| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241 | /* *  CFQ, or complete fairness queueing, disk scheduler. * *  Based on ideas from a previously unfinished io *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. * *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> */#include <linux/module.h>#include <linux/slab.h>#include <linux/blkdev.h>#include <linux/elevator.h>#include <linux/jiffies.h>#include <linux/rbtree.h>#include <linux/ioprio.h>#include <linux/blktrace_api.h>#include "blk.h"#include "blk-cgroup.h"/* * tunables *//* max queue in one round of service */static const int cfq_quantum = 8;static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };/* maximum backwards seek, in KiB */static const int cfq_back_max = 16 * 1024;/* penalty of a backwards seek */static const int cfq_back_penalty = 2;static const int cfq_slice_sync = HZ / 10;static int cfq_slice_async = HZ / 25;static const int cfq_slice_async_rq = 2;static int cfq_slice_idle = HZ / 125;static int cfq_group_idle = HZ / 125;static const int cfq_target_latency = HZ * 3/10; /* 300 ms */static const int cfq_hist_divisor = 4;/* * offset from end of service tree */#define CFQ_IDLE_DELAY		(HZ / 5)/* * below this threshold, we consider thinktime immediate */#define CFQ_MIN_TT		(2)#define CFQ_SLICE_SCALE		(5)#define CFQ_HW_QUEUE_MIN	(5)#define CFQ_SERVICE_SHIFT       12#define CFQQ_SEEK_THR		(sector_t)(8 * 100)#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])static struct kmem_cache *cfq_pool;#define CFQ_PRIO_LISTS		IOPRIO_BE_NR#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)#define sample_valid(samples)	((samples) > 80)#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)struct cfq_ttime {	unsigned long last_end_request;	unsigned long ttime_total;	unsigned long ttime_samples;	unsigned long ttime_mean;};/* * Most of our rbtree usage is for sorting with min extraction, so * if we cache the leftmost node we don't have to walk down the tree * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should * move this into the elevator for the rq sorting as well. */struct cfq_rb_root {	struct rb_root rb;	struct rb_node *left;	unsigned count;	unsigned total_weight;	u64 min_vdisktime;	struct cfq_ttime ttime;};#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \			.ttime = {.last_end_request = jiffies,},}/* * Per process-grouping structure */struct cfq_queue {	/* reference count */	int ref;	/* various state flags, see below */	unsigned int flags;	/* parent cfq_data */	struct cfq_data *cfqd;	/* service_tree member */	struct rb_node rb_node;	/* service_tree key */	unsigned long rb_key;	/* prio tree member */	struct rb_node p_node;	/* prio tree root we belong to, if any */	struct rb_root *p_root;	/* sorted list of pending requests */	struct rb_root sort_list;	/* if fifo isn't expired, next request to serve */	struct request *next_rq;	/* requests queued in sort_list */	int queued[2];	/* currently allocated requests */	int allocated[2];	/* fifo list of requests in sort_list */	struct list_head fifo;	/* time when queue got scheduled in to dispatch first request. */	unsigned long dispatch_start;	unsigned int allocated_slice;	unsigned int slice_dispatch;	/* time when first request from queue completed and slice started. */	unsigned long slice_start;	unsigned long slice_end;	long slice_resid;	/* pending priority requests */	int prio_pending;	/* number of requests that are on the dispatch list or inside driver */	int dispatched;	/* io prio of this group */	unsigned short ioprio, org_ioprio;	unsigned short ioprio_class;	pid_t pid;	u32 seek_history;	sector_t last_request_pos;	struct cfq_rb_root *service_tree;	struct cfq_queue *new_cfqq;	struct cfq_group *cfqg;	/* Number of sectors dispatched from queue in single dispatch round */	unsigned long nr_sectors;};/* * First index in the service_trees. * IDLE is handled separately, so it has negative index */enum wl_prio_t {	BE_WORKLOAD = 0,	RT_WORKLOAD = 1,	IDLE_WORKLOAD = 2,	CFQ_PRIO_NR,};/* * Second index in the service_trees. */enum wl_type_t {	ASYNC_WORKLOAD = 0,	SYNC_NOIDLE_WORKLOAD = 1,	SYNC_WORKLOAD = 2};struct cfqg_stats {#ifdef CONFIG_CFQ_GROUP_IOSCHED	/* total bytes