| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169 | /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> *	-  July2000 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 *//* * This handles all read/write requests to block devices */#include <linux/kernel.h>#include <linux/module.h>#include <linux/backing-dev.h>#include <linux/bio.h>#include <linux/blkdev.h>#include <linux/highmem.h>#include <linux/mm.h>#include <linux/kernel_stat.h>#include <linux/string.h>#include <linux/init.h>#include <linux/completion.h>#include <linux/slab.h>#include <linux/swap.h>#include <linux/writeback.h>#include <linux/task_io_accounting_ops.h>#include <linux/fault-inject.h>#include <linux/list_sort.h>#include <linux/delay.h>#include <linux/ratelimit.h>#define CREATE_TRACE_POINTS#include <trace/events/block.h>#include "blk.h"#include "blk-cgroup.h"EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);DEFINE_IDA(blk_queue_ida);/* * For the allocated request tables */static struct kmem_cache *request_cachep;/* * For queue allocation */struct kmem_cache *blk_requestq_cachep;/* * Controlling structure to kblockd */static struct workqueue_struct *kblockd_workqueue;static void drive_stat_acct(struct request *rq, int new_io){	struct hd_struct *part;	int rw = rq_data_dir(rq);	int cpu;	if (!blk_do_io_stat(rq))		return;	cpu = part_stat_lock();	if (!new_io) {		part = rq->part;		part_stat_inc(cpu, part, merges[rw]);	} else {		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));		if (!hd_struct_try_get(part)) {			/*			 * The partition is already being removed,			 * the request will be accounted on the disk only			 *			 * We take a reference on disk->part0 although that			 * partition will never be deleted, so we can treat			 * it as any other partition.			 */			part = &rq->rq_disk->part0;			hd_struct_get(part);		}		part_round_stats(cpu, part);		part_inc_in_flight(part, rw);		rq->part = part;	}	part_stat_unlock();}void blk_queue_congestion_threshold(struct request_queue *q){	int nr;	nr = q->nr_requests - (q->nr_requests / 8) + 1;	if (nr > q->nr_requests)		nr = q->nr_requests;	q->nr_congestion_on = nr;	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;	if (nr < 1)		nr = 1;	q->nr_congestion_off = nr;}/** * blk_get_backing_dev_info - get the address of a queue's backing_dev_info * @bdev:	device * * Locates the passed device's request queue and returns the address of its * backing_dev_info * * Will return NULL if the request queue cannot be located. */struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev){	struct backing_dev_info *ret = NULL;	struct request_queue *q = bdev_get_queue(bdev);	if (q)		ret = &q->backing_dev_info;	return ret;}EXPORT_SYMBOL(blk_get_backing_dev_info);void blk_rq_init(struct request_queue *q, struct request *rq){	memset(rq, 0, sizeof(*rq));	INIT_LIST_HEAD(&rq->queuelist);	INIT_LIST_HEAD(&rq->timeout_list);	rq->cpu = -1;	rq->q = q;	rq->__sector = (sector_t) -1;	INIT_HLIST_NODE(&rq->hash);	RB_CLEAR_NODE(&rq->rb_node);	rq->cmd = rq->__cmd;	rq->cmd_len = BLK_MAX_CDB;	rq->tag = -1;	rq->ref_count = 1;	rq->start_time = jiffies;	set_start_time_ns(rq);	rq->part = NULL;}EXPORT_SYMBOL(blk_rq_init);static void req_bio_endio(struct request *rq, struct bio *bio,			  unsigned int nbytes, int error){	if (error)		clear_bit(BIO_UPTODATE, &bio->bi_flags);	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))		error = -EIO;	if (unlikely(nbytes > bio->bi_size)) {		printk(KERN_ERR "%s: want %u bytes done, %u left\n",		       __func__, nbytes, bio->bi_size);		nbytes = bio->bi_size;	}	if (unlikely(rq->cmd_flags & REQ_QUIET))		set_bit(BIO_QUIET, &bio->bi_flags);	bio->bi_size -= nbytes;	bio->bi_sector += (nbytes >> 9);	if (bio_integrity(bio))		bio_integrity_advance(bio, nbytes);	/* don't actually finish bio if it's part of flush sequence */	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))		bio_endio(bio, error);}void blk_dump_rq_flags(struct request *rq, char *msg){	int bit;	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,		rq->cmd_flags);	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",	       (unsigned long long)blk_rq_pos(rq),	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {		printk(KERN_INFO "  cdb: ");		for (bit = 0; bit < BLK_MAX_CDB; bit++)			printk("%02x ", rq->cmd[bit]);		printk("\n");	}}EXPORT_SYMBOL(blk_dump_rq_flags);static void blk_delay_work(struct work_struct *work){	struct request_queue *q;	q = container_of(work, struct request_queue, delay_work.work);	spin_lock_irq(q->queue_lock);	__blk_run_queue(q);	spin_unlock_irq(q->queue_lock);}/** * blk_delay_queue - restart queueing after defined interval * @q:		The &struct request_queue in question * @msecs:	Delay in msecs * * Description: *   Sometimes queueing needs to be postponed for a little while, to allow *   resources to come back. This function will make sure that queueing is *   restarted around the specified time. Queue lock must be held. */void blk_delay_queue(struct request_queue *q, unsigned long msecs){	if (likely(!blk_queue_dead(q)))		queue_delayed_work(kblockd_workqueue, &q->delay_work,				   msecs_to_jiffies(msecs));}EXPORT_SYMBOL(blk_delay_queue);/** * blk_start_queue - restart a previously stopped queue * @q:    The &struct request_queue in question * * Description: *   blk_start_queue() will clear the stop flag on the queue, and call *   the request_fn for the queue if it was in a stopped state when *   entered. Also see blk_stop_queue(). Queue lock must be held. **/void blk_start_queue(struct request_queue *q){	WARN_ON(!irqs_disabled());	queue_flag_clear(QUEUE_FLAG_STOPPED, q);	__blk_run_queue(q);}EXPORT_SYMBOL(blk_start_queue);/** * blk_stop_queue - stop a queue * @q:    The &struct request_queue in question * * Description: *   The Linux block layer assumes that a block driver will consume all *   entries on the request queue when the request_fn strategy is called. *   Often this will not happen, because of hardware limitations (queue *   depth settings). If a device driver gets a 'queue full' response, *   or if it simply chooses not to queue more I/O at one point, it can *   call this function to prevent the request_fn from being called until *   the driver has signalled it's ready to go again. This happens by calling *   blk_start_queue() to restart queue operations. Queue lock must be held. **/void blk_stop_queue(struct request_queue *q){	cancel_delayed_work(&q->delay_work);	queue_flag_set(QUEUE_FLAG_STOPPED, q);}EXPORT_SYMBOL(blk_stop_queue);/** * blk_sync_queue - cancel any pending callbacks on a queue * @q: the queue * * Description: *     The block layer may perform asynchronous callback activity *     on a queue, such as calling the unplug function after a timeout. *     A block device may call blk_sync_queue to ensure that any *     such activity is cancelled, thus allowing it to release resources *     that the callbacks might use. The caller must already have made sure *     that its ->make_request_fn will not re-add plugging prior to calling *     this function. * *     This function does not cancel any asynchronous activity arising *     out of elevator