12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969 |
- /*
- ===============================================================================
- This C source file is part of the SoftFloat IEC/IEEE Floating-point
- Arithmetic Package, Release 2.
- Written by John R. Hauser. This work was made possible in part by the
- International Computer Science Institute, located at Suite 600, 1947 Center
- Street, Berkeley, California 94704. Funding was partially provided by the
- National Science Foundation under grant MIP-9311980. The original version
- of this code was written as part of a project to build a fixed-point vector
- processor in collaboration with the University of California at Berkeley,
- overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- is available through the web page
- http://www.jhauser.us/arithmetic/SoftFloat-2b/SoftFloat-source.txt
- THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- Derivative works are acceptable, even for commercial purposes, so long as
- (1) they include prominent notice that the work is derivative, and (2) they
- include prominent notice akin to these three paragraphs for those parts of
- this code that are retained.
- ===============================================================================
- */
- #include <asm/div64.h>
- #include "fpa11.h"
- //#include "milieu.h"
- //#include "softfloat.h"
- /*
- -------------------------------------------------------------------------------
- Primitive arithmetic functions, including multi-word arithmetic, and
- division and square root approximations. (Can be specialized to target if
- desired.)
- -------------------------------------------------------------------------------
- */
- #include "softfloat-macros"
- /*
- -------------------------------------------------------------------------------
- Functions and definitions to determine: (1) whether tininess for underflow
- is detected before or after rounding by default, (2) what (if anything)
- happens when exceptions are raised, (3) how signaling NaNs are distinguished
- from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
- are propagated from function inputs to output. These details are target-
- specific.
- -------------------------------------------------------------------------------
- */
- #include "softfloat-specialize"
- /*
- -------------------------------------------------------------------------------
- Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
- and 7, and returns the properly rounded 32-bit integer corresponding to the
- input. If `zSign' is nonzero, the input is negated before being converted
- to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point
- input is simply rounded to an integer, with the inexact exception raised if
- the input cannot be represented exactly as an integer. If the fixed-point
- input is too large, however, the invalid exception is raised and the largest
- positive or negative integer is returned.
- -------------------------------------------------------------------------------
- */
- static int32 roundAndPackInt32( struct roundingData *roundData, flag zSign, bits64 absZ )
- {
- int8 roundingMode;
- flag roundNearestEven;
- int8 roundIncrement, roundBits;
- int32 z;
- roundingMode = roundData->mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- roundIncrement = 0x40;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x7F;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = absZ & 0x7F;
- absZ = ( absZ + roundIncrement )>>7;
- absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- z = absZ;
- if ( zSign ) z = - z;
- if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
- roundData->exception |= float_flag_invalid;
- return zSign ? 0x80000000 : 0x7FFFFFFF;
- }
- if ( roundBits ) roundData->exception |= float_flag_inexact;
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the fraction bits of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- */
- INLINE bits32 extractFloat32Frac( float32 a )
- {
- return a & 0x007FFFFF;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the exponent bits of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- */
- INLINE int16 extractFloat32Exp( float32 a )
- {
- return ( a>>23 ) & 0xFF;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the sign bit of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- */
- #if 0 /* in softfloat.h */
- INLINE flag extractFloat32Sign( float32 a )
- {
- return a>>31;
- }
- #endif
- /*
- -------------------------------------------------------------------------------
- Normalizes the subnormal single-precision floating-point value represented
- by the denormalized significand `aSig'. The normalized exponent and
- significand are stored at the locations pointed to by `zExpPtr' and
- `zSigPtr', respectively.
- -------------------------------------------------------------------------------
- */
- static void
- normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
- {
- int8 shiftCount;
- shiftCount = countLeadingZeros32( aSig ) - 8;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
- }
- /*
- -------------------------------------------------------------------------------
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
- single-precision floating-point value, returning the result. After being
- shifted into the proper positions, the three fields are simply added
- together to form the result. This means that any integer portion of `zSig'
- will be added into the exponent. Since a properly normalized significand
- will have an integer portion equal to 1, the `zExp' input should be 1 less
- than the desired result exponent whenever `zSig' is a complete, normalized
- significand.
- -------------------------------------------------------------------------------
- */
- INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
- {
- #if 0
- float32 f;
- __asm__("@ packFloat32 \n\
- mov %0, %1, asl #31 \n\
- orr %0, %2, asl #23 \n\
- orr %0, %3"
- : /* no outputs */
- : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig)
- : "cc");
- return f;
- #else
- return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
- #endif
- }
- /*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper single-precision floating-
- point value corresponding to the abstract input. Ordinarily, the abstract
- value is simply rounded and packed into the single-precision format, with
- the inexact exception raised if the abstract input cannot be represented
- exactly. If the abstract value is too large, however, the overflow and
- inexact exceptions are raised and an infinity or maximal finite value is
- returned. If the abstract value is too small, the input value is rounded to
- a subnormal number, and the underflow and inexact exceptions are raised if
- the abstract input cannot be represented exactly as a subnormal single-
- precision floating-point number.