transferred */	struct blkg_rwstat		service_bytes;	/* total IOs serviced, post merge */	struct blkg_rwstat		serviced;	/* number of ios merged */	struct blkg_rwstat		merged;	/* total time spent on device in ns, may not be accurate w/ queueing */	struct blkg_rwstat		service_time;	/* total time spent waiting in scheduler queue in ns */	struct blkg_rwstat		wait_time;	/* number of IOs queued up */	struct blkg_rwstat		queued;	/* total sectors transferred */	struct blkg_stat		sectors;	/* total disk time and nr sectors dispatched by this group */	struct blkg_stat		time;#ifdef CONFIG_DEBUG_BLK_CGROUP	/* time not charged to this cgroup */	struct blkg_stat		unaccounted_time;	/* sum of number of ios queued across all samples */	struct blkg_stat		avg_queue_size_sum;	/* count of samples taken for average */	struct blkg_stat		avg_queue_size_samples;	/* how many times this group has been removed from service tree */	struct blkg_stat		dequeue;	/* total time spent waiting for it to be assigned a timeslice. */	struct blkg_stat		group_wait_time;	/* time spent idling for this blkcg_gq */	struct blkg_stat		idle_time;	/* total time with empty current active q with other requests queued */	struct blkg_stat		empty_time;	/* fields after this shouldn't be cleared on stat reset */	uint64_t			start_group_wait_time;	uint64_t			start_idle_time;	uint64_t			start_empty_time;	uint16_t			flags;#endif	/* CONFIG_DEBUG_BLK_CGROUP */#endif	/* CONFIG_CFQ_GROUP_IOSCHED */};/* This is per cgroup per device grouping structure */struct cfq_group {	/* must be the first member */	struct blkg_policy_data pd;	/* group service_tree member */	struct rb_node rb_node;	/* group service_tree key */	u64 vdisktime;	unsigned int weight;	unsigned int new_weight;	unsigned int dev_weight;	/* number of cfqq currently on this group */	int nr_cfqq;	/*	 * Per group busy queues average. Useful for workload slice calc. We	 * create the array for each prio class but at run time it is used	 * only for RT and BE class and slot for IDLE class remains unused.	 * This is primarily done to avoid confusion and a gcc warning.	 */	unsigned int busy_queues_avg[CFQ_PRIO_NR];	/*	 * rr lists of queues with requests. We maintain service trees for	 * RT and BE classes. These trees are subdivided in subclasses	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE	 * class there is no subclassification and all the cfq queues go on	 * a single tree service_tree_idle.	 * Counts are embedded in the cfq_rb_root	 */	struct cfq_rb_root service_trees[2][3];	struct cfq_rb_root service_tree_idle;	unsigned long saved_workload_slice;	enum wl_type_t saved_workload;	enum wl_prio_t saved_serving_prio;	/* number of requests that are on the dispatch list or inside driver */	int dispatched;	struct cfq_ttime ttime;	struct cfqg_stats stats;};struct cfq_io_cq {	struct io_cq		icq;		/* must be the first member */	struct cfq_queue	*cfqq[2];	struct cfq_ttime	ttime;	int			ioprio;		/* the current ioprio */#ifdef CONFIG_CFQ_GROUP_IOSCHED	uint64_t		blkcg_id;	/* the current blkcg ID */#endif};/* * Per block device queue structure */struct cfq_data {	struct request_queue *queue;	/* Root service tree for cfq_groups */	struct cfq_rb_root grp_service_tree;	struct cfq_group *root_group;	/*	 * The priority currently being served	 */	enum wl_prio_t serving_prio;	enum wl_type_t serving_type;	unsigned long workload_expires;	struct cfq_group *serving_group;	/*	 * Each priority tree is sorted by next_request position.  These	 * trees are used when determining if two or more queues are	 * interleaving requests (see cfq_close_cooperator).	 */	struct rb_root prio_trees[CFQ_PRIO_LISTS];	unsigned int busy_queues;	unsigned int busy_sync_queues;	int rq_in_driver;	int rq_in_flight[2];	/*	 * queue-depth detection	 */	int rq_queued;	int hw_tag;	/*	 * hw_tag can be	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)	 *  0 => no NCQ	 */	int hw_tag_est_depth;	unsigned int hw_tag_samples;	/*	 * idle window management	 */	struct timer_list idle_slice_timer;	struct work_struct unplug_work;	struct cfq_queue *active_queue;	struct cfq_io_cq *active_cic;	/*	 * async queue for each priority case	 */	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];	struct cfq_queue *async_idle_cfqq;	sector_t last_position;	/*	 * tunables, see top of file	 */	unsigned int cfq_quantum;	unsigned int cfq_fifo_expire[2];	unsigned int cfq_back_penalty;	unsigned int cfq_back_max;	unsigned int cfq_slice[2];	unsigned int cfq_slice_async_rq;	unsigned int cfq_slice_idle;	unsigned int cfq_group_idle;	unsigned int cfq_latency;	unsigned int cfq_target_latency;	/*	 * Fallback dummy cfqq for extreme OOM conditions	 */	struct cfq_queue oom_cfqq;	unsigned long last_delayed_sync;};static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,					    enum wl_prio_t prio,					    enum wl_type_t type){	if (!cfqg)		return NULL;	if (prio == IDLE_WORKLOAD)		return &cfqg->service_tree_idle;	return &cfqg->service_trees[prio][type];}enum cfqq_state_flags {	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */};#define CFQ_CFQQ_FNS(name)						\static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\{									\	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\}									\static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\{									\	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\}									\static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\{									\	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\}CFQ_CFQQ_FNS(on_rr);CFQ_CFQQ_FNS(wait_request);CFQ_CFQQ_FNS(must_dispatch);CFQ_CFQQ_FNS(must_alloc_slice);CFQ_CFQQ_FNS(fifo_expire);CFQ_CFQQ_FNS(idle_window);CFQ_CFQQ_FNS(prio_changed);CFQ_CFQQ_FNS(slice_new);CFQ_CFQQ_FNS(sync);CFQ_CFQQ_FNS(coop);CFQ_CFQQ_FNS(split_coop);CFQ_CFQQ_FNS(deep);CFQ_CFQQ_FNS(wait_busy);#undef CFQ_CFQQ_FNSstatic inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd){	return pd ? container_of(pd, struct cfq_group, pd) : NULL;}static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg){	return pd_to_blkg(&cfqg->pd);}#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)/* cfqg stats flags */enum cfqg_stats_flags {	CFQG_stats_waiting = 0,	CFQG_stats_idling,	CFQG_stats_empty,};#define CFQG_FLAG_FNS(name)						\static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\{									\	stats->flags |= (1 << CFQG_stats_##name);			\}									\static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\{									\	stats->flags &= ~(1 << CFQG_stats_##name);			\}									\static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\{									\	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\}									\CFQG_FLAG_FNS(waiting)CFQG_FLAG_FNS(idling)CFQG_FLAG_FNS(empty)#undef CFQG_FLAG_FNS/* This should be called with the queue_lock held. */static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats){	unsigned long long now;	if (!cfqg_stats_waiting(stats))		return;	now = sched_clock();	if (time_after64(now, stats->start_group_wait_time))		blkg_stat_add(&stats->group_wait_time,			      now - stats->start_group_wait_time);	cfqg_stats_clear_waiting(stats);}/* This should be called with the queue_lock held. */static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,						 struct cfq_group *curr_cfqg){	struct cfqg_stats *stats = &cfqg->stats;	if (cfqg_stats_waiting(stats))		return;	if (cfqg == curr_cfqg)		return;	stats->start_group_wait_time = sched_clock();	cfqg_stats_mark_waiting(stats);}/* This should be called with the queue_lock held. */static void cfqg_stats_end_empty_time(struct cfqg_stats *stats){	unsigned long long now;	if (!cfqg_stats_empty(stats))		return;	now = sched_clock();	if (time_after64(now, stats->start_empty_time))		blkg_stat_add(&stats->empty_time,			      now - stats->start_empty_time);	cfqg_stats_clear_empty(stats);}static void cfqg_stats_update_dequeue(struct cfq_group *cfqg){	blkg_stat_add(&cfqg->stats.dequeue, 1);}static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	if (blkg_rwstat_sum(&stats->queued))		return;	/*	 * group is already marked empty. This can happen if cfqq got new	 * request in parent group and moved to this group while being added	 * to service tree. Just ignore the event and move on.	 */	if (cfqg_stats_empty(stats))		return;	stats->start_empty_time = sched_clock();	cfqg_stats_mark_empty(stats);}static void cfqg_stats_update_idle_time(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	if (cfqg_stats_idling(stats)) {		unsigned long long now = sched_clock();		if (time_after64(now, stats->start_idle_time))			blkg_stat_add(&stats->idle_time,				      now - stats->start_idle_time);		cfqg_stats_clear_idling(stats);	}}static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	BUG_ON(cfqg_stats_idling(stats));	stats->start_idle_time = sched_clock();	cfqg_stats_mark_idling(stats);}static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	blkg_stat_add(&stats->avg_queue_size_sum,		      blkg_rwstat_sum(&stats->queued));	blkg_stat_add(&stats->avg_queue_size_samples, 1);	cfqg_stats_update_group_wait_time(stats);}#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */#ifdef CONFIG_CFQ_GROUP_IOSCHEDstatic struct blkcg_policy blkcg_policy_cfq;static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg){	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));}static inline void cfqg_get(struct cfq_group *cfqg){	return blkg_get(cfqg_to_blkg(cfqg));}static inline void cfqg_put(struct cfq_group *cfqg){	return blkg_put(cfqg_to_blkg(cfqg));}#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\	char __pbuf[128];						\									\	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \			  cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\			  __pbuf, ##args);				\} while (0)#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\	char __pbuf[128];						\									\	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\} while (0)static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,					    struct cfq_group *curr_cfqg, int rw){	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);	cfqg_stats_end_empty_time(&cfqg->stats);	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);}static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,			unsigned long time, unsigned long unaccounted_time){	blkg_stat_add(&cfqg->stats.time, time);#ifdef CONFIG_DEBUG_BLK_CGROUP	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);#endif}static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw){	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);}static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw){	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);}static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,					      uint64_t bytes, int rw){	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);}static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,			uint64_t start_time, uint64_t io_start_time, int rw){	struct cfqg_stats *stats = &cfqg->stats;	unsigned long long now = sched_clock();	if (time_after64(now, io_start_time))		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);	if (time_after64(io_start_time, start_time))		blkg_rwstat_add(&stats->wait_time, rw,				io_start_time - start_time);}static void cfq_pd_reset_stats(struct blkcg_gq *blkg){	struct cfq_group *cfqg = blkg_to_cfqg(blkg);	struct cfqg_stats *stats = &cfqg->stats;	/* queued stats shouldn't be cleared */	blkg_rwstat_reset(&stats->service_bytes);	blkg_rwstat_reset(&stats->serviced);	blkg_rwstat_reset(&stats->merged);	blkg_rwstat_reset(&stats->service_time);	blkg_rwstat_reset(&stats->wait_time);	blkg_stat_reset(&stats->time);#ifdef CONFIG_DEBUG_BLK_CGROUP	blkg_stat_reset(&stats->unaccounted_time);	blkg_stat_reset(&stats->avg_queue_size_sum);	blkg_stat_reset(&stats->avg_queue_size_samples);	blkg_stat_reset(&stats->dequeue);	blkg_stat_reset(&stats->group_wait_time);	blkg_stat_reset(&stats->idle_time);	blkg_stat_reset(&stats->empty_time);#endif}#else	/* CONFIG_CFQ_GROUP_IOSCHED */static inline void cfqg_get(struct cfq_group *cfqg) { }static inline void cfqg_put(struct cfq_group *cfqg) { }#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,			struct cfq_group *curr_cfqg, int rw) { }static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,			unsigned long time, unsigned long unaccounted_time) { }static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,					      uint64_t bytes, int rw) { }static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,			uint64_t start_time, uint64_t io_start_time, int rw) { }#endif	/* CONFIG_CFQ_GROUP_IOSCHED */#define cfq_log(cfqd, fmt, args...)	