or throttling code. That would require elevaotor_exit() *     and blkcg_exit_queue() to be called with queue lock initialized. * */void blk_sync_queue(struct request_queue *q){	del_timer_sync(&q->timeout);	cancel_delayed_work_sync(&q->delay_work);}EXPORT_SYMBOL(blk_sync_queue);/** * __blk_run_queue_uncond - run a queue whether or not it has been stopped * @q:	The queue to run * * Description: *    Invoke request handling on a queue if there are any pending requests. *    May be used to restart request handling after a request has completed. *    This variant runs the queue whether or not the queue has been *    stopped. Must be called with the queue lock held and interrupts *    disabled. See also @blk_run_queue. */inline void __blk_run_queue_uncond(struct request_queue *q){	if (unlikely(blk_queue_dead(q)))		return;	/*	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock	 * the queue lock internally. As a result multiple threads may be	 * running such a request function concurrently. Keep track of the	 * number of active request_fn invocations such that blk_drain_queue()	 * can wait until all these request_fn calls have finished.	 */	q->request_fn_active++;	q->request_fn(q);	q->request_fn_active--;}/** * __blk_run_queue - run a single device queue * @q:	The queue to run * * Description: *    See @blk_run_queue. This variant must be called with the queue lock *    held and interrupts disabled. */void __blk_run_queue(struct request_queue *q){	if (unlikely(blk_queue_stopped(q)))		return;	__blk_run_queue_uncond(q);}EXPORT_SYMBOL(__blk_run_queue);/** * blk_run_queue_async - run a single device queue in workqueue context * @q:	The queue to run * * Description: *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf *    of us. The caller must hold the queue lock. */void blk_run_queue_async(struct request_queue *q){	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);}EXPORT_SYMBOL(blk_run_queue_async);/** * blk_run_queue - run a single device queue * @q: The queue to run * * Description: *    Invoke request handling on this queue, if it has pending work to do. *    May be used to restart queueing when a request has completed. */void blk_run_queue(struct request_queue *q){	unsigned long flags;	spin_lock_irqsave(q->queue_lock, flags);	__blk_run_queue(q);	spin_unlock_irqrestore(q->queue_lock, flags);}EXPORT_SYMBOL(blk_run_queue);void blk_put_queue(struct request_queue *q){	kobject_put(&q->kobj);}EXPORT_SYMBOL(blk_put_queue);/** * __blk_drain_queue - drain requests from request_queue * @q: queue to drain * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV * * Drain requests from @q.  If @drain_all is set, all requests are drained. * If not, only ELVPRIV requests are drained.  The caller is responsible * for ensuring that no new requests which need to be drained are queued. */static void __blk_drain_queue(struct request_queue *q, bool drain_all)	__releases(q->queue_lock)	__acquires(q->queue_lock){	int i;	lockdep_assert_held(q->queue_lock);	while (true) {		bool drain = false;		/*		 * The caller might be trying to drain @q before its		 * elevator is initialized.		 */		if (q->elevator)			elv_drain_elevator(q);		blkcg_drain_queue(q);		/*		 * This function might be called on a queue which failed		 * driver init after queue creation or is not yet fully		 * active yet.  Some drivers (e.g. fd and loop) get unhappy		 * in such cases.  Kick queue iff dispatch queue has		 * something on it and @q has request_fn set.		 */		if (!list_empty(&q->queue_head) && q->request_fn)			__blk_run_queue(q);		drain |= q->nr_rqs_elvpriv;		drain |= q->request_fn_active;		/*		 * Unfortunately, requests are queued at and tracked from		 * multiple places and there's no single counter which can		 * be drained.  Check all the queues and counters.		 */		if (drain_all) {			drain |= !list_empty(&q->queue_head);			for (i = 0; i < 2; i++) {				drain |= q->nr_rqs[i];				drain |= q->in_flight[i];				drain |= !list_empty(&q->flush_queue[i]);			}		}		if (!drain)			break;		spin_unlock_irq(q->queue_lock);		msleep(10);		spin_lock_irq(q->queue_lock);	}	/*	 * With queue marked dead, any woken up waiter will fail the	 * allocation path, so the wakeup chaining is lost and we're	 * left with hung waiters. We need to wake up those waiters.	 */	if (q->request_fn) {		struct request_list *rl;		blk_queue_for_each_rl(rl, q)			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)				wake_up_all(&rl->wait[i]);	}}/** * blk_queue_bypass_start - enter queue bypass mode * @q: queue of interest * * In bypass mode, only the dispatch FIFO queue of @q is used.  This * function makes @q enter bypass mode and drains all requests which were * throttled or issued before.  On return, it's guaranteed that no request * is being throttled or has ELVPRIV set and blk_queue_bypass() %true * inside queue or RCU read lock. */void blk_queue_bypass_start(struct request_queue *q){	bool drain;	spin_lock_irq(q->queue_lock);	drain = !q->bypass_depth++;	queue_flag_set(QUEUE_FLAG_BYPASS, q);	spin_unlock_irq(q->queue_lock);	if (drain) {		spin_lock_irq(q->queue_lock);		__blk_drain_queue(q, false);		spin_unlock_irq(q->queue_lock);		/* ensure blk_queue_bypass() is %true inside RCU read lock */		synchronize_rcu();	}}EXPORT_SYMBOL_GPL(blk_queue_bypass_start);/** * blk_queue_bypass_end - leave queue bypass mode * @q: queue of interest * * Leave bypass mode and restore the normal queueing behavior. */void blk_queue_bypass_end(struct request_queue *q){	spin_lock_irq(q->queue_lock);	if (!--q->bypass_depth)		queue_flag_clear(QUEUE_FLAG_BYPASS, q);	WARN_ON_ONCE(q->bypass_depth < 0);	spin_unlock_irq(q->queue_lock);}EXPORT_SYMBOL_GPL(blk_queue_bypass_end);/** * blk_cleanup_queue - shutdown a request queue * @q: request queue to shutdown * * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and * put it.  All future requests will be failed immediately with -ENODEV. */void blk_cleanup_queue(struct request_queue *q){	spinlock_t *lock = q->queue_lock;	/* mark @q DYING, no new request or merges will be allowed afterwards */	mutex_lock(&q->sysfs_lock);	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);	spin_lock_irq(lock);	/*	 * A dying queue is permanently in bypass mode till released.  Note	 * that, unlike blk_queue_bypass_start(), we aren't performing	 * synchronize_rcu() after entering bypass mode to avoid the delay	 * as some drivers create and destroy a lot of queues while	 * probing.  This is still safe because blk_release_queue() will be	 * called only after the queue refcnt drops to zero and nothing,	 * RCU or not, would be traversing the queue by then.	 */	q->bypass_depth++;	queue_flag_set(QUEUE_FLAG_BYPASS, q);	queue_flag_set(QUEUE_FLAG_NOMERGES, q);	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);	queue_flag_set(QUEUE_FLAG_DYING, q);	spin_unlock_irq(lock);	mutex_unlock(&q->sysfs_lock);	/*	 * Drain all requests queued before DYING marking. Set DEAD flag to	 * prevent that q->request_fn() gets invoked after draining finished.	 */	spin_lock_irq(lock);	__blk_drain_queue(q, true);	queue_flag_set(QUEUE_FLAG_DEAD, q);	spin_unlock_irq(lock);	/* @q won't process any more request, flush async actions */	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);	blk_sync_queue(q);	spin_lock_irq(lock);	if (q->queue_lock != &q->__queue_lock)		q->queue_lock = &q->__queue_lock;	spin_unlock_irq(lock);	/* @q is and will stay empty, shutdown and put */	blk_put_queue(q);}EXPORT_SYMBOL(blk_cleanup_queue);int blk_init_rl(struct request_list *rl, struct request_queue *q,		gfp_t gfp_mask){	if (unlikely(rl->rq_pool))		return 0;	rl->q = q;	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,					  mempool_free_slab, request_cachep,					  gfp_mask, q->node);	if (!rl->rq_pool)		return -ENOMEM;	return 0;}void blk_exit_rl(struct request_list *rl){	if (rl->rq_pool)		mempool_destroy(rl->rq_pool);}struct request_queue *blk_alloc_queue(gfp_t gfp_mask){	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);}EXPORT_SYMBOL(blk_alloc_queue);struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id){	struct request_queue *q;	int err;	q = kmem_cache_alloc_node(blk_requestq_cachep,				gfp_mask | __GFP_ZERO, node_id);	if (!q)		return NULL;	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);	if (q->id < 0)		goto fail_q;	q->backing_dev_info.ra_pages =			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;	q->backing_dev_info.state = 0;	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;	q->backing_dev_info.name = "block";	q->node = node_id;	err = bdi_init(&q->backing_dev_info);	if (err)		goto fail_id;	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,		    laptop_mode_timer_fn, (unsigned long) q);	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);	INIT_LIST_HEAD(&q->queue_head);	INIT_LIST_HEAD(&q->timeout_list);	INIT_LIST_HEAD(&q->icq_list);#ifdef CONFIG_BLK_CGROUP	INIT_LIST_HEAD(&q->blkg_list);#endif	INIT_LIST_HEAD(&q->flush_queue[0]);	INIT_LIST_HEAD(&q->flush_queue[1]);	INIT_LIST_HEAD(&q->flush_data_in_flight);	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);	kobject_init(&q->kobj, &blk_queue_ktype);	mutex_init(&q->sysfs_lock);	spin_lock_init(&q->__queue_lock);	/*	 * By default initialize queue_lock to internal lock and driver can	 * override it later if need be.	 */	q->queue_lock = &q->__queue_lock;	/*	 * A queue starts its life with bypass turned on to avoid	 * unnecessary bypass on/off overhead and nasty surprises during	 * init.  The initial bypass will be finished when the queue is	 * registered by blk_register_queue().	 */	q->bypass_depth = 1;	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);	if (blkcg_init_queue(q))		goto fail_id;	return q;fail_id:	ida_simple_remove(&blk_queue_ida, q->id);fail_q:	kmem_cache_free(blk_requestq_cachep, q);	return NULL;}EXPORT_SYMBOL(blk_alloc_queue_node);/** * blk_init_queue  - prepare a request queue for use with a block device * @rfn:  The function to be called to process requests that have been *        placed on the queue. * @lock: Request queue spin lock * * Description: *    If a block device wishes to use the standard request handling procedures, *    which sorts requests and coalesces adjacent requests, then it must *    call blk_init_queue().  The function @rfn will be called when there *    are requests on the queue that need to be processed.  If the device *    supports plugging, then @rfn may not be called immediately when requests *    are available on the queue, but may be called at some time later instead. *    Plugged queues are generally unplugged when a buffer belonging to one *    of the requests on the queue is needed, or due to memory pressure. * *    @rfn is not required, or even expected, to remove all requests off the *    queue, but only as many as it can handle at a time.  If it does leave *    requests on the queue, it is responsible for arranging that the requests *    get dealt with eventually. * *    The queue spin lock must be held while manipulating the requests on the *    request queue; this lock will be taken also from interrupt context, so irq *    disabling is needed for it. * *    Function returns a pointer to the initialized request queue, or %NULL if *    it didn't succeed. * * Note: *    blk_init_queue() must be paired with a blk_cleanup_queue() call *    when the block device is deactivated (such as at module unload). **/struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock){	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);}EXPORT_SYMBOL(blk_init_queue);struct request_queue *blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id){	struct request_queue *uninit_q, *q;	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);	if (!uninit_q)		return NULL;	q = blk_init_allocated_queue(uninit_q, rfn, lock);	if (!q)		blk_cleanup_queue(uninit_q);	return q;}EXPORT_SYMBOL(blk_init_queue_node);struct request_queue *blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,			 spinlock_t *lock){	if (!q)		return NULL;	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))		return NULL;	q->request_fn		= rfn;	q->prep_rq_fn		= NULL;	q->unprep_rq_fn		= NULL;	q->queue_flags		|= QUEUE_FLAG_DEFAULT;	/* Override internal queue lock with supplied lock pointer */	if (lock)		q->queue_lock		= lock;	/*	 * This also sets hw/phys segments, boundary and size	 */	blk_queue_make_request(q, blk_queue_bio);	q->sg_reserved_size = INT_MAX;	/* init elevator */	if (elevator_init(q, NULL))		return NULL;	return q;}EXPORT_SYMBOL(blk_init_allocated_queue);bool blk_get_queue(struct request_queue *q){	if (likely(!blk_queue_dying(q))) {		__blk_get_queue(q);		return true;	}	return false;}EXPORT_SYMBOL(blk_get_queue);static inline void blk_free_request(struct request_list *rl, struct request *rq){	if (rq->cmd_flags & REQ_ELVPRIV) {		elv_put_request(rl->q, rq);		if (rq->elv.icq)			put_io_context(rq->elv.icq->ioc);	}	mempool_free(rq, rl->rq_pool);}/* * ioc_batching returns true if the ioc is a valid batching request and * should be given priority access to a request. */static inline int ioc_batching(struct request_queue *q, struct io_context *ioc){	if (!ioc)		return 0;	/*	 * Make sure the process is able to allocate at least 1 request	 * even if the batch times out, otherwise we could theoretically	 * lose wakeups.	 */	return ioc->nr_batch_requests == q->nr_batching ||		(ioc->nr_batch_requests > 0		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));}/* * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This * will cause the process to be a "batcher" on all queues in the system. This * is the behaviour we want though - once it gets a wakeup it should be given * a nice run. */static void ioc_set_batching(struct request_queue *q, struct io_context *ioc){	if (!ioc || ioc_batching(q, ioc))		return;	ioc->nr_batch_requests = q->nr_batching;	ioc->last_waited = jiffies;}static void __freed_request(struct request_list *rl, int sync){	struct request_queue *q = rl->q;	/*	 * bdi isn't aware of blkcg yet.  As all async IOs end up root	 * blkcg anyway, just use root blkcg state.	 */	if (rl == &q->root_rl &&	    rl->count[sync] < queue_congestion_off_threshold(q))		blk_clear_queue_congested(q, sync);	if (rl->count[sync] + 1 <= q->nr_requests) {		if (waitqueue_active(&rl->wait[sync]))			wake_up(&rl->wait[sync]);		blk_clear_rl_full(rl, sync);	}}/* * A request has just been released.  