn);#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)	if (DOMAIN_IO == 0 &&	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||	       cpu_is_xsc3()) && pfn >= 0x100000 &&	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {		area->flags |= VM_ARM_SECTION_MAPPING;		err = remap_area_supersections(addr, pfn, size, type);	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {		area->flags |= VM_ARM_SECTION_MAPPING;		err = remap_area_sections(addr, pfn, size, type);	} else#endif		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),					 __pgprot(type->prot_pte));	if (err) { 		vunmap((void *)addr); 		return NULL; 	}	flush_cache_vmap(addr, addr + size);	return (void __iomem *) (offset + addr);}void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,	unsigned int mtype, void *caller){	unsigned long last_addr; 	unsigned long offset = phys_addr & ~PAGE_MASK; 	unsigned long pfn = __phys_to_pfn(phys_addr); 	/* 	 * Don't allow wraparound or zero size	 */	last_addr = phys_addr + size - 1;	if (!size || last_addr < phys_addr)		return NULL;	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,			caller);}/* * Remap an arbitrary physical address space into the kernel virtual * address space. Needed when the kernel wants to access high addresses * directly. * * NOTE! We need to allow non-page-aligned mappings too: we will obviously * have to convert them into an offset in a page-aligned mapping, but the * caller shouldn't need to know that small detail. */void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,		  unsigned int mtype){	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,			__builtin_return_address(0));}EXPORT_SYMBOL(__arm_ioremap_pfn);void __iomem * (*arch_ioremap_caller)(unsigned long, size_t,				      unsigned int, void *) =	__arm_ioremap_caller;void __iomem *__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype){	return arch_ioremap_caller(phys_addr, size, mtype,		__builtin_return_address(0));}
 |