- The input significand `zSig' has its binary point between bits 30
- and 29, which is 7 bits to the left of the usual location. This shifted
- significand must be normalized or smaller. If `zSig' is not normalized,
- `zExp' must be 0; in that case, the result returned is a subnormal number,
- and it must not require rounding. In the usual case that `zSig' is
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
- The handling of underflow and overflow follows the IEC/IEEE Standard for
- Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static float32 roundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
- {
- int8 roundingMode;
- flag roundNearestEven;
- int8 roundIncrement, roundBits;
- flag isTiny;
- roundingMode = roundData->mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- roundIncrement = 0x40;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x7F;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig & 0x7F;
- if ( 0xFD <= (bits16) zExp ) {
- if ( ( 0xFD < zExp )
- || ( ( zExp == 0xFD )
- && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
- ) {
- roundData->exception |= float_flag_overflow | float_flag_inexact;
- return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ( zSig + roundIncrement < 0x80000000 );
- shift32RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x7F;
- if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
- }
- }
- if ( roundBits ) roundData->exception |= float_flag_inexact;
- zSig = ( zSig + roundIncrement )>>7;
- zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat32( zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper single-precision floating-
- point value corresponding to the abstract input. This routine is just like
- `roundAndPackFloat32' except that `zSig' does not have to be normalized in
- any way. In all cases, `zExp' must be 1 less than the ``true'' floating-
- point exponent.
- -------------------------------------------------------------------------------
- */
- static float32
- normalizeRoundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
- {
- int8 shiftCount;
- shiftCount = countLeadingZeros32( zSig ) - 1;
- return roundAndPackFloat32( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the fraction bits of the double-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- */
- INLINE bits64 extractFloat64Frac( float64 a )
- {
- return a & LIT64( 0x000FFFFFFFFFFFFF );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the exponent bits of the double-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- */
- INLINE int16 extractFloat64Exp( float64 a )
- {
- return ( a>>52 ) & 0x7FF;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the sign bit of the double-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- */
- #if 0 /* in softfloat.h */
- INLINE flag extractFloat64Sign( float64 a )
- {
- return a>>63;
- }
- #endif
- /*
- -------------------------------------------------------------------------------
- Normalizes the subnormal double-precision floating-point value represented
- by the denormalized significand `aSig'. The normalized exponent and
- significand are stored at the locations pointed to by `zExpPtr' and
- `zSigPtr', respectively.
- -------------------------------------------------------------------------------
- */
- static void
- normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
- {
- int8 shiftCount;
- shiftCount = countLeadingZeros64( aSig ) - 11;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
- }
- /*
- -------------------------------------------------------------------------------
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
- double-precision floating-point value, returning the result. After being
- shifted into the proper positions, the three fields are simply added
- together to form the result. This means that any integer portion of `zSig'
- will be added into the exponent. Since a properly normalized significand
- will have an integer portion equal to 1, the `zExp' input should be 1 less
- than the desired result exponent whenever `zSig' is a complete, normalized
- significand.
- -------------------------------------------------------------------------------
- */
- INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
- {
- return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
- }
- /*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper double-precision floating-
- point value corresponding to the abstract input. Ordinarily, the abstract
- value is simply rounded and packed into the double-precision format, with
- the inexact exception raised if the abstract input cannot be represented
- exactly. If the abstract value is too large, however, the overflow and
- inexact exceptions are raised and an infinity or maximal finite value is
- returned. If the abstract value is too small, the input value is rounded to
- a subnormal number, and the underflow and inexact exceptions are raised if
- the abstract input cannot be represented exactly as a subnormal double-
- precision floating-point number.
