| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681 | /* * Functions related to setting various queue properties from drivers */#include <linux/kernel.h>#include <linux/module.h>#include <linux/init.h>#include <linux/bio.h>#include <linux/blkdev.h>#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */#include <linux/gcd.h>#include <linux/lcm.h>#include <linux/jiffies.h>#include <linux/gfp.h>#include "blk.h"unsigned long blk_max_low_pfn;EXPORT_SYMBOL(blk_max_low_pfn);unsigned long blk_max_pfn;/** * blk_queue_prep_rq - set a prepare_request function for queue * @q:		queue * @pfn:	prepare_request function * * It's possible for a queue to register a prepare_request callback which * is invoked before the request is handed to the request_fn. The goal of * the function is to prepare a request for I/O, it can be used to build a * cdb from the request data for instance. * */void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn){	q->prep_rq_fn = pfn;}EXPORT_SYMBOL(blk_queue_prep_rq);/** * blk_queue_unprep_rq - set an unprepare_request function for queue * @q:		queue * @ufn:	unprepare_request function * * It's possible for a queue to register an unprepare_request callback * which is invoked before the request is finally completed. The goal * of the function is to deallocate any data that was allocated in the * prepare_request callback. * */void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn){	q->unprep_rq_fn = ufn;}EXPORT_SYMBOL(blk_queue_unprep_rq);/** * blk_queue_merge_bvec - set a merge_bvec function for queue * @q:		queue * @mbfn:	merge_bvec_fn * * Usually queues have static limitations on the max sectors or segments that * we can put in a request. Stacking drivers may have some settings that * are dynamic, and thus we have to query the queue whether it is ok to * add a new bio_vec to a bio at a given offset or not. If the block device * has such limitations, it needs to register a merge_bvec_fn to control * the size of bio's sent to it. Note that a block device *must* allow a * single page to be added to an empty bio. The block device driver may want * to use the bio_split() function to deal with these bio's. By default * no merge_bvec_fn is defined for a queue, and only the fixed limits are * honored. */void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn){	q->merge_bvec_fn = mbfn;}EXPORT_SYMBOL(blk_queue_merge_bvec);void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn){	q->softirq_done_fn = fn;}EXPORT_SYMBOL(blk_queue_softirq_done);void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout){	q->rq_timeout = timeout;}EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn){	q->rq_timed_out_fn = fn;}EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn){	q->lld_busy_fn = fn;}EXPORT_SYMBOL_GPL(blk_queue_lld_busy);/** * blk_set_default_limits - reset limits to default values * @lim:  the queue_limits structure to reset * * Description: *   Returns a queue_limit struct to its default state. */void blk_set_default_limits(struct queue_limits *lim){	lim->max_segments = BLK_MAX_SEGMENTS;	lim->max_integrity_segments = 0;	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;	lim->max_write_same_sectors = 0;	lim->max_discard_sectors = 0;	lim->discard_granularity = 0;	lim->discard_alignment = 0;	lim->discard_misaligned = 0;	lim->discard_zeroes_data = 0;	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);	lim->alignment_offset = 0;	lim->io_opt = 0;	lim->misaligned = 0;	lim->cluster = 1;}EXPORT_SYMBOL(blk_set_default_limits);/** * blk_set_stacking_limits - set default limits for stacking devices * @lim:  the queue_limits structure to reset * * Description: *   Returns a queue_limit struct to its default state. Should be used *   by stacking drivers like DM that have no internal limits. */void blk_set_stacking_limits(struct queue_limits *lim){	blk_set_default_limits(lim);	/* Inherit limits from component devices */	lim->discard_zeroes_data = 1;	lim->max_segments = USHRT_MAX;	lim->max_hw_sectors = UINT_MAX;	lim->max_sectors = UINT_MAX;	lim->max_write_same_sectors = UINT_MAX;}EXPORT_SYMBOL(blk_set_stacking_limits);/** * blk_queue_make_request - define an alternate make_request function for a device * @q:  the request queue for the device to be affected * @mfn: the alternate make_request function * * Description: *    The normal way for &struct bios to be passed to a device *    driver is for them to be collected into requests on a request *    queue, and then to allow the device driver to select requests *    off that queue when it is ready.  This works well for many block *    devices. However some block devices (typically virtual devices *    such as md or lvm) do not benefit from the processing on the *    request queue, and are served best by having the requests passed *    directly to them.  