| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 | /* *  arch/arm/include/asm/pgtable.h * *  Copyright (C) 1995-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#ifndef _ASMARM_PGTABLE_H#define _ASMARM_PGTABLE_H#include <linux/const.h>#include <asm/proc-fns.h>#ifndef CONFIG_MMU#include <asm-generic/4level-fixup.h>#include <asm/pgtable-nommu.h>#else#include <asm-generic/pgtable-nopud.h>#include <asm/memory.h>#include <asm/pgtable-hwdef.h>#ifdef CONFIG_ARM_LPAE#include <asm/pgtable-3level.h>#else#include <asm/pgtable-2level.h>#endif/* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts.  That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET		(8*1024*1024)#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))#define VMALLOC_END		0xff000000UL#define LIBRARY_TEXT_START	0x0c000000#ifndef __ASSEMBLY__extern void __pte_error(const char *file, int line, pte_t);extern void __pmd_error(const char *file, int line, pmd_t);extern void __pgd_error(const char *file, int line, pgd_t);#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)/* * This is the lowest virtual address we can permit any user space * mapping to be mapped at.  This is particularly important for * non-high vector CPUs. */#define FIRST_USER_ADDRESS	PAGE_SIZE/* * The pgprot_* and protection_map entries will be fixed up in runtime * to include the cachable and bufferable bits based on memory policy, * as well as any architecture dependent bits like global/ASID and SMP * shared mapping bits. */#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNGextern pgprot_t		pgprot_user;extern pgprot_t		pgprot_kernel;#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)#define PAGE_KERNEL_EXEC	pgprot_kernel#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)#define __pgprot_modify(prot,mask,bits)		\	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))#define pgprot_noncached(prot) \	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)#define pgprot_writecombine(prot) \	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)#define pgprot_stronglyordered(prot) \	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE#define pgprot_dmacoherent(prot) \	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)#define __HAVE_PHYS_MEM_ACCESS_PROTstruct file;extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,				     unsigned long size, pgprot_t vma_prot);#else#define pgprot_dmacoherent(prot) \	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)#endif#endif /* __ASSEMBLY__ *//* * The table below defines the page protection levels that we insert into our * Linux page table version.  These get translated into the best that the * architecture can perform.  Note that on most ARM hardware: *  1) We cannot do execute protection *  2) If we could do execute protection, then read is implied *  3) write implies read permissions */#define __P000  __PAGE_NONE#define __P001  __PAGE_READONLY#define __P010  __PAGE_COPY#define __P011  __PAGE_COPY#define __P100  __PAGE_READONLY_EXEC#define __P101  __PAGE_READONLY_EXEC#define __P110  __PAGE_COPY_EXEC#define __P111  __PAGE_COPY_EXEC#define __S000  __PAGE_NONE#define __S001  __PAGE_READONLY#define __S010  __PAGE_SHARED#define __S011  __PAGE_SHARED#define __S100  __PAGE_READONLY_EXEC#define __S101  __PAGE_READONLY_EXEC#define __S110  __PAGE_SHARED_EXEC#define __S111  __PAGE_SHARED_EXEC#ifndef __ASSEMBLY__/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern struct page *empty_zero_page;#define ZERO_PAGE(vaddr)	(empty_zero_page)extern pgd_t swapper_pg_dir[PTRS_PER_PGD];/* to find an entry in a page-table-directory */#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))/* to find an entry in a kernel page-table-directory */#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)#define pmd_none(pmd)		(!pmd_val(pmd))#define pmd_present(pmd)	(pmd_val(pmd))static inline pte_t *pmd_page_vaddr(pmd_t pmd){	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);}#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))#ifndef CONFIG_HIGHPTE#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))#define __pte_unmap(pte)	do { } while (0)#else#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))#define __pte_unmap(pte)	kunmap_atomic(pte)#endif#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))#define pte_unmap(pte)			__pte_unmap(pte)#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))#define pte_page(pte)		pfn_to_page(pte_pfn(pte))#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)#define pte_none(pte)		(!pte_val(pte))#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))#define pte_special(pte)	(0)#define pte_present_user(pte)  (pte_present(pte) && (pte_val(pte) & L_PTE_USER))#if __LINUX_ARM_ARCH__ < 6static inline void __sync_icache_dcache(pte_t pteval){}#elseextern void __sync_icache_dcache(pte_t pteval);#endifstatic inline void set_pte_at(struct mm_struct *mm, unsigned long addr,			      pte_t *ptep, pte_t pteval){	unsigned long ext = 0;	if (addr < TASK_SIZE && pte_present_user(pteval)) {		__sync_icache_dcache(pteval);		ext |= PTE_EXT_NG;	}	set_pte_ext(ptep, pteval, ext);}#define PTE_BIT_FUNC(fn,op) \static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);static inline pte_t pte_mkspecial(pte_t pte) { return pte; }static inline pte_t pte_modify(pte_t pte, pgprot_t newprot){	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |		L_PTE_NONE | L_PTE_VALID;	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);	return pte;}/* * Encode and decode a swap entry.  Swap entries are stored in the Linux * page tables as follows: * *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 *   <--------------- offset ----------------------> < type -> 0 0 0 * * This gives us up to 31 swap files and 64GB per swap file.  Note that * the offset field is always non-zero. */#define __SWP_TYPE_SHIFT	3#define __SWP_TYPE_BITS		5#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })/* * It is an error for the kernel to have more swap files than we can * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES * is increased beyond what we presently support. */#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)/* * Encode and decode a file entry.  File entries are stored in the Linux * page tables as follows: * *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 *   <----------------------- offset ------------------------> 1 0 0 */#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)#define pte_to_pgoff(x)		(pte_val(x) >> 3)#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)#define PTE_FILE_MAX_BITS	29/* Needs to be defined here and not in linux/mm.h, as it is arch dependent *//* FIXME: this is not correct */#define kern_addr_valid(addr)	(1)#include <asm-generic/pgtable.h>/* * We provide our own arch_get_unmapped_area to cope with VIPT caches. */#define HAVE_ARCH_UNMAPPED_AREA#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN/* * remap a physical page `pfn' of size `size' with page protection `prot' * into virtual address `from' */#define io_remap_pfn_range(vma,from,pfn,size,prot) \		remap_pfn_range(vma, from, pfn, size, prot)#define pgtable_cache_init() do { } while (0)#endif /* !__ASSEMBLY__ */#endif /* CONFIG_MMU */
 |