\	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)/* Traverses through cfq group service trees */#define for_each_cfqg_st(cfqg, i, j, st) \	for (i = 0; i <= IDLE_WORKLOAD; i++) \		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\			: &cfqg->service_tree_idle; \			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \			(i == IDLE_WORKLOAD && j == 0); \			j++, st = i < IDLE_WORKLOAD ? \			&cfqg->service_trees[i][j]: NULL) \static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,	struct cfq_ttime *ttime, bool group_idle){	unsigned long slice;	if (!sample_valid(ttime->ttime_samples))		return false;	if (group_idle)		slice = cfqd->cfq_group_idle;	else		slice = cfqd->cfq_slice_idle;	return ttime->ttime_mean > slice;}static inline bool iops_mode(struct cfq_data *cfqd){	/*	 * If we are not idling on queues and it is a NCQ drive, parallel	 * execution of requests is on and measuring time is not possible	 * in most of the cases until and unless we drive shallower queue	 * depths and that becomes a performance bottleneck. In such cases	 * switch to start providing fairness in terms of number of IOs.	 */	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)		return true;	else		return false;}static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq){	if (cfq_class_idle(cfqq))		return IDLE_WORKLOAD;	if (cfq_class_rt(cfqq))		return RT_WORKLOAD;	return BE_WORKLOAD;}static enum wl_type_t cfqq_type(struct cfq_queue *cfqq){	if (!cfq_cfqq_sync(cfqq))		return ASYNC_WORKLOAD;	if (!cfq_cfqq_idle_window(cfqq))		return SYNC_NOIDLE_WORKLOAD;	return SYNC_WORKLOAD;}static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,					struct cfq_data *cfqd,					struct cfq_group *cfqg){	if (wl == IDLE_WORKLOAD)		return cfqg->service_tree_idle.count;	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;}static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,					struct cfq_group *cfqg){	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;}static void cfq_dispatch_insert(struct request_queue *, struct request *);static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,				       struct cfq_io_cq *cic, struct bio *bio,				       gfp_t gfp_mask);static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq){	/* cic->icq is the first member, %NULL will convert to %NULL */	return container_of(icq, struct cfq_io_cq, icq);}static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,					       struct io_context *ioc){	if (ioc)		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));	return NULL;}static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync){	return cic->cfqq[is_sync];}static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,				bool is_sync){	cic->cfqq[is_sync] = cfqq;}static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic){	return cic->icq.q->elevator->elevator_data;}/* * We regard a request as SYNC, if it's either a read or has the SYNC bit * set (in which case it could also be direct WRITE). */static inline bool cfq_bio_sync(struct bio *bio){	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);}/* * scheduler run of queue, if there are requests pending and no one in the * driver that will restart queueing */static inline void cfq_schedule_dispatch(struct cfq_data *cfqd){	if (cfqd->busy_queues) {		cfq_log(cfqd, "schedule dispatch");		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);	}}/* * Scale schedule slice based on io priority. Use the sync time slice only * if a queue is marked sync and has sync io queued. A sync queue with async * io only, should not get full sync slice length. */static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,				 unsigned short prio){	const int base_slice = cfqd->cfq_slice[sync];	WARN_ON(prio >= IOPRIO_BE_NR);	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));}static inline intcfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq){	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);}static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg){	u64 d = delta << CFQ_SERVICE_SHIFT;	d = d * CFQ_WEIGHT_DEFAULT;	do_div(d, cfqg->weight);	return d;}static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime){	