This can be achieved by providing a function *    to blk_queue_make_request(). * * Caveat: *    The driver that does this *must* be able to deal appropriately *    with buffers in "highmemory". This can be accomplished by either calling *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling *    blk_queue_bounce() to create a buffer in normal memory. **/void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn){	/*	 * set defaults	 */	q->nr_requests = BLKDEV_MAX_RQ;	q->make_request_fn = mfn;	blk_queue_dma_alignment(q, 511);	blk_queue_congestion_threshold(q);	q->nr_batching = BLK_BATCH_REQ;	blk_set_default_limits(&q->limits);	/*	 * by default assume old behaviour and bounce for any highmem page	 */	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);}EXPORT_SYMBOL(blk_queue_make_request);/** * blk_queue_bounce_limit - set bounce buffer limit for queue * @q: the request queue for the device * @dma_mask: the maximum address the device can handle * * Description: *    Different hardware can have different requirements as to what pages *    it can do I/O directly to. A low level driver can call *    blk_queue_bounce_limit to have lower memory pages allocated as bounce *    buffers for doing I/O to pages residing above @dma_mask. **/void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask){	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;	int dma = 0;	q->bounce_gfp = GFP_NOIO;#if BITS_PER_LONG == 64	/*	 * Assume anything <= 4GB can be handled by IOMMU.  Actually	 * some IOMMUs can handle everything, but I don't know of a	 * way to test this here.	 */	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))		dma = 1;	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);#else	if (b_pfn < blk_max_low_pfn)		dma = 1;	q->limits.bounce_pfn = b_pfn;#endif	if (dma) {		init_emergency_isa_pool();		q->bounce_gfp = GFP_NOIO | GFP_DMA;		q->limits.bounce_pfn = b_pfn;	}}EXPORT_SYMBOL(blk_queue_bounce_limit);/** * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request * @limits: the queue limits * @max_hw_sectors:  max hardware sectors in the usual 512b unit * * Description: *    Enables a low level driver to set a hard upper limit, *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by *    the device driver based upon the combined capabilities of I/O *    controller and storage device. * *    max_sectors is a soft limit imposed by the block layer for *    filesystem type requests.  This value can be overridden on a *    per-device basis in /sys/block/<device>/queue/max_sectors_kb. *    The soft limit can not exceed max_hw_sectors. **/void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors){	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);		printk(KERN_INFO "%s: set to minimum %d\n",		       __func__, max_hw_sectors);	}	limits->max_hw_sectors = max_hw_sectors;	limits->max_sectors = min_t(unsigned int, max_hw_sectors,				    BLK_DEF_MAX_SECTORS);}EXPORT_SYMBOL(blk_limits_max_hw_sectors);/** * blk_queue_max_hw_sectors - set max sectors for a request for this queue * @q:  the request queue for the device * @max_hw_sectors:  max hardware sectors in the usual 512b unit * * Description: *    See description for blk_limits_max_hw_sectors(). **/void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors){	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);}EXPORT_SYMBOL(blk_queue_max_hw_sectors);/** * blk_queue_max_discard_sectors - set max sectors for a single discard * @q:  the request queue for the device * @max_discard_sectors: maximum number of sectors to discard **/void blk_queue_max_discard_sectors(struct request_queue *q,		unsigned int max_discard_sectors){	q->limits.max_discard_sectors = max_discard_sectors;}EXPORT_SYMBOL(blk_queue_max_discard_sectors);/** * blk_queue_max_write_same_sectors - set max sectors for a single write same * @q:  the request queue for the device * @max_write_same_sectors: maximum number of sectors to write per command **/void blk_queue_max_write_same_sectors(struct request_queue *q,				      unsigned int max_write_same_sectors){	q->limits.max_write_same_sectors = max_write_same_sectors;}EXPORT_SYMBOL(blk_queue_max_write_same_sectors);/** * blk_queue_max_segments - set max hw segments for a request for this queue * @q:  the request queue for the device * @max_segments:  max number of segments * * Description: *    Enables a low level driver to set an upper limit on the number of *    hw data segments in a request. **/void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments){	if (!max_segments) {		max_segments = 1;		printk(KERN_INFO "%s: set to minimum %d\n",		       __func__, max_segments);	}	q->limits.max_segments = max_segments;}EXPORT_SYMBOL(blk_queue_max_segments);/** * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg * @q:  the request queue for the device * @max_size:  max size of segment in bytes * * Description: *    Enables a low level driver to set an upper limit on the size of a *    coalesced segment **/void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size){	if (max_size < PAGE_CACHE_SIZE) {		max_size = PAGE_CACHE_SIZE;		printk(KERN_INFO "%s: set to minimum %d\n",		       __func__, max_size);	}	q->limits.max_segment_size = max_size;}EXPORT_SYMBOL(blk_queue_max_segment_size);/** * blk_queue_logical_block_size - set logical block size for the queue * @q:  the request queue for the device * @size:  the logical block size, in bytes * * Description: *   This should be set to the lowest possible block size that the *   storage device can address.  