| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 | 
							- /*
 
-  *  linux/arch/arm/vfp/vfpdouble.c
 
-  *
 
-  * This code is derived in part from John R. Housers softfloat library, which
 
-  * carries the following notice:
 
-  *
 
-  * ===========================================================================
 
-  * This C source file is part of the SoftFloat IEC/IEEE Floating-point
 
-  * Arithmetic Package, Release 2.
 
-  *
 
-  * Written by John R. Hauser.  This work was made possible in part by the
 
-  * International Computer Science Institute, located at Suite 600, 1947 Center
 
-  * Street, Berkeley, California 94704.  Funding was partially provided by the
 
-  * National Science Foundation under grant MIP-9311980.  The original version
 
-  * of this code was written as part of a project to build a fixed-point vector
 
-  * processor in collaboration with the University of California at Berkeley,
 
-  * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 
-  * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 
-  * arithmetic/softfloat.html'.
 
-  *
 
-  * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 
-  * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 
-  * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 
-  * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 
-  * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 
-  *
 
-  * Derivative works are acceptable, even for commercial purposes, so long as
 
-  * (1) they include prominent notice that the work is derivative, and (2) they
 
-  * include prominent notice akin to these three paragraphs for those parts of
 
-  * this code that are retained.
 
-  * ===========================================================================
 
-  */
 
- #include <linux/kernel.h>
 
- #include <linux/bitops.h>
 
- #include <asm/div64.h>
 
- #include <asm/vfp.h>
 
- #include "vfpinstr.h"
 
- #include "vfp.h"
 
- static struct vfp_double vfp_double_default_qnan = {
 
- 	.exponent	= 2047,
 
- 	.sign		= 0,
 
- 	.significand	= VFP_DOUBLE_SIGNIFICAND_QNAN,
 
- };
 
- static void vfp_double_dump(const char *str, struct vfp_double *d)
 
- {
 
- 	pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
 
- 		 str, d->sign != 0, d->exponent, d->significand);
 
- }
 
- static void vfp_double_normalise_denormal(struct vfp_double *vd)
 
- {
 
- 	int bits = 31 - fls(vd->significand >> 32);
 
- 	if (bits == 31)
 
- 		bits = 63 - fls(vd->significand);
 
- 	vfp_double_dump("normalise_denormal: in", vd);
 
- 	if (bits) {
 
- 		vd->exponent -= bits - 1;
 
- 		vd->significand <<= bits;
 
- 	}
 
- 	vfp_double_dump("normalise_denormal: out", vd);
 
- }
 
- u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
 
- {
 
- 	u64 significand, incr;
 
- 	int exponent, shift, underflow;
 
- 	u32 rmode;
 
- 	vfp_double_dump("pack: in", vd);
 
- 	/*
 
- 	 * Infinities and NaNs are a special case.
 
- 	 */
 
- 	if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
 
- 		goto pack;
 
- 	/*
 
- 	 * Special-case zero.
 
- 	 */
 
- 	if (vd->significand == 0) {
 
- 		vd->exponent = 0;
 
- 		goto pack;
 
- 	}
 
- 	exponent = vd->exponent;
 
- 	significand = vd->significand;
 
- 	shift = 32 - fls(significand >> 32);
 
- 	if (shift == 32)
 
- 		shift = 64 - fls(significand);
 
- 	if (shift) {
 
- 		exponent -= shift;
 
- 		significand <<= shift;
 
- 	}
 
- #ifdef DEBUG
 
- 	vd->exponent = exponent;
 
- 	vd->significand = significand;
 
- 	vfp_double_dump("pack: normalised", vd);
 
- #endif
 
- 	/*
 
- 	 * Tiny number?
 
- 	 */
 
- 	underflow = exponent < 0;
 
- 	if (underflow) {
 
- 		significand = vfp_shiftright64jamming(significand, -exponent);
 
- 		exponent = 0;
 
- #ifdef DEBUG
 
- 		vd->exponent = exponent;
 
- 		vd->significand = significand;
 
- 		vfp_double_dump("pack: tiny number", vd);
 
- #endif
 
- 		if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
 
- 			underflow = 0;
 
- 	}
 
- 	/*
 
- 	 * Select rounding increment.
 