- The input significand `zSig' has its binary point between bits 62
- and 61, which is 10 bits to the left of the usual location. This shifted
- significand must be normalized or smaller. If `zSig' is not normalized,
- `zExp' must be 0; in that case, the result returned is a subnormal number,
- and it must not require rounding. In the usual case that `zSig' is
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
- The handling of underflow and overflow follows the IEC/IEEE Standard for
- Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static float64 roundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
- {
- int8 roundingMode;
- flag roundNearestEven;
- int16 roundIncrement, roundBits;
- flag isTiny;
- roundingMode = roundData->mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- roundIncrement = 0x200;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x3FF;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig & 0x3FF;
- if ( 0x7FD <= (bits16) zExp ) {
- if ( ( 0x7FD < zExp )
- || ( ( zExp == 0x7FD )
- && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
- ) {
- //register int lr = __builtin_return_address(0);
- //printk("roundAndPackFloat64 called from 0x%08x\n",lr);
- roundData->exception |= float_flag_overflow | float_flag_inexact;
- return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
- shift64RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x3FF;
- if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
- }
- }
- if ( roundBits ) roundData->exception |= float_flag_inexact;
- zSig = ( zSig + roundIncrement )>>10;
- zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat64( zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper double-precision floating-
- point value corresponding to the abstract input. This routine is just like
- `roundAndPackFloat64' except that `zSig' does not have to be normalized in
- any way. In all cases, `zExp' must be 1 less than the ``true'' floating-
- point exponent.
- -------------------------------------------------------------------------------
- */
- static float64
- normalizeRoundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
- {
- int8 shiftCount;
- shiftCount = countLeadingZeros64( zSig ) - 1;
- return roundAndPackFloat64( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
- }
- #ifdef FLOATX80
- /*
- -------------------------------------------------------------------------------
- Returns the fraction bits of the extended double-precision floating-point
- value `a'.
- -------------------------------------------------------------------------------
- */
- INLINE bits64 extractFloatx80Frac( floatx80 a )
- {
- return a.low;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the exponent bits of the extended double-precision floating-point
- value `a'.
- -------------------------------------------------------------------------------
- */
- INLINE int32 extractFloatx80Exp( floatx80 a )
- {
- return a.high & 0x7FFF;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the sign bit of the extended double-precision floating-point value
- `a'.
- -------------------------------------------------------------------------------
- */
- INLINE flag extractFloatx80Sign( floatx80 a )
- {
- return a.high>>15;
- }
- /*
- -------------------------------------------------------------------------------
- Normalizes the subnormal extended double-precision floating-point value
- represented by the denormalized significand `aSig'. The normalized exponent
- and significand are stored at the locations pointed to by `zExpPtr' and
- `zSigPtr', respectively.
- -------------------------------------------------------------------------------
- */
- static void
- normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
- {
- int8 shiftCount;
- shiftCount = countLeadingZeros64( aSig );
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
- }
- /*
- -------------------------------------------------------------------------------
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
- extended double-precision floating-point value, returning the result.
- -------------------------------------------------------------------------------
- */
- INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
- {
- floatx80 z;
- z.low = zSig;
- z.high = ( ( (bits16) zSign )<<15 ) + zExp;
- z.__padding = 0;
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and extended significand formed by the concatenation of `zSig0' and `zSig1',
- and returns the proper extended double-precision floating-point value
- corresponding to the abstract input. Ordinarily, the abstract value is
- rounded and packed into the extended double-precision format, with the
- inexact exception raised if the abstract input cannot be represented
- exactly. If the abstract value is too large, however, the overflow and
- inexact exceptions are raised and an infinity or maximal finite value is
- returned. If the abstract value is too small, the input value is rounded to
- a subnormal number, and the underflow and inexact exceptions are raised if
- the abstract input cannot be represented exactly as a subnormal extended
- double-precision floating-point number.
- If `roundingPrecision' is 32 or 64, the result is rounded to the same
- number of bits as single or double precision, respectively. Otherwise, the
- result is rounded to the full precision of the extended double-precision
- format.