The default of 512 covers most *   hardware. **/void blk_queue_logical_block_size(struct request_queue *q, unsigned short size){	q->limits.logical_block_size = size;	if (q->limits.physical_block_size < size)		q->limits.physical_block_size = size;	if (q->limits.io_min < q->limits.physical_block_size)		q->limits.io_min = q->limits.physical_block_size;}EXPORT_SYMBOL(blk_queue_logical_block_size);/** * blk_queue_physical_block_size - set physical block size for the queue * @q:  the request queue for the device * @size:  the physical block size, in bytes * * Description: *   This should be set to the lowest possible sector size that the *   hardware can operate on without reverting to read-modify-write *   operations. */void blk_queue_physical_block_size(struct request_queue *q, unsigned int size){	q->limits.physical_block_size = size;	if (q->limits.physical_block_size < q->limits.logical_block_size)		q->limits.physical_block_size = q->limits.logical_block_size;	if (q->limits.io_min < q->limits.physical_block_size)		q->limits.io_min = q->limits.physical_block_size;}EXPORT_SYMBOL(blk_queue_physical_block_size);/** * blk_queue_alignment_offset - set physical block alignment offset * @q:	the request queue for the device * @offset: alignment offset in bytes * * Description: *   Some devices are naturally misaligned to compensate for things like *   the legacy DOS partition table 63-sector offset.  Low-level drivers *   should call this function for devices whose first sector is not *   naturally aligned. */void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset){	q->limits.alignment_offset =		offset & (q->limits.physical_block_size - 1);	q->limits.misaligned = 0;}EXPORT_SYMBOL(blk_queue_alignment_offset);/** * blk_limits_io_min - set minimum request size for a device * @limits: the queue limits * @min:  smallest I/O size in bytes * * Description: *   Some devices have an internal block size bigger than the reported *   hardware sector size.  This function can be used to signal the *   smallest I/O the device can perform without incurring a performance *   penalty. */void blk_limits_io_min(struct queue_limits *limits, unsigned int min){	limits->io_min = min;	if (limits->io_min < limits->logical_block_size)		limits->io_min = limits->logical_block_size;	if (limits->io_min < limits->physical_block_size)		limits->io_min = limits->physical_block_size;}EXPORT_SYMBOL(blk_limits_io_min);/** * blk_queue_io_min - set minimum request size for the queue * @q:	the request queue for the device * @min:  smallest I/O size in bytes * * Description: *   Storage devices may report a granularity or preferred minimum I/O *   size which is the smallest request the device can perform without *   incurring a performance penalty.  For disk drives this is often the *   physical block size.  For RAID arrays it is often the stripe chunk *   size.  A properly aligned multiple of minimum_io_size is the *   preferred request size for workloads where a high number of I/O *   operations is desired. */void blk_queue_io_min(struct request_queue *q, unsigned int min){	blk_limits_io_min(&q->limits, min);}EXPORT_SYMBOL(blk_queue_io_min);/** * blk_limits_io_opt - set optimal request size for a device * @limits: the queue limits * @opt:  smallest I/O size in bytes * * Description: *   Storage devices may report an optimal I/O size, which is the *   device's preferred unit for sustained I/O.  This is rarely reported *   for disk drives.  For RAID arrays it is usually the stripe width or *   the internal track size.  A properly aligned multiple of *   optimal_io_size is the preferred request size for workloads where *   sustained throughput is desired. */void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt){	limits->io_opt = opt;}EXPORT_SYMBOL(blk_limits_io_opt);/** * blk_queue_io_opt - set optimal request size for the queue * @q:	the request queue for the device * @opt:  optimal request size in bytes * * Description: *   Storage devices may report an optimal I/O size, which is the *   device's preferred unit for sustained I/O.  This is rarely reported *   for disk drives.  For RAID arrays it is usually the stripe width or *   the internal track size.  A properly aligned multiple of *   optimal_io_size is the preferred request size for workloads where *   sustained throughput is desired. */void blk_queue_io_opt(struct request_queue *q, unsigned int opt){	blk_limits_io_opt(&q->limits, opt);}EXPORT_SYMBOL(blk_queue_io_opt);/** * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers * @t:	the stacking driver (top) * @b:  the underlying device (bottom) **/void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b){	blk_stack_limits(&t->limits, &b->limits, 0);}EXPORT_SYMBOL(blk_queue_stack_limits);/** * blk_stack_limits - adjust queue_limits for stacked devices * @t:	the stacking driver limits (top device) * @b:  the underlying queue limits (bottom, component device) * @start:  first data sector within component device * * Description: *    This function is used by stacking drivers like MD and DM to ensure *    that all component devices have compatible block sizes and *    alignments.  