s64 delta = (s64)(vdisktime - min_vdisktime);	if (delta > 0)		min_vdisktime = vdisktime;	return min_vdisktime;}static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime){	s64 delta = (s64)(vdisktime - min_vdisktime);	if (delta < 0)		min_vdisktime = vdisktime;	return min_vdisktime;}static void update_min_vdisktime(struct cfq_rb_root *st){	struct cfq_group *cfqg;	if (st->left) {		cfqg = rb_entry_cfqg(st->left);		st->min_vdisktime = max_vdisktime(st->min_vdisktime,						  cfqg->vdisktime);	}}/* * get averaged number of queues of RT/BE priority. * average is updated, with a formula that gives more weight to higher numbers, * to quickly follows sudden increases and decrease slowly */static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,					struct cfq_group *cfqg, bool rt){	unsigned min_q, max_q;	unsigned mult  = cfq_hist_divisor - 1;	unsigned round = cfq_hist_divisor / 2;	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);	min_q = min(cfqg->busy_queues_avg[rt], busy);	max_q = max(cfqg->busy_queues_avg[rt], busy);	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /		cfq_hist_divisor;	return cfqg->busy_queues_avg[rt];}static inline unsignedcfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;}static inline unsignedcfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq){	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);	if (cfqd->cfq_latency) {		/*		 * interested queues (we consider only the ones with the same		 * priority class in the cfq group)		 */		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,						cfq_class_rt(cfqq));		unsigned sync_slice = cfqd->cfq_slice[1];		unsigned expect_latency = sync_slice * iq;		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);		if (expect_latency > group_slice) {			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;			/* scale low_slice according to IO priority			 * and sync vs async */			unsigned low_slice =				min(slice, base_low_slice * slice / sync_slice);			/* the adapted slice value is scaled to fit all iqs			 * into the target latency */			slice = max(slice * group_slice / expect_latency,				    low_slice);		}	}	return slice;}static inline voidcfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq){	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);	cfqq->slice_start = jiffies;	cfqq->slice_end = jiffies + slice;	cfqq->allocated_slice = slice;	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);}/* * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end * isn't valid until the first request from the dispatch is activated * and the slice time set. */static inline bool cfq_slice_used(struct cfq_queue *cfqq){	if (cfq_cfqq_slice_new(cfqq))		return false;	if (time_before(jiffies, cfqq->slice_end))		return false;	return true;}/* * Lifted from AS - choose which of rq1 and rq2 that is best served now. * We choose the request that is closest to the head right now. Distance * behind the head is penalized and only allowed to a certain extent. */static struct request *cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last){	sector_t s1, s2, d1 = 0, d2 = 0;	unsigned long back_max;#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */	unsigned wrap = 0; /* bit mask: requests behind the disk head? */	if (rq1 == NULL || rq1 == rq2)		return rq2;	if (rq2 == NULL)		return rq1;	if (rq_is_sync(rq1) != rq_is_sync(rq2))		return rq_is_sync(rq1) ? rq1 : rq2;	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;	s1 = blk_rq_pos(rq1);	s2 = blk_rq_pos(rq2);	/*	 * by definition, 1KiB is 2 sectors	 */	back_max = cfqd->cfq_back_max * 2;	/*	 * Strict one way elevator _except_ in the case where we allow	 * short backward seeks which are biased as twice the cost of a	 * similar forward seek.	 */	if (s1 >= last)		d1 = s1 - last;	else if (s1 + back_max >= last)		d1 = (last - s1) * cfqd->cfq_back_penalty;	else		wrap |= CFQ_RQ1_WRAP;	if (s2 >= last)		d2 = s2 - last;	else if (s2 + back_max >= last)		d2 = (last - s2) * cfqd->cfq_back_penalty;	else		wrap |= CFQ_RQ2_WRAP;	/* Found required data */	/*	 * By doing switch() on the bit mask "wrap" we avoid having to	 * check two variables for all permutations: --> faster!	 */	switch (wrap) {	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */		if (d1 < d2)			return rq1;		else if (d2 < d1)			return rq2;		else {			if (s1 >= s2)				return rq1;			else				return rq2;		}	case CFQ_RQ2_WRAP:		return rq1;	case CFQ_RQ1_WRAP:		return rq2;	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */	default:		/*		 * Since both rqs are wrapped,		 * start with the one that's further behind head		 * (--> only *one* back seek required),		 * since back seek takes more time than forward.		 */		if (s1 <= s2)			return rq1;		else			return rq2;	}}/* * The below is leftmost cache rbtree addon */static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root){	/* Service tree is empty */	if (!root->count)		return NULL;	if (!root->left)		root->left = rb_first(&root->rb);	if (root->left)		return rb_entry(root->left, struct cfq_queue, rb_node);	return NULL;}static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root){	if (!root->left)		root->left = rb_first(&root->rb);	if (root->left)		return rb_entry_cfqg(root->left);	return NULL;}static void rb_erase_init(struct rb_node *n, struct rb_root *root){	rb_erase(n, root);	RB_CLEAR_NODE(n);}static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root){	if (root->left == n)		root->left = NULL;	rb_erase_init(n, &root->rb);	--root->count;}/* * would be nice to take fifo expire time into account as well */static struct request *cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,		  struct request *last){	struct rb_node *rbnext = rb_next(&last->rb_node);	struct rb_node *rbprev = rb_prev(&last->rb_node);	struct request *next = NULL, *prev = NULL;	BUG_ON(RB_EMPTY_NODE(&last->rb_node));	if (rbprev)		prev = rb_entry_rq(rbprev);	if (rbnext)		next = rb_entry_rq(rbnext);	else {		rbnext = rb_first(&cfqq->sort_list);		if (rbnext && rbnext != &last->rb_node)			next = rb_entry_rq(rbnext);	}	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));}static unsigned long cfq_slice_offset(struct cfq_data *cfqd,				      struct cfq_queue *cfqq){	/*	 * just an approximation, should be ok.	 */	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));}static inline s64cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg){	return cfqg->vdisktime - st->min_vdisktime;}static void__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg){	struct rb_node **node = &st->rb.rb_node;	struct rb_node *parent = NULL;	struct cfq_group *__cfqg;	s64 key = cfqg_key(st, cfqg);	int left = 1;	while (*node != NULL) {		parent = *node;		__cfqg = rb_entry_cfqg(parent);		if (key < cfqg_key(st, __cfqg))			node = &parent->rb_left;		else {			node = &parent->rb_right;			left = 0;		}	}	if (left)		st->left = &cfqg->rb_node;	rb_link_node(&cfqg->rb_node, parent, node);	rb_insert_color(&cfqg->rb_node, &st->rb);}static voidcfq_update_group_weight(struct cfq_group *cfqg){	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));	if (cfqg->new_weight) {		cfqg->weight = cfqg->new_weight;		cfqg->new_weight = 0;	}}static voidcfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg){	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));	cfq_update_group_weight(cfqg);	__cfq_group_service_tree_add(st, cfqg);	st->total_weight += cfqg->weight;}static voidcfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	struct cfq_group *__cfqg;	struct rb_node *n;	cfqg->nr_cfqq++;	if (!RB_EMPTY_NODE(&cfqg->rb_node))		return;	/*	 * Currently put the group at the end. Later implement something	 * so that groups get lesser vtime based on their weights, so that	 * if group does not loose all if it was not continuously backlogged.	 */	n = rb_last(&st->rb);	if (n) {		__cfqg = rb_entry_cfqg(n);		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;	} else		cfqg->vdisktime = st->min_vdisktime;	cfq_group_service_tree_add(st, cfqg);}static voidcfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg){	st->total_weight -= cfqg->weight;	if (!RB_EMPTY_NODE(&cfqg->rb_node))		cfq_rb_erase(&cfqg->rb_node, st);}static voidcfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	BUG_ON(cfqg->nr_cfqq < 1);	cfqg->nr_cfqq--;	/* If there are other cfq queues under this group, don't delete it */	if (cfqg->nr_cfqq)		return;
 |