- The input significand must be normalized or smaller. If the input
- significand is not normalized, `zExp' must be 0; in that case, the result
- returned is a subnormal number, and it must not require rounding. The
- handling of underflow and overflow follows the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static floatx80
- roundAndPackFloatx80(
- struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
- )
- {
- int8 roundingMode, roundingPrecision;
- flag roundNearestEven, increment, isTiny;
- int64 roundIncrement, roundMask, roundBits;
- roundingMode = roundData->mode;
- roundingPrecision = roundData->precision;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- if ( roundingPrecision == 80 ) goto precision80;
- if ( roundingPrecision == 64 ) {
- roundIncrement = LIT64( 0x0000000000000400 );
- roundMask = LIT64( 0x00000000000007FF );
- }
- else if ( roundingPrecision == 32 ) {
- roundIncrement = LIT64( 0x0000008000000000 );
- roundMask = LIT64( 0x000000FFFFFFFFFF );
- }
- else {
- goto precision80;
- }
- zSig0 |= ( zSig1 != 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = roundMask;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig0 & roundMask;
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
- ) {
- goto overflow;
- }
- if ( zExp <= 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < 0 )
- || ( zSig0 <= zSig0 + roundIncrement );
- shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
- zExp = 0;
- roundBits = zSig0 & roundMask;
- if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
- if ( roundBits ) roundData->exception |= float_flag_inexact;
- zSig0 += roundIncrement;
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if ( roundBits ) roundData->exception |= float_flag_inexact;
- zSig0 += roundIncrement;
- if ( zSig0 < roundIncrement ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- if ( zSig0 == 0 ) zExp = 0;
- return packFloatx80( zSign, zExp, zSig0 );
- precision80:
- increment = ( (sbits64) zSig1 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig1;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig1;
- }
- }
- }
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE )
- && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
- && increment
- )
- ) {
- roundMask = 0;
- overflow:
- roundData->exception |= float_flag_overflow | float_flag_inexact;
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return packFloatx80( zSign, 0x7FFE, ~ roundMask );
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( zExp <= 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < 0 )
- || ! increment
- || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
- shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
- zExp = 0;
- if ( isTiny && zSig1 ) roundData->exception |= float_flag_underflow;
- if ( zSig1 ) roundData->exception |= float_flag_inexact;
- if ( roundNearestEven ) {
- increment = ( (sbits64) zSig1 < 0 );
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig1;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig1;
- }
- }
- if ( increment ) {
- ++zSig0;
- zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
- }
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if ( zSig1 ) roundData->exception |= float_flag_inexact;
- if ( increment ) {
- ++zSig0;
- if ( zSig0 == 0 ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- else {
- zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
- }
- }
- else {
- if ( zSig0 == 0 ) zExp = 0;
- }
-
- return packFloatx80( zSign, zExp, zSig0 );
- }
- /*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent
- `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
- and returns the proper extended double-precision floating-point value
- corresponding to the abstract input. This routine is just like
- `roundAndPackFloatx80' except that the input significand does not have to be
- normalized.
- -------------------------------------------------------------------------------
- */
- static floatx80
- normalizeRoundAndPackFloatx80(
- struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
- )
- {
- int8 shiftCount;
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 );
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- zExp -= shiftCount;
- return
- roundAndPackFloatx80( roundData, zSign, zExp, zSig0, zSig1 );
- }
- #endif
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the single-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 int32_to_float32(struct roundingData *roundData, int32 a)
- {
- flag zSign;
- if ( a == 0 ) return 0;
- if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat32( roundData, zSign, 0x9C, zSign ? - a : a );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the double-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 int32_to_float64( int32 a )
- {
- flag aSign;
- uint32 absA;
- int8 shiftCount;
- bits64 zSig;
- if ( a == 0 ) return 0;
- aSign = ( a < 0 );
- absA = aSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 21;
- zSig = absA;
- return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount );
- }
- #ifdef FLOATX80
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a'
- to the extended double-precision floating-point format. The conversion
- is performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic.
- -------------------------------------------------------------------------------
- */
- floatx80 int32_to_floatx80( int32 a )
- {
- flag zSign;
- uint32 absA;
- int8 shiftCount;
- bits64 zSig;
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 32;
- zSig = absA;
- return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
- }
- #endif
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- */
- int32 float32_to_int32( struct roundingData *roundData, float32 a )
- {
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- bits64 zSig;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= 0x00800000;
- shiftCount = 0xAF - aExp;
- zSig = aSig;
- zSig <<= 32;
- if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig );
- return roundAndPackInt32( roundData, aSign, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic, except that the conversion is always rounded toward zero. If
- `a' is a NaN, the largest positive integer is returned. Otherwise, if the
- conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- */
- int32 float32_to_int32_round_to_zero( float32 a )
- {
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- int32 z;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( a == 0xCF000000 ) return 0x80000000;
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- return 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) float_raise( float_flag_inexact );
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
- float_raise( float_flag_inexact );
- }
- return aSign ? - z : z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the double-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float32_to_float64( float32 a )
- {
- flag aSign;
- int16 aExp;
- bits32 aSig;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
- return packFloat64( aSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
- }
- #ifdef FLOATX80
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the extended double-precision floating-point format. The conversion
- is performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic.