The stacking driver must provide a queue_limits *    struct (top) and then iteratively call the stacking function for *    all component (bottom) devices.  The stacking function will *    attempt to combine the values and ensure proper alignment. * *    Returns 0 if the top and bottom queue_limits are compatible.  The *    top device's block sizes and alignment offsets may be adjusted to *    ensure alignment with the bottom device. If no compatible sizes *    and alignments exist, -1 is returned and the resulting top *    queue_limits will have the misaligned flag set to indicate that *    the alignment_offset is undefined. */int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,		     sector_t start){	unsigned int top, bottom, alignment, ret = 0;	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);	t->max_write_same_sectors = min(t->max_write_same_sectors,					b->max_write_same_sectors);	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,					    b->seg_boundary_mask);	t->max_segments = min_not_zero(t->max_segments, b->max_segments);	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,						 b->max_integrity_segments);	t->max_segment_size = min_not_zero(t->max_segment_size,					   b->max_segment_size);	t->misaligned |= b->misaligned;	alignment = queue_limit_alignment_offset(b, start);	/* Bottom device has different alignment.  Check that it is	 * compatible with the current top alignment.	 */	if (t->alignment_offset != alignment) {		top = max(t->physical_block_size, t->io_min)			+ t->alignment_offset;		bottom = max(b->physical_block_size, b->io_min) + alignment;		/* Verify that top and bottom intervals line up */		if (max(top, bottom) & (min(top, bottom) - 1)) {			t->misaligned = 1;			ret = -1;		}	}	t->logical_block_size = max(t->logical_block_size,				    b->logical_block_size);	t->physical_block_size = max(t->physical_block_size,				     b->physical_block_size);	t->io_min = max(t->io_min, b->io_min);	t->io_opt = lcm(t->io_opt, b->io_opt);	t->cluster &= b->cluster;	t->discard_zeroes_data &= b->discard_zeroes_data;	/* Physical block size a multiple of the logical block size? */	if (t->physical_block_size & (t->logical_block_size - 1)) {		t->physical_block_size = t->logical_block_size;		t->misaligned = 1;		ret = -1;	}	/* Minimum I/O a multiple of the physical block size? */	if (t->io_min & (t->physical_block_size - 1)) {		t->io_min = t->physical_block_size;		t->misaligned = 1;		ret = -1;	}	/* Optimal I/O a multiple of the physical block size? */	if (t->io_opt & (t->physical_block_size - 1)) {		t->io_opt = 0;		t->misaligned = 1;		ret = -1;	}	/* Find lowest common alignment_offset */	t->alignment_offset = lcm(t->alignment_offset, alignment)		& (max(t->physical_block_size, t->io_min) - 1);	/* Verify that new alignment_offset is on a logical block boundary */	if (t->alignment_offset & (t->logical_block_size - 1)) {		t->misaligned = 1;		ret = -1;	}	/* Discard alignment and granularity */	if (b->discard_granularity) {		alignment = queue_limit_discard_alignment(b, start);		if (t->discard_granularity != 0 &&		    t->discard_alignment != alignment) {			top = t->discard_granularity + t->discard_alignment;			bottom = b->discard_granularity + alignment;			/* Verify that top and bottom intervals line up */			if ((max(top, bottom) % min(top, bottom)) != 0)				t->discard_misaligned = 1;		}		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,						      b->max_discard_sectors);		t->discard_granularity = max(t->discard_granularity,					     b->discard_granularity);		t->discard_alignment = lcm(t->discard_alignment, alignment) %			t->discard_granularity;	}	return ret;}EXPORT_SYMBOL(blk_stack_limits);/** * bdev_stack_limits - adjust queue limits for stacked drivers * @t:	the stacking driver limits (top device) * @bdev:  the component block_device (bottom) * @start:  first data sector within component device * * Description: *    Merges queue limits for a top device and a block_device.  Returns *    0 if alignment didn't change.  Returns -1 if adding the bottom *    device caused misalignment. */int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,		      sector_t start){	struct request_queue *bq = bdev_get_queue(bdev);	start += get_start_sect(bdev);	return blk_stack_limits(t, &bq->limits, start);}EXPORT_SYMBOL(bdev_stack_limits);/** * disk_stack_limits - adjust queue limits for stacked drivers * @disk:  MD/DM gendisk (top) * @bdev:  the underlying block device (bottom) * @offset:  offset to beginning of data within component device * * Description: *    Merges the limits for a top level gendisk and a bottom level *    block_device. */void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,		       sector_t offset){	struct request_queue *t = disk->queue;	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];		disk_name(disk, 0, top);		bdevname(bdev, bottom);		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",		       top, bottom);	}}EXPORT_SYMBOL(disk_stack_limits);/** * blk_queue_dma_pad - set pad mask * @q:     the request queue for the device
 |