Account for it, update the full and * congestion status, wake up any waiters.   Called under q->queue_lock. */static void freed_request(struct request_list *rl, unsigned int flags){	struct request_queue *q = rl->q;	int sync = rw_is_sync(flags);	q->nr_rqs[sync]--;	rl->count[sync]--;	if (flags & REQ_ELVPRIV)		q->nr_rqs_elvpriv--;	__freed_request(rl, sync);	if (unlikely(rl->starved[sync ^ 1]))		__freed_request(rl, sync ^ 1);}/* * Determine if elevator data should be initialized when allocating the * request associated with @bio. */static bool blk_rq_should_init_elevator(struct bio *bio){	if (!bio)		return true;	/*	 * Flush requests do not use the elevator so skip initialization.	 * This allows a request to share the flush and elevator data.	 */	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))		return false;	return true;}/** * rq_ioc - determine io_context for request allocation * @bio: request being allocated is for this bio (can be %NULL) * * Determine io_context to use for request allocation for @bio.  May return * %NULL if %current->io_context doesn't exist. */static struct io_context *rq_ioc(struct bio *bio){#ifdef CONFIG_BLK_CGROUP	if (bio && bio->bi_ioc)		return bio->bi_ioc;#endif	return current->io_context;}/** * __get_request - get a free request * @rl: request list to allocate from * @rw_flags: RW and SYNC flags * @bio: bio to allocate request for (can be %NULL) * @gfp_mask: allocation mask * * Get a free request from @q.  This function may fail under memory * pressure or if @q is dead. * * Must be callled with @q->queue_lock held and, * Returns %NULL on failure, with @q->queue_lock held. * Returns !%NULL on success, with @q->queue_lock *not held*. */static struct request *__get_request(struct request_list *rl, int rw_flags,				     struct bio *bio, gfp_t gfp_mask){	struct request_queue *q = rl->q;	struct request *rq;	struct elevator_type *et = q->elevator->type;	struct io_context *ioc = rq_ioc(bio);	struct io_cq *icq = NULL;	const bool is_sync = rw_is_sync(rw_flags) != 0;	int may_queue;	if (unlikely(blk_queue_dying(q)))		return NULL;	may_queue = elv_may_queue(q, rw_flags);	if (may_queue == ELV_MQUEUE_NO)		goto rq_starved;	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {		if (rl->count[is_sync]+1 >= q->nr_requests) {			/*			 * The queue will fill after this allocation, so set			 * it as full, and mark this process as "batching".			 * This process will be allowed to complete a batch of			 * requests, others will be blocked.			 */			if (!blk_rl_full(rl, is_sync)) {				ioc_set_batching(q, ioc);				blk_set_rl_full(rl, is_sync);			} else {				if (may_queue != ELV_MQUEUE_MUST						&& !ioc_batching(q, ioc)) {					/*					 * The queue is full and the allocating					 * process is not a "batcher", and not					 * exempted by the IO scheduler					 */					return NULL;				}			}		}		/*		 * bdi isn't aware of blkcg yet.  As all async IOs end up		 * root blkcg anyway, just use root blkcg state.		 */		if (rl == &q->root_rl)			blk_set_queue_congested(q, is_sync);	}	/*	 * Only allow batching queuers to allocate up to 50% over the defined	 * limit of requests, otherwise we could have thousands of requests	 * allocated with any setting of ->nr_requests	 */	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))		return NULL;	q->nr_rqs[is_sync]++;	rl->count[is_sync]++;	rl->starved[is_sync] = 0;	/*	 * Decide whether the new request will be managed by elevator.  If	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will	 * prevent the current elevator from being destroyed until the new	 * request is freed.  This guarantees icq's won't be destroyed and	 * makes creating new ones safe.	 *	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,	 * it will be created after releasing queue_lock.	 */	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {		rw_flags |= REQ_ELVPRIV;		q->nr_rqs_elvpriv++;		if (et->icq_cache && ioc)			icq = ioc_lookup_icq(ioc, q);	}	if (blk_queue_io_stat(q))		rw_flags |= REQ_IO_STAT;	spin_unlock_irq(q->queue_lock);	/* allocate and init request */	rq = mempool_alloc(rl->rq_pool, gfp_mask);	if (!rq)		goto fail_alloc;	blk_rq_init(q, rq);	blk_rq_set_rl(rq, rl);	rq->cmd_flags = rw_flags | REQ_ALLOCED;	/* init elvpriv */	if (rw_flags & REQ_ELVPRIV) {		if (unlikely(et->icq_cache && !icq)) {			if (ioc)				icq = ioc_create_icq(ioc, q, gfp_mask);			if (!icq)				goto fail_elvpriv;		}		rq->elv.icq = icq;		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))			goto fail_elvpriv;		/* @rq->elv.icq holds io_context until @rq is freed */		if (icq)			get_io_context(icq->ioc);	}out:	/*	 * ioc may be NULL here, and ioc_batching will be false. That's	 * OK, if the queue is under the request limit then requests need	 * not count toward the nr_batch_requests limit. There will always	 * be some limit enforced by BLK_BATCH_TIME.	 */	if (ioc_batching(q, ioc))		ioc->nr_batch_requests--;	trace_block_getrq(q, bio, rw_flags & 1);	return rq;fail_elvpriv:	/*	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed	 * and may fail indefinitely under memory pressure and thus	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will	 * disturb iosched and blkcg but weird is bettern than dead.	 */	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",			   dev_name(q->backing_dev_info.dev));	rq->cmd_flags &= ~REQ_ELVPRIV;	rq->elv.icq = NULL;	spin_lock_irq(q->queue_lock);	q->nr_rqs_elvpriv--;	spin_unlock_irq(q->queue_lock);	goto out;fail_alloc:	/*	 * Allocation failed presumably due to memory. Undo anything we	 * might have messed up.	 *	 * Allocating task should really be put onto the front of the wait	 * queue, but this is pretty rare.	 */	spin_lock_irq(q->queue_lock);	freed_request(rl, rw_flags);	/*	 * in the very unlikely event that allocation failed and no	 * requests for this direction was pending, mark us starved so that	 * freeing of a request in the other direction will notice	 * us. another possible fix would be to split the rq mempool into	 * READ and WRITE	 */rq_starved:	if (unlikely(rl->count[is_sync] == 0))		rl->starved[is_sync] = 1;	return NULL;}/** * get_request - get a free request * @q: request_queue to allocate request from * @rw_flags: RW and SYNC flags * @bio: bio to allocate request for (can be %NULL) * @gfp_mask: allocation mask * * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this * function keeps retrying under memory pressure and fails iff @q is dead. * * Must be callled with @q->queue_lock held and, * Returns %NULL on failure, with @q->queue_lock held. * Returns !%NULL on success, with @q->queue_lock *not held*. */static struct request *get_request(struct request_queue *q, int rw_flags,				   struct bio *bio, gfp_t gfp_mask){	const bool is_sync = rw_is_sync(rw_flags) != 0;	DEFINE_WAIT(wait);	struct request_list *rl;	struct request *rq;	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */retry:	rq = __get_request(rl, rw_flags, bio, gfp_mask);	if (rq)		return rq;	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {		blk_put_rl(rl);		return NULL;	}	/* wait on @rl and retry */	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,				  TASK_UNINTERRUPTIBLE);	trace_block_sleeprq(q, bio, rw_flags & 1);	spin_unlock_irq(q->queue_lock);	io_schedule();	/*	 * After sleeping, we become a "batching" process and will be able	 * to allocate at least one request, and up to a big batch of them	 * for a small period time.  