| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 | /* *  linux/arch/arm/mach-sa1100/cpu-sa1110.c * *  Copyright (C) 2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Note: there are two erratas that apply to the SA1110 here: *  7 - SDRAM auto-power-up failure (rev A0) * 13 - Corruption of internal register reads/writes following *      SDRAM reads (rev A0, B0, B1) * * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. * * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type */#include <linux/cpufreq.h>#include <linux/delay.h>#include <linux/init.h>#include <linux/io.h>#include <linux/kernel.h>#include <linux/moduleparam.h>#include <linux/types.h>#include <asm/cputype.h>#include <asm/mach-types.h>#include <mach/hardware.h>#include "generic.h"#undef DEBUGstruct sdram_params {	const char name[20];	u_char  rows;		/* bits				 */	u_char  cas_latency;	/* cycles			 */	u_char  tck;		/* clock cycle time (ns)	 */	u_char  trcd;		/* activate to r/w (ns)		 */	u_char  trp;		/* precharge to activate (ns)	 */	u_char  twr;		/* write recovery time (ns)	 */	u_short refresh;	/* refresh time for array (us)	 */};struct sdram_info {	u_int	mdcnfg;	u_int	mdrefr;	u_int	mdcas[3];};static struct sdram_params sdram_tbl[] __initdata = {	{	/* Toshiba TC59SM716 CL2 */		.name		= "TC59SM716-CL2",		.rows		= 12,		.tck		= 10,		.trcd		= 20,		.trp		= 20,		.twr		= 10,		.refresh	= 64000,		.cas_latency	= 2,	}, {	/* Toshiba TC59SM716 CL3 */		.name		= "TC59SM716-CL3",		.rows		= 12,		.tck		= 8,		.trcd		= 20,		.trp		= 20,		.twr		= 8,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Samsung K4S641632D TC75 */		.name		= "K4S641632D",		.rows		= 14,		.tck		= 9,		.trcd		= 27,		.trp		= 20,		.twr		= 9,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Samsung K4S281632B-1H */		.name           = "K4S281632B-1H",		.rows		= 12,		.tck		= 10,		.trp		= 20,		.twr		= 10,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Samsung KM416S4030CT */		.name		= "KM416S4030CT",		.rows		= 13,		.tck		= 8,		.trcd		= 24,	/* 3 CLKs */		.trp		= 24,	/* 3 CLKs */		.twr		= 16,	/* Trdl: 2 CLKs */		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Winbond W982516AH75L CL3 */		.name		= "W982516AH75L",		.rows		= 16,		.tck		= 8,		.trcd		= 20,		.trp		= 20,		.twr		= 8,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Micron MT48LC8M16A2TG-75 */		.name		= "MT48LC8M16A2TG-75",		.rows		= 12,		.tck		= 8,		.trcd		= 20,		.trp		= 20,		.twr		= 8,		.refresh	= 64000,		.cas_latency	= 3,	},};static struct sdram_params sdram_params;/* * Given a period in ns and frequency in khz, calculate the number of * cycles of frequency in period.  Note that we round up to the next * cycle, even if we are only slightly over. */static inline u_int ns_to_cycles(u_int ns, u_int khz){	return (ns * khz + 999999) / 1000000;}
 |