| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734 | /* *  linux/arch/arm/vfp/vfpmodule.c * *  Copyright (C) 2004 ARM Limited. *  Written by Deep Blue Solutions Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/types.h>#include <linux/cpu.h>#include <linux/cpu_pm.h>#include <linux/hardirq.h>#include <linux/kernel.h>#include <linux/notifier.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/smp.h>#include <linux/init.h>#include <linux/uaccess.h>#include <linux/user.h>#include <asm/cp15.h>#include <asm/cputype.h>#include <asm/system_info.h>#include <asm/thread_notify.h>#include <asm/vfp.h>#include "vfpinstr.h"#include "vfp.h"/* * Our undef handlers (in entry.S) */void vfp_testing_entry(void);void vfp_support_entry(void);void vfp_null_entry(void);void (*vfp_vector)(void) = vfp_null_entry;/* * Dual-use variable. * Used in startup: set to non-zero if VFP checks fail * After startup, holds VFP architecture */unsigned int VFP_arch;/* * The pointer to the vfpstate structure of the thread which currently * owns the context held in the VFP hardware, or NULL if the hardware * context is invalid. * * For UP, this is sufficient to tell which thread owns the VFP context. * However, for SMP, we also need to check the CPU number stored in the * saved state too to catch migrations. */union vfp_state *vfp_current_hw_state[NR_CPUS];/* * Is 'thread's most up to date state stored in this CPUs hardware? * Must be called from non-preemptible context. */static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread){#ifdef CONFIG_SMP	if (thread->vfpstate.hard.cpu != cpu)		return false;#endif	return vfp_current_hw_state[cpu] == &thread->vfpstate;}/* * Force a reload of the VFP context from the thread structure.  We do * this by ensuring that access to the VFP hardware is disabled, and * clear vfp_current_hw_state.  Must be called from non-preemptible context. */static void vfp_force_reload(unsigned int cpu, struct thread_info *thread){	if (vfp_state_in_hw(cpu, thread)) {		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);		vfp_current_hw_state[cpu] = NULL;	}#ifdef CONFIG_SMP	thread->vfpstate.hard.cpu = NR_CPUS;#endif}/* * Per-thread VFP initialization. */static void vfp_thread_flush(struct thread_info *thread){	union vfp_state *vfp = &thread->vfpstate;	unsigned int cpu;	/*	 * Disable VFP to ensure we initialize it first.  We must ensure	 * that the modification of vfp_current_hw_state[] and hardware	 * disable are done for the same CPU and without preemption.	 *	 * Do this first to ensure that preemption won't overwrite our	 * state saving should access to the VFP be enabled at this point.	 */	cpu = get_cpu();	if (vfp_current_hw_state[cpu] == vfp)		vfp_current_hw_state[cpu] = NULL;	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);	put_cpu();	memset(vfp, 0, sizeof(union vfp_state));	vfp->hard.fpexc = FPEXC_EN;	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;#ifdef CONFIG_SMP	vfp->hard.cpu = NR_CPUS;#endif}static void vfp_thread_exit(struct thread_info *thread){	/* release case: Per-thread VFP cleanup. */	union vfp_state *vfp = &thread->vfpstate;	unsigned int cpu = get_cpu();	if (vfp_current_hw_state[cpu] == vfp)		vfp_current_hw_state[cpu] = NULL;	put_cpu();}static void vfp_thread_copy(struct thread_info *thread){	struct thread_info *parent = current_thread_info();	vfp_sync_hwstate(parent);	thread->vfpstate = parent->vfpstate;#ifdef CONFIG_SMP	thread->vfpstate.hard.cpu = NR_CPUS;#endif}/* * When this function is called with the following 'cmd's, the following * is true while this function is being run: *  THREAD_NOFTIFY_SWTICH: *   - the previously running thread will not be scheduled onto another CPU. *   - the next thread to be run (v) will not be running on another CPU. *   - thread->cpu is the local CPU number *   - not preemptible as we're called in the middle of a thread switch *  THREAD_NOTIFY_FLUSH: *   - the thread (v) will be running on the local CPU, so *	v === current_thread_info() *   - thread->cpu is the local CPU number at the time it is accessed, *	but may change at any time. *   - we could be preempted if tree preempt rcu is enabled, so *	it is unsafe to use thread->cpu. *  THREAD_NOTIFY_EXIT *   - the thread (v) will be running on the local CPU, so *	v === current_thread_info() *   - thread->cpu is the local CPU number at the time it is accessed, *	but may change at any time. *   - we could be preempted if tree preempt rcu is enabled, so *	it is unsafe to use thread->cpu. */static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v){	struct thread_info *thread = v;	u32 fpexc;#ifdef CONFIG_SMP	unsigned int cpu;#endif	switch (cmd) {	case THREAD_NOTIFY_SWITCH:		fpexc = fmrx(FPEXC);#ifdef CONFIG_SMP		cpu = thread->cpu;		/*		 * On SMP, if VFP is enabled, save the old state in		 * case the thread migrates to a different CPU. The		 * restoring is done lazily.		 */		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])			vfp_save_state(vfp_current_hw_state[cpu], fpexc);#endif		/*		 * Always disable VFP so we can lazily save/restore the		 * old state.		 */		fmxr(FPEXC, fpexc & ~FPEXC_EN);		break;	case THREAD_NOTIFY_FLUSH:		vfp_thread_flush(thread);		break;	case THREAD_NOTIFY_EXIT:		vfp_thread_exit(thread);		break;	case THREAD_NOTIFY_COPY:		vfp_thread_copy(thread);		break;	}	return NOTIFY_DONE;}static struct notifier_block vfp_notifier_block = {	.notifier_call	= vfp_notifier,};/* * Raise a SIGFPE for the current process. * sicode describes the signal being raised. */static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs){	siginfo_t info;	memset(&info, 0, sizeof(info));	info.si_signo = SIGFPE;	info.si_code = sicode;	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);	/*	 * This is the same as NWFPE, because it's not clear what	 * this is used for	 */	current->thread.error_code = 0;	current->thread.trap_no = 6;	send_sig_info(SIGFPE, &info, current);}static void vfp_panic(char *reason, u32 inst){	int i;	pr_err("VFP: Error: %s\n", reason);	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",		fmrx(FPEXC), fmrx(FPSCR), inst);	for (i = 0; i < 32; i += 2)		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));}/* * Process bitmask of exception conditions. */static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs){	int si_code = 0;	pr_debug("VFP: raising exceptions %08x\n", exceptions);	if (exceptions == VFP_EXCEPTION_ERROR) {		vfp_panic("unhandled bounce", inst);		vfp_raise_sigfpe(0, regs);		return;	}	/*	 * If any of the status flags are set, update the FPSCR.	 * Comparison instructions always return at least one of	 * these flags set.	 */	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);	fpscr |= exceptions;	fmxr(FPSCR, fpscr);#define RAISE(stat,en,sig)				\	if (exceptions & stat && fpscr & en)		\		si_code = sig;	/*	 * These are arranged in priority order, least to highest.	 */	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);	if (si_code)		vfp_raise_sigfpe(si_code, regs);}/* * Emulate a VFP instruction. */static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs){	u32 exceptions = VFP_EXCEPTION_ERROR;	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);	if (INST_CPRTDO(inst)) {		if (!INST_CPRT(inst)) {			/*			 * CPDO			 */			if (vfp_single(inst)) {				exceptions = vfp_single_cpdo(inst, fpscr);			} else {				exceptions = vfp_double_cpdo(inst, fpscr);			}		} else {			/*			 * A CPRT instruction can not appear in FPINST2, nor			 * can it cause an exception.  Therefore, we do not			 * have to emulate it.			 */		}	} else {		/*		 * A CPDT instruction can not appear in FPINST2, nor can		 * it cause an exception.  Therefore, we do not have to		 * emulate it.		 */	}	return exceptions & ~VFP_NAN_FLAG;}/* * Package up a bounce condition. */void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs){	u32 fpscr, orig_fpscr, fpsid, exceptions;	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);	/*	 * At this point, FPEXC can have the following configuration:	 *	 *  EX DEX IXE	 *  0   1   x   - synchronous exception	 *  1   x   0   - asynchronous exception	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1	 *                implementation), undefined otherwise	 *	 * Clear various bits and enable access to the VFP so we can	 * handle the bounce.	 */	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));	fpsid = fmrx(FPSID);	orig_fpscr = fpscr = fmrx(FPSCR);	/*	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case	 */	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)	    && (fpscr & FPSCR_IXE)) {		/*		 * Synchronous exception, emulate the trigger instruction		 */		goto emulate;	}	if (fpexc & FPEXC_EX) {#ifndef CONFIG_CPU_FEROCEON		/*		 * Asynchronous exception. The instruction is read from FPINST		 * and the interrupted instruction has to be restarted.		 */		trigger = fmrx(FPINST);		regs->ARM_pc -= 4;#endif	} else if (!(fpexc & FPEXC_DEX)) {		/*		 * Illegal combination of bits. It can be caused by an		 * unallocated VFP instruction but with FPSCR.IXE set and not		 * on VFP subarch 1.		 */		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);		goto exit;	}	/*	 * Modify fpscr to indicate the number of iterations remaining.	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates	 * whether FPEXC.VECITR or FPSCR.LEN is used.	 */	if (fpexc & (FPEXC_EX | FPEXC_VV)) {		u32 len;		len = fpexc + (1 << FPEXC_LENGTH_BIT);		fpscr &= ~FPSCR_LENGTH_MASK;		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);	}	/*	 * Handle the first FP instruction.  We used to take note of the	 * FPEXC bounce reason, but this appears to be unreliable.	 * Emulate the bounced instruction instead.	 */	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);	if (exceptions)		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);	/*	 * If there isn't a second FP instruction, exit now. Note that	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.	 */	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))		goto exit;	/*	 * The barrier() here prevents fpinst2 being read	 * before the condition above.	 */	barrier();	trigger = fmrx(FPINST2); emulate:	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);	if (exceptions)		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); exit:	preempt_enable();}static void vfp_enable(void *unused){	u32 access;	BUG_ON(preemptible());	access = get_copro_access();	/*	 * Enable full access to VFP (cp10 and cp11)	 */	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));}#ifdef CONFIG_CPU_PMstatic int vfp_pm_suspend(void){	struct thread_info *ti = current_thread_info();	u32 fpexc = fmrx(FPEXC);	/* if vfp is on, then save state for resumption */	if (fpexc & FPEXC_EN) {		pr_debug("%s: saving vfp state\n", __func__);		vfp_save_state(&ti->vfpstate, fpexc);		/* disable, just in case */		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);	} else if (vfp_current_hw_state[ti->cpu]) {#ifndef CONFIG_SMP		fmxr(FPEXC, fpexc | FPEXC_EN);		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);		fmxr(FPEXC, fpexc);#endif	}	/* clear any information we had about last context state */	vfp_current_hw_state[ti->cpu] = NULL;	return 0;}static void vfp_pm_resume(void){	/* ensure we have access to the vfp */	vfp_enable(NULL);	/* and disable it to ensure the next usage restores the state */	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);}static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,	void *v){	switch (cmd) {	case CPU_PM_ENTER:		vfp_pm_suspend();		break;	case CPU_PM_ENTER_FAILED:	case CPU_PM_EXIT:		vfp_pm_resume();		break;	}	return NOTIFY_OK;}static struct notifier_block vfp_cpu_pm_notifier_block = {	.notifier_call = vfp_cpu_pm_notifier,};static void vfp_pm_init(void){	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);}#elsestatic inline void vfp_pm_init(void) { }#endif /* CONFIG_CPU_PM *//* * Ensure that the VFP state stored in 'thread->vfpstate' is up to date * with the hardware state. */void vfp_sync_hwstate(struct thread_info *thread){	unsigned int cpu = get_cpu();	if (vfp_state_in_hw(cpu, thread)) {		u32 fpexc = fmrx(FPEXC);		/*		 * Save the last VFP state on this CPU.		 */		fmxr(FPEXC, fpexc | FPEXC_EN);		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);		fmxr(FPEXC, fpexc);	}	put_cpu();}/* Ensure that the thread reloads the hardware VFP state on the next use. */void vfp_flush_hwstate(struct thread_info *thread){	unsigned int cpu = get_cpu();	vfp_force_reload(cpu, thread);	put_cpu();}/* * Save the current VFP state into the provided structures and prepare * for entry into a new function (signal handler). */int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,				    struct user_vfp_exc __user *ufp_exc){	struct thread_info *thread = current_thread_info();	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;	int err = 0;	/* Ensure that the saved hwstate is up-to-date. */	vfp_sync_hwstate(thread);	/*	 * Copy the floating point registers. There can be unused	 * registers see asm/hwcap.h for details.	 */	err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,			      sizeof(hwstate->fpregs));	/*	 * Copy the status and control register.	 */	__put_user_error(hwstate->fpscr, &ufp->fpscr, err);	/*	 * Copy the exception registers.	 */	__put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);	__put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);	__put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);	if (err)		return -EFAULT;	/* Ensure that VFP is disabled. */	vfp_flush_hwstate(thread);	/*	 * As per the PCS, clear the length and stride bits for function	 * entry.	 */	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);	return 0;}/* Sanitise and restore the current VFP state from the provided structures. */int vfp_restore_user_hwstate(struct user_vfp __user *ufp,			     struct user_vfp_exc __user *ufp_exc){	struct thread_info *thread = current_thread_info();	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;	unsigned long fpexc;	int err = 0;	/* Disable VFP to avoid corrupting the new thread state. */	vfp_flush_hwstate(thread);	/*	 * Copy the floating point registers. There can be unused	 * registers see asm/hwcap.h for details.	 */	err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,				sizeof(hwstate->fpregs));	/*	 * Copy the status and control register.	 */	__get_user_error(hwstate->fpscr, &ufp->fpscr, err);	/*	 * Sanitise and restore the exception registers.	 */	__get_user_error(fpexc, &ufp_exc->fpexc, err);	/* Ensure the VFP is enabled. */	fpexc |= FPEXC_EN;	/* Ensure FPINST2 is invalid and the exception flag is cleared. */	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);	hwstate->fpexc = fpexc;	__get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);	__get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);	return err ? -EFAULT : 0;}/* * VFP hardware can lose all context when a CPU goes offline. * As we will be running in SMP mode with CPU hotplug, we will save the * hardware state at every thread switch.  We clear our held state when * a CPU has been killed, indicating that the VFP hardware doesn't contain * a threads VFP state.  When a CPU starts up, we re-enable access to the * VFP hardware. * * Both CPU_DYING and CPU_STARTING are called on the CPU which * is being offlined/onlined. */static int vfp_hotplug(struct notifier_block *b, unsigned long action,	void *hcpu){	if (action == CPU_DYING || action == CPU_DYING_FROZEN) {		vfp_force_reload((long)hcpu, current_thread_info());	} else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)		vfp_enable(NULL);	return NOTIFY_OK;}/* * VFP support code initialisation. */static int __init vfp_init(void){	unsigned int vfpsid;	unsigned int cpu_arch = cpu_architecture();	if (cpu_arch >= CPU_ARCH_ARMv6)		on_each_cpu(vfp_enable, NULL, 1);	/*	 * First check that there is a VFP that we can use.	 * The handler is already setup to just log calls, so	 * we just need to read the VFPSID register.	 */	vfp_vector = vfp_testing_entry;	barrier();	vfpsid = fmrx(FPSID);	barrier();	vfp_vector = vfp_null_entry;	pr_info("VFP support v0.3: ");	if (VFP_arch)		pr_cont("not present\n");	else if (vfpsid & FPSID_NODOUBLE) {		pr_cont("no double precision support\n");	} else {		hotcpu_notifier(vfp_hotplug, 0);		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */		pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);		vfp_vector = vfp_support_entry;		thread_register_notifier(&vfp_notifier_block);		vfp_pm_init();		/*		 * We detected VFP, and the support code is		 * in place; report VFP support to userspace.		 */		elf_hwcap |= HWCAP_VFP;#ifdef CONFIG_VFPv3		if (VFP_arch >= 2) {			elf_hwcap |= HWCAP_VFPv3;			/*			 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in			 * this configuration only have 16 x 64bit			 * registers.			 */			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)				elf_hwcap |= HWCAP_VFPv3D16; /* also v4-D16 */			else				elf_hwcap |= HWCAP_VFPD32;		}#endif		/*		 * Check for the presence of the Advanced SIMD		 * load/store instructions, integer and single		 * precision floating point operations. Only check		 * for NEON if the hardware has the MVFR registers.		 */		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {#ifdef CONFIG_NEON			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)				elf_hwcap |= HWCAP_NEON;#endif#ifdef CONFIG_VFPv3			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)				elf_hwcap |= HWCAP_VFPv4;#endif		}	}	return 0;}late_initcall(vfp_init);
 |