- 	 */
 
- 	incr = 0;
 
- 	rmode = fpscr & FPSCR_RMODE_MASK;
 
- 	if (rmode == FPSCR_ROUND_NEAREST) {
 
- 		incr = 1ULL << VFP_DOUBLE_LOW_BITS;
 
- 		if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
 
- 			incr -= 1;
 
- 	} else if (rmode == FPSCR_ROUND_TOZERO) {
 
- 		incr = 0;
 
- 	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
 
- 		incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
 
- 	pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
 
- 	/*
 
- 	 * Is our rounding going to overflow?
 
- 	 */
 
- 	if ((significand + incr) < significand) {
 
- 		exponent += 1;
 
- 		significand = (significand >> 1) | (significand & 1);
 
- 		incr >>= 1;
 
- #ifdef DEBUG
 
- 		vd->exponent = exponent;
 
- 		vd->significand = significand;
 
- 		vfp_double_dump("pack: overflow", vd);
 
- #endif
 
- 	}
 
- 	/*
 
- 	 * If any of the low bits (which will be shifted out of the
 
- 	 * number) are non-zero, the result is inexact.
 
- 	 */
 
- 	if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
 
- 		exceptions |= FPSCR_IXC;
 
- 	/*
 
- 	 * Do our rounding.
 
- 	 */
 
- 	significand += incr;
 
- 	/*
 
- 	 * Infinity?
 
- 	 */
 
- 	if (exponent >= 2046) {
 
- 		exceptions |= FPSCR_OFC | FPSCR_IXC;
 
- 		if (incr == 0) {
 
- 			vd->exponent = 2045;
 
- 			vd->significand = 0x7fffffffffffffffULL;
 
- 		} else {
 
- 			vd->exponent = 2047;		/* infinity */
 
- 			vd->significand = 0;
 
- 		}
 
- 	} else {
 
- 		if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
 
- 			exponent = 0;
 
- 		if (exponent || significand > 0x8000000000000000ULL)
 
- 			underflow = 0;
 
- 		if (underflow)
 
- 			exceptions |= FPSCR_UFC;
 
- 		vd->exponent = exponent;
 
- 		vd->significand = significand >> 1;
 
- 	}
 
-  pack:
 
- 	vfp_double_dump("pack: final", vd);
 
- 	{
 
- 		s64 d = vfp_double_pack(vd);
 
- 		pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
 
- 			 dd, d, exceptions);
 
- 		vfp_put_double(d, dd);
 
- 	}
 
- 	return exceptions;
 
- }
 
- /*
 
-  * Propagate the NaN, setting exceptions if it is signalling.
 
-  * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
 
-  */
 
- static u32
 
- vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
 
- 		  struct vfp_double *vdm, u32 fpscr)
 
- {
 
- 	struct vfp_double *nan;
 
- 	int tn, tm = 0;
 
- 	tn = vfp_double_type(vdn);
 
- 	if (vdm)
 
- 		tm = vfp_double_type(vdm);
 
- 	if (fpscr & FPSCR_DEFAULT_NAN)
 
- 		/*
 
- 		 * Default NaN mode - always returns a quiet NaN
 
- 		 */
 
- 		nan = &vfp_double_default_qnan;
 
- 	else {
 
- 		/*
 
- 		 * Contemporary mode - select the first signalling
 
- 		 * NAN, or if neither are signalling, the first
 
- 		 * quiet NAN.
 
- 		 */
 
- 		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
 
- 			nan = vdn;
 
- 		else
 
- 			nan = vdm;
 
- 		/*
 
- 		 * Make the NaN quiet.
 
- 		 */
 
- 		nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
 
- 	}
 
- 	*vdd = *nan;
 
- 	/*
 
- 	 * If one was a signalling NAN, raise invalid operation.
 
- 	 */
 
- 	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
 
- }
 
- /*
 
-  * Extended operations
 
-  */
 
- static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
 
- {
 
- 	vfp_put_double(vfp_double_packed_abs(vfp_get_double(dm)), dd);
 
- 	return 0;
 
- }
 
- static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
 
 
  |