See ioc_batching, ioc_set_batching	 */	ioc_set_batching(q, current->io_context);	spin_lock_irq(q->queue_lock);	finish_wait(&rl->wait[is_sync], &wait);	goto retry;}struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask){	struct request *rq;	BUG_ON(rw != READ && rw != WRITE);	/* create ioc upfront */	create_io_context(gfp_mask, q->node);	spin_lock_irq(q->queue_lock);	rq = get_request(q, rw, NULL, gfp_mask);	if (!rq)		spin_unlock_irq(q->queue_lock);	/* q->queue_lock is unlocked at this point */	return rq;}EXPORT_SYMBOL(blk_get_request);/** * blk_make_request - given a bio, allocate a corresponding struct request. * @q: target request queue * @bio:  The bio describing the memory mappings that will be submitted for IO. *        It may be a chained-bio properly constructed by block/bio layer. * @gfp_mask: gfp flags to be used for memory allocation * * blk_make_request is the parallel of generic_make_request for BLOCK_PC * type commands. Where the struct request needs to be farther initialized by * the caller. It is passed a &struct bio, which describes the memory info of * the I/O transfer. * * The caller of blk_make_request must make sure that bi_io_vec * are set to describe the memory buffers. That bio_data_dir() will return * the needed direction of the request. (And all bio's in the passed bio-chain * are properly set accordingly) * * If called under none-sleepable conditions, mapped bio buffers must not * need bouncing, by calling the appropriate masked or flagged allocator, * suitable for the target device. Otherwise the call to blk_queue_bounce will * BUG. * * WARNING: When allocating/cloning a bio-chain, careful consideration should be * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for * anything but the first bio in the chain. Otherwise you risk waiting for IO * completion of a bio that hasn't been submitted yet, thus resulting in a * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead * of bio_alloc(), as that avoids the mempool deadlock. * If possible a big IO should be split into smaller parts when allocation * fails. Partial allocation should not be an error, or you risk a live-lock. */struct request *blk_make_request(struct request_queue *q, struct bio *bio,				 gfp_t gfp_mask){	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);	if (unlikely(!rq))		return ERR_PTR(-ENOMEM);	for_each_bio(bio) {		struct bio *bounce_bio = bio;		int ret;		blk_queue_bounce(q, &bounce_bio);		ret = blk_rq_append_bio(q, rq, bounce_bio);		if (unlikely(ret)) {			blk_put_request(rq);			return ERR_PTR(ret);		}	}	return rq;}EXPORT_SYMBOL(blk_make_request);/** * blk_requeue_request - put a request back on queue * @q:		request queue where request should be inserted * @rq:		request to be inserted * * Description: *    Drivers often keep queueing requests until the hardware cannot accept *    more, when that condition happens we need to put the request back *    on the queue. Must be called with queue lock held. */void blk_requeue_request(struct request_queue *q, struct request *rq){	blk_delete_timer(rq);	blk_clear_rq_complete(rq);	trace_block_rq_requeue(q, rq);	if (blk_rq_tagged(rq))		blk_queue_end_tag(q, rq);	BUG_ON(blk_queued_rq(rq));	elv_requeue_request(q, rq);}EXPORT_SYMBOL(blk_requeue_request);static void add_acct_request(struct request_queue *q, struct request *rq,			     int where){	drive_stat_acct(rq, 1);	__elv_add_request(q, rq, where);}static void part_round_stats_single(int cpu, struct hd_struct *part,				    unsigned long now){	if (now == part->stamp)		return;	if (part_in_flight(part)) {		__part_stat_add(cpu, part, time_in_queue,				part_in_flight(part) * (now - part->stamp));		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));	}	part->stamp = now;}/** * part_round_stats() - Round off the performance stats on a struct disk_stats. * @cpu: cpu number for stats access * @part: target partition * * The average IO queue length and utilisation statistics are maintained * by observing the current state of the queue length and the amount of * time it has been in this state for. * * Normally, that accounting is done on IO completion, but that can result * in more than a second's worth of IO being accounted for within any one * second, leading to >100% utilisation.  To deal with that, we call this * function to do a round-off before returning the results when reading * /proc/diskstats.  This accounts immediately for all queue usage up to * the current jiffies and restarts the counters again. */void part_round_stats(int cpu, struct hd_struct *part){	unsigned long now = jiffies;	if (part->partno)		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);	part_round_stats_single(cpu, part, now);}EXPORT_SYMBOL_GPL(part_round_stats);/* * queue lock must be held */void __blk_put_request(struct request_queue *q, struct request *req){	if (unlikely(!q))		return;	if (unlikely(--req->ref_count))		return;	elv_completed_request(q, req);	/* this is a bio leak */	WARN_ON(req->bio != NULL);	/*	 * Request may not have originated from ll_rw_blk. if not,	 * it didn't come out of our reserved rq pools	 */	if (req->cmd_flags & REQ_ALLOCED) {		unsigned int flags = req->cmd_flags;		struct request_list *rl = blk_rq_rl(req);		BUG_ON(!list_empty(&req->queuelist));		BUG_ON(!hlist_unhashed(&req->hash));		blk_free_request(rl, req);		freed_request(rl, flags);		blk_put_rl(rl);	}}EXPORT_SYMBOL_GPL(__blk_put_request);void blk_put_request(struct request *req){	unsigned long flags;	struct request_queue *q = req->q;	spin_lock_irqsave(q->queue_lock, flags);	__blk_put_request(q, req);	spin_unlock_irqrestore(q->queue_lock, flags);}EXPORT_SYMBOL(blk_put_request);/** * blk_add_request_payload - add a payload to a request * @rq: request to update * @page: page backing the payload * @len: length of the payload. * * This allows to later add a payload to an already submitted request by * a block driver.  The driver needs to take care of freeing the payload * itself. * * Note that this is a quite horrible hack and nothing but handling of * discard requests should ever use it. */void blk_add_request_payload(struct request *rq, struct page *page,		unsigned int len){	struct bio *bio = rq->bio;	bio->bi_io_vec->bv_page = page;	bio->bi_io_vec->bv_offset = 0;	bio->bi_io_vec->bv_len = len;	bio->bi_size = len;	bio->bi_vcnt = 1;	bio->bi_phys_segments = 1;	rq->__data_len = rq->resid_len = len;	rq->nr_phys_segments = 1;	rq->buffer = bio_data(bio);}EXPORT_SYMBOL_GPL(blk_add_request_payload);static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,				   struct bio *bio){	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;	if (!ll_back_merge_fn(q, req, bio))		return false;	trace_block_bio_backmerge(q, bio);	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)		blk_rq_set_mixed_merge(req);	req->biotail->bi_next = bio;	req->biotail = bio;	req->__data_len += bio->bi_size;	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));	drive_stat_acct(req, 0);	return true;}static bool bio_attempt_front_merge(struct request_queue *q,				    struct request *req, struct bio *bio){	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;	if (!ll_front_merge_fn(q, req, bio))		return false;	trace_block_bio_frontmerge(q, bio);	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)		blk_rq_set_mixed_merge(req);	bio->bi_next = req->bio;	req->bio = bio;	/*	 * may not be valid. if the low level driver said	 * it didn't need a bounce buffer then it better	 * not touch req->buffer either...	 */	req->buffer = bio_data(bio);	req->__sector = bio->bi_sector;	req->__data_len += bio->bi_size;	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));	drive_stat_acct(req, 0);	return true;}/** * attempt_plug_merge - try to merge with %current's plugged list * @q: request_queue new bio is being queued at * @bio: new bio being queued * @request_count: out parameter for number of traversed plugged requests * * Determine whether @bio being queued on @q can be merged with a request * on %current's plugged list.  Returns %true if merge was successful, * otherwise %false. * * Plugging coalesces IOs from the same issuer for the same purpose without * going through @q->queue_lock.  As such it's more of an issuing mechanism * than scheduling, and the request, while may have elvpriv data, is not * added on the elevator at this point.  In addition, we don't have * reliable access to the elevator outside queue lock.  Only check basic * merging parameters without querying the elevator. */static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,			       unsigned int *request_count){	struct blk_plug *plug;	struct request *rq;	bool ret = false;	plug = current->plug;	if (!plug)		goto out;	*request_count = 0;	list_for_each_entry_reverse(rq, &plug->list, queuelist) {		int el_ret;		if (rq->q == q)			(*request_count)++;		if (rq->q != q || !blk_rq_merge_ok(rq, bio))			continue;		el_ret = blk_try_merge(rq, bio);		if (el_ret == ELEVATOR_BACK_MERGE) {			ret = bio_attempt_back_merge(q, rq, bio);			if (ret)				break;		} else if (el_ret == ELEVATOR_FRONT_MERGE) {			ret = bio_attempt_front_merge(q, rq, bio);			if (ret)				break;		}	}out:	return ret;}void init_request_from_bio(struct request *req, struct bio *bio){	req->cmd_type = REQ_TYPE_FS;	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;	if (bio->bi_rw & REQ_RAHEAD)		req->cmd_flags |= REQ_FAILFAST_MASK;	req->errors = 0;	req->__sector = bio->bi_sector;	req->ioprio = bio_prio(bio);	blk_rq_bio_prep(req->q, req, bio);}void blk_queue_bio(struct request_queue *q, struct bio *bio){	const bool sync = !!(bio->bi_rw & REQ_SYNC);	struct blk_plug *plug;	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;	struct request *req;	unsigned int request_count = 0;	/*	 * low level driver can indicate that it wants pages above a	 * certain limit bounced to low memory (ie for highmem, or even	 * ISA dma in theory)	 */	blk_queue_bounce(q, &bio);	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {		spin_lock_irq(q->queue_lock);		where = ELEVATOR_INSERT_FLUSH;		goto get_rq;	}	/*	 * Check if we can merge with the plugged list before grabbing	 * any locks.	 */	if (attempt_plug_merge(q, bio, &request_count))		return;	spin_lock_irq(q->queue_lock);	el_ret = elv_merge(q, &req, bio);	if (el_ret == ELEVATOR_BACK_MERGE) {		if (bio_attempt_back_merge(q, req, bio)) {			elv_bio_merged(q, req, bio);			if (!attempt_back_merge(q, req))				elv_merged_request(q, req, el_ret);			goto out_unlock;		}	} else if (el_ret == ELEVATOR_FRONT_MERGE) {		if (bio_attempt_front_merge(q, req, bio)) {			elv_bio_merged(q, req, bio);			if (!attempt_front_merge(q, req))				elv_merged_request(q, req, el_ret);			goto out_unlock;		}	}get_rq:	/*	 * This sync check and mask will be re-done in init_request_from_bio(),	 * but we need to set it earlier to expose the sync flag to the	 * rq allocator and io schedulers.	 */	rw_flags = bio_data_dir(bio);	if (sync)		rw_flags |= REQ_SYNC;	/*	 * Grab a free request. This is might sleep but can not fail.	 * Returns with the queue unlocked.	 */	req = get_request(q, rw_flags, bio, GFP_NOIO);	if (unlikely(!req)) {		bio_endio(bio, -ENODEV);	/* @q is dead */		goto out_unlock;	}	/*	 * After dropping the lock and possibly sleeping here, our request	 * may now be mergeable after it had proven unmergeable (above).	 * We don't worry about that case for efficiency. It won't happen	 * often, and the elevators are able to handle it.	 */	init_request_from_bio(req, bio);	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))		req->cpu = raw_smp_processor_id();	plug = current->plug;	if (plug) {		/*		 * If this is the first request added after a plug, fire		 * of a plug trace. If others have been added before, check		 * if we have multiple devices in this plug. If so, make a		 * note to sort the list before dispatch.		 */		if (list_empty(&plug->list))			trace_block_plug(q);		else {			if (!plug->should_sort) {				struct request *__rq;				__rq = list_entry_rq(plug->list.prev);				if (__rq->q != q)					plug->should_sort = 1;			}			if (request_count >= BLK_MAX_REQUEST_COUNT) {				blk_flush_plug_list(plug, false);				trace_block_plug(q);			}		}		list_add_tail(&req->queuelist, &plug->list);		drive_stat_acct(req, 1);	} else {		spin_lock_irq(q->queue_lock);		add_acct_request(q, req, where);		__blk_run_queue(q);out_unlock:		spin_unlock_irq(q->queue_lock);	}}EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only *//* * If bio->bi_dev is a partition, remap the location */static inline void blk_partition_remap(struct bio *bio){	struct block_device *bdev = bio->bi_bdev;	if (bio_sectors(bio) && bdev != bdev->bd_contains) {		struct hd_struct *p = bdev->bd_part;		bio->bi_sector += p->start_sect;		bio->bi_bdev = bdev->bd_contains;		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,				      bdev->bd_dev,				      bio->bi_sector - p->start_sect);	}}static void handle_bad_sector(struct bio *bio){	char b[BDEVNAME_SIZE];	printk(KERN_INFO "attempt to access beyond end of device\n");	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",			bdevname(bio->bi_bdev, b),			bio->bi_rw,			(unsigned long long)bio->bi_sector + bio_sectors(bio),			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));	set_bit(BIO_EOF, &bio->bi_flags);}#ifdef CONFIG_FAIL_MAKE_REQUESTstatic DECLARE_FAULT_ATTR(fail_make_request);static int __init setup_fail_make_request(char *str){	return setup_fault_attr(&fail_make_request, str);}__setup("fail_make_request=", setup_fail_make_request);static bool should_fail_request(struct hd_struct *part, unsigned int bytes){	return part->make_it_fail && should_fail(&fail_make_request, bytes);}static int __init fail_make_request_debugfs(void){	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",						NULL, &fail_make_request);	return IS_ERR(dir) ? PTR_ERR(dir) : 0;}late_initcall(fail_make_request_debugfs);#else /* CONFIG_FAIL_MAKE_REQUEST */static inline bool should_fail_request(struct hd_struct *part,					unsigned int bytes){	return false;}#endif /* CONFIG_FAIL_MAKE_REQUEST *//* * Check whether this bio extends beyond the end of the device. */static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors){	sector_t maxsector;	if (!nr_sectors)		return 0;	/* Test device or partition size, when known. */	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;	if (maxsector) {		sector_t sector = bio->bi_sector;		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {			/*			 * This may well happen - the kernel calls bread()			 * without checking the size of the device, e.g., when			 * mounting a device.			 */			handle_bad_sector(bio);			return 1;		}	}	return 0;}static noinline_for_stack boolgeneric_make_request_checks(struct bio *bio){	struct request_queue *q;	int nr_sectors = bio_sectors(bio);	int err = -EIO;	char b[BDEVNAME_SIZE];	struct hd_struct *part;	might_sleep();	if (bio_check_eod(bio, nr_sectors))		goto end_io;	q = bdev_get_queue(bio->bi_bdev);	if (unlikely(!q)) {		printk(KERN_ERR		       "generic_make_request: Trying to access "			"nonexistent block-device %s (%Lu)\n",			bdevname(bio->bi_bdev, b),			(long long) bio->bi_sector);		goto end_io;	}	if (likely(bio_is_rw(bio) &&		   nr_sectors > queue_max_hw_sectors(q))) {		printk(KERN_ERR "bio too big device %s (%u > %u)\n",		       bdevname(bio->bi_bdev, b),		       bio_sectors(bio),		       queue_max_hw_sectors(q));		goto end_io;	}	part = bio->bi_bdev->bd_part;	if (should_fail_request(part, bio->bi_size) ||	    should_fail_request(&part_to_disk(part)->part0,				bio->bi_size))		goto end_io;	/*	 * If this device has partitions, remap block n	 * of partition p to block n+start(p) of the disk.	 */	blk_partition_remap(bio);	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))		goto end_io;	if (bio_check_eod(bio, nr_sectors))		goto end_io;	/*	 * Filter flush bio's early so that make_request based	 * drivers without flush support don't have to worry	 * about them.	 */	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);		if (!nr_sectors) {			err = 0;			goto end_io;		}	}	if ((bio->bi_rw & REQ_DISCARD) &&	    (!blk_queue_discard(q) ||	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {		err = -EOPNOTSUPP;		goto end_io;	}	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {		err = -EOPNOTSUPP;		goto end_io;	}	/*	 * Various block parts want %current->io_context and lazy ioc	 * allocation ends up trading a lot of pain for a small amount of	 * memory.  Just allocate it upfront.  This may fail and block	 * layer knows how to live with it.	 */	create_io_context(GFP_ATOMIC, q->node);	if (blk_throtl_bio(q, bio))		return false;	/* throttled, will be resubmitted later */	trace_block_bio_queue(q, bio);	return true;end_io:	bio_endio(bio, err);	return false;}/** * generic_make_request - hand a buffer to its device driver for I/O * @bio:  The bio describing the location in memory and on the device. * * generic_make_request() is used to make I/O requests of block * devices. It is passed a &struct bio, which describes the I/O that needs * to be done. * * generic_make_request() does not return any status.  The * success/failure status of the request, along with notification of * completion, is delivered asynchronously through the bio->bi_end_io * function described (one day) else where. * * The caller of generic_make_request must make sure that bi_io_vec * are set to describe the memory buffer, and that bi_dev and bi_sector are * set to describe the device address, and the * bi_end_io and optionally bi_private are set to describe how * completion notification should be signaled. * * generic_make_request and the drivers it calls may use bi_next if this * bio happens to be merged with someone else, and may resubmit the bio to * a lower device by calling into generic_make_request recursively, which * means the bio should NOT be touched after the call to ->make_request_fn. */void generic_make_request(struct bio *bio){	struct bio_list bio_list_on_stack;	if (!generic_make_request_checks(bio))		return;	/*	 * We only want one ->make_request_fn to be active at a time, else	 * stack usage with stacked devices could be a problem.  So use	 * current->bio_list to keep a list of requests submited by a	 * make_request_fn function.  current->bio_list is also used as a	 * flag to say if generic_make_request is currently active in this	 * task or not.  If it is NULL, then no make_request is active.  If	 * it is non-NULL, then a make_request is active, and new requests	 * should be added at the tail	 */	if (current->bio_list) {		bio_list_add(current->bio_list, bio);		return;	}	/* following loop may be a bit non-obvious, and so deserves some	 * explanation.	 * Before entering the loop, bio->bi_next is NULL (as all callers	 * ensure that) so we have a list with a single bio.	 * We pretend that we have just taken it off a longer list, so	 * we assign bio_list to a pointer to the bio_list_on_stack,	 * thus initialising the bio_list of new bios to be	 * added.  ->make_request() may indeed add some more bios	 * through a recursive call to generic_make_request.  If it	 * did, we find a non-NULL value in bio_list and re-enter the loop	 * from the top.  In this case we really did just take the bio	 * of the top of the list (no pretending) and so remove it from	 * bio_list, and call into ->make_request() again.	 */	BUG_ON(bio->bi_next);	bio_list_init(&bio_list_on_stack);	current->bio_list = &bio_list_on_stack;	do {		struct request_queue *q = bdev_get_queue(bio->bi_bdev);		q->make_request_fn(q, bio);		bio = bio_list_pop(current->bio_list);	} while (bio);	current->bio_list = NULL; /* deactivate */}EXPORT_SYMBOL(generic_make_request);/** * submit_bio - submit a bio to the block device layer for I/O * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) * @bio: The &struct bio which describes the I/O * * submit_bio() is very similar in purpose to generic_make_request(), and * uses that function to do most of the work. Both are fairly rough * interfaces; @bio must be presetup and ready for I/O. * */void submit_bio(int rw, struct bio *bio){	bio->bi_rw |= rw;	/*	 * If it's a regular read/write or a barrier with data attached,	 * go through the normal accounting stuff before submission.	 */	if (bio_has_data(bio)) {		unsigned int count;		if (unlikely(rw & REQ_WRITE_SAME))			count = bdev_logical_block_size(bio->bi_bdev) >> 9;		else			count = bio_sectors(bio);		if (rw & WRITE) {			count_vm_events(PGPGOUT, count);		} else {			task_io_account_read(bio->bi_size);			count_vm_events(PGPGIN, count);		}		if (unlikely(block_dump)) {			char b[BDEVNAME_SIZE];			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",			current->comm, task_pid_nr(current),				(rw & WRITE) ? "WRITE" : "READ",				(unsigned long long)bio->bi_sector,				bdevname(bio->bi_bdev, b),				count);		}	}	generic_make_request(bio);}EXPORT_SYMBOL(submit_bio);/** * blk_rq_check_limits - Helper function to check a request for the queue limit * @q:  the queue * @rq: the request being checked * * Description: *    @rq may have been made based on weaker limitations of upper-level queues *    in request stacking drivers, and it may violate the limitation of @q. *    Since the block layer and the underlying device driver trust @rq *    after it is inserted to @q, it should be checked against @q before *    the insertion using this generic function. * *    This function should also be useful for request stacking drivers *    in some cases below, so export this function. *    Request stacking drivers like request-based dm may change the queue *    limits while requests are in the queue (e.g. dm's table swapping). *    Such request stacking drivers should check those requests agaist *    the new queue limits again when they dispatch those requests, *    although such checkings are also done against the old queue limits *    when submitting requests. */int blk_rq_check_limits(struct request_queue *q, struct request *rq){	if (!rq_mergeable(rq))		return 0;	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {		printk(KERN_ERR "%s: over max size limit.\n", __func__);		return -EIO;	}	/*	 * queue's settings related to segment counting like q->bounce_pfn	 * may differ from that of other stacking queues.	 * Recalculate it to check the request correctly on this queue's	 * limitation.	 */	blk_recalc_rq_segments(rq);	if (rq->nr_phys_segments > queue_max_segments(q)) {		printk(KERN_ERR "%s: over max segments limit.\n", __func__);		return -EIO;	}	return 0;}EXPORT_SYMBOL_GPL(blk_rq_check_limits);/** * blk_insert_cloned_request - Helper for stacking drivers to submit a request * @q:  the queue to submit the request * @rq: the request being queued */int blk_insert_cloned_request(struct request_queue *q, struct request *rq){	unsigned long flags;	int where = ELEVATOR_INSERT_BACK;	if (blk_rq_check_limits(q, rq))		return -EIO;	if (rq->rq_disk &&	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))		return -EIO;	spin_lock_irqsave(q->queue_lock, flags);	if (unlikely(blk_queue_dying(q))) {		spin_unlock_irqrestore(q->queue_lock, flags);		return -ENODEV;	}	/*	 * Submitting request must be dequeued before calling this function	 * because it will be linked to another request_queue	 */	BUG_ON(blk_queued_rq(rq));	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))		where = ELEVATOR_INSERT_FLUSH;	add_acct_request(q, rq, where);	if (where == ELEVATOR_INSERT_FLUSH)		__blk_run_queue(q);	spin_unlock_irqrestore(q->queue_lock, flags);	return 0;}EXPORT_SYMBOL_GPL(blk_insert_cloned_request);/** * blk_rq_err_bytes - determine number of bytes till the next failure boundary * @rq: request to examine * * Description: *     A request could be merge of IOs which require different failure *     handling.  This function determines the number of bytes which *     can be failed from the beginning of the request without *     crossing into area which need to be retried further. * * Return: *     The number of bytes to fail. * * Context: *     queue_lock must be held. */unsigned int blk_rq_err_bytes(const struct request *rq){	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;	unsigned int bytes = 0;	struct bio *bio;	if (!(rq->cmd_flags & REQ_MIXED_MERGE))		return blk_rq_bytes(rq);	/*	 * Currently the only 'mixing' which can happen is between	 * different fastfail types.  We can safely fail portions	 * which have all the failfast bits that the first one has -	 * the ones which are at least as eager to fail as the first	 * one.	 */	for (bio = rq->bio; bio; bio = bio->bi_next) {		if ((bio->bi_rw & ff) != ff)			break;		bytes += bio->bi_size;	}	/* this could lead to infinite loop */	BUG_ON(blk_rq_bytes(rq) && !bytes);	return bytes;}EXPORT_SYMBOL_GPL(blk_rq_err_bytes);static void blk_account_io_completion(struct request *req, unsigned int bytes){	if (blk_do_io_stat(req)) {		const int rw = rq_data_dir(req);		struct hd_struct *part;		int cpu;		cpu = part_stat_lock();		part = req->part;		part_stat_add(cpu, part, sectors[rw], bytes >> 9);		part_stat_unlock();	}}static void blk_account_io_done(struct request *req){	/*	 * Account IO completion.  flush_rq isn't accounted as a	 * normal IO on queueing nor completion.  Accounting the	 * containing request is enough.	 */	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {		unsigned long duration = jiffies - req->start_time;		const int rw = rq_data_dir(req);		struct hd_struct *part;		int cpu;		cpu = part_stat_lock();		part = req->part;		part_stat_inc(cpu, part, ios[rw]);		part_stat_add(cpu, part, ticks[rw], duration);		part_round_stats(cpu, part);		part_dec_in_flight(part, rw);		hd_struct_put(part);		part_stat_unlock();	}}/** * blk_peek_request - peek at the top of a request queue * @q: request queue to peek at * * Description: *     Return the request at the top of @q.  The returned request *     should be started using blk_start_request() before LLD starts *     processing it. * * Return: *     Pointer to the request at the top of @q if available.  Null *     otherwise. * * Context: *     queue_lock must be held. */struct request *blk_peek_request(struct request_queue *q){	struct request *rq;	int ret;	while ((rq = __elv_next_request(q)) != NULL) {		if (!(rq->cmd_flags & REQ_STARTED)) {			/*			 * This is the first time the device driver			 * sees this request (possibly after			 * requeueing).  Notify IO scheduler.			 */			if (rq->cmd_flags & REQ_SORTED)				elv_activate_rq(q, rq);			/*			 * just mark as started even if we don't start			 * it, a request that has been delayed should			 * not be passed by new incoming requests			 */			rq->cmd_flags |= REQ_STARTED;			trace_block_rq_issue(q, rq);		}		if (!q->boundary_rq || q->boundary_rq == rq) {			q->end_sector = rq_end_sector(rq);			q->boundary_rq = NULL;		}		if (rq->cmd_flags & REQ_DONTPREP)			break;		if (q->dma_drain_size && blk_rq_bytes(rq)) {			/*			 * make sure space for the drain appears we			 * know we can do this because max_hw_segments			 * has been adjusted to be one fewer than the			 * device can handle			 */			rq->nr_phys_segments++;		}		if (!q->prep_rq_fn)			break;		ret = q->prep_rq_fn(q, rq);		if (ret == BLKPREP_OK) {			break;		} else if (ret == BLKPREP_DEFER) {			/*			 * the request may have been (partially) prepped.			 * we need to keep this request in the front to			 * avoid resource deadlock.  REQ_STARTED will			 * prevent other fs requests from passing this one.			 */			if (q->dma_drain_size && blk_rq_bytes(rq) &&			    !(rq->cmd_flags & REQ_DONTPREP)) {				/*				 * remove the space for the drain we added				 * so that we don't add it again				 */				--rq->nr_phys_segments;			}			rq = NULL;			break;		} else if (ret == BLKPREP_KILL) {			rq->cmd_flags |= REQ_QUIET;			/*			 * Mark this request as started so we don't trigger			 * any debug logic in the end I/O path.			 */			blk_start_request(rq);			__blk_end_request_all(rq, -EIO);		} else {			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);			break;		}	}	return rq;}EXPORT_SYMBOL(blk_peek_request);void blk_dequeue_request(struct request *rq){	struct request_queue *q = rq->q;	BUG_ON(list_empty(&rq->queuelist));	BUG_ON(ELV_ON_HASH(rq));	list_del_init(&rq->queuelist);
 |