- -------------------------------------------------------------------------------
- */
- floatx80 float32_to_floatx80( float32 a )
- {
- flag aSign;
- int16 aExp;
- bits32 aSig;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- aSig |= 0x00800000;
- return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
- }
- #endif
- /*
- -------------------------------------------------------------------------------
- Rounds the single-precision floating-point value `a' to an integer, and
- returns the result as a single-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float32_round_to_int( struct roundingData *roundData, float32 a )
- {
- flag aSign;
- int16 aExp;
- bits32 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float32 z;
- aExp = extractFloat32Exp( a );
- if ( 0x96 <= aExp ) {
- if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
- return propagateFloat32NaN( a, a );
- }
- return a;
- }
- roundingMode = roundData->mode;
- if ( aExp <= 0x7E ) {
- if ( (bits32) ( a<<1 ) == 0 ) return a;
- roundData->exception |= float_flag_inexact;
- aSign = extractFloat32Sign( a );
- switch ( roundingMode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
- return packFloat32( aSign, 0x7F, 0 );
- }
- break;
- case float_round_down:
- return aSign ? 0xBF800000 : 0;
- case float_round_up:
- return aSign ? 0x80000000 : 0x3F800000;
- }
- return packFloat32( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x96 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- if ( roundingMode == float_round_nearest_even ) {
- z += lastBitMask>>1;
- if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z += roundBitsMask;
- }
- }
- z &= ~ roundBitsMask;
- if ( z != a ) roundData->exception |= float_flag_inexact;
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of adding the absolute values of the single-precision
- floating-point values `a' and `b'. If `zSign' is true, the sum is negated
- before being returned. `zSign' is ignored if the result is a NaN. The
- addition is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static float32 addFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
- {
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 6;
- bSig <<= 6;
- if ( 0 < expDiff ) {
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x20000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x20000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
- zSig = 0x40000000 + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= 0x20000000;
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (sbits32) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat32( roundData, zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the absolute values of the single-
- precision floating-point values `a' and `b'. If `zSign' is true, the
- difference is negated before being returned. `zSign' is ignored if the
- result is a NaN. The subtraction is performed according to the IEC/IEEE
- Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static float32 subFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
- {
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 7;
- bSig <<= 7;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat32( roundData->mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign ^ 1, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x40000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- bSig |= 0x40000000;
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x40000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- aSig |= 0x40000000;
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat32( roundData, zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of adding the single-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float32_add( struct roundingData *roundData, float32 a, float32 b )
- {
- flag aSign, bSign;
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return addFloat32Sigs( roundData, a, b, aSign );
- }
- else {
- return subFloat32Sigs( roundData, a, b, aSign );
- }
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float32_sub( struct roundingData *roundData, float32 a, float32 b )
- {
- flag aSign, bSign;
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return subFloat32Sigs( roundData, a, b, aSign );
- }
- else {
- return addFloat32Sigs( roundData, a, b, aSign );
- }
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float32_mul( struct roundingData *roundData, float32 a, float32 b )
- {
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig;
- bits64 zSig64;
- bits32 zSig;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x7F;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
- zSig = zSig64;
- if ( 0 <= (sbits32) ( zSig<<1 ) ) {
- zSig <<= 1;
- --zExp;
- }
- return roundAndPackFloat32( roundData, zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of dividing the single-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float32_div( struct roundingData *roundData, float32 a, float32 b )
- {
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- roundData->exception |= float_flag_divbyzero;
- return packFloat32( zSign, 0xFF, 0 );
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x7D;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- {
- bits64 tmp = ( (bits64) aSig )<<32;
- do_div( tmp, bSig );
- zSig = tmp;
- }
- if ( ( zSig & 0x3F ) == 0 ) {
- zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 );
- }
- return roundAndPackFloat32( roundData, zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the remainder of the single-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float32_rem( struct roundingData *roundData, float32 a, float32 b )
- {
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits32 aSig, bSig;
- bits32 q;
- bits64 aSig64, bSig64, q64;
- bits32 alternateASig;
- sbits32 sigMean;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig |= 0x00800000;
- bSig |= 0x00800000;
- if ( expDiff < 32 ) {
- aSig <<= 8;
- bSig <<= 8;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- if ( 0 < expDiff ) {
- bits64 tmp = ( (bits64) aSig )<<32;
- do_div( tmp, bSig );
- q = tmp;
- q >>= 32 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- }
- else {
- if ( bSig <= aSig ) aSig -= bSig;
- aSig64 = ( (bits64) aSig )<<40;
- bSig64 = ( (bits64) bSig )<<40;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- aSig64 = - ( ( bSig * q64 )<<38 );
- expDiff -= 62;
- }
- expDiff += 64;
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- q = q64>>( 64 - expDiff );
- bSig <<= 6;
- aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (sbits32) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (sbits32) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat32( roundData, aSign ^ zSign, bExp, aSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the square root of the single-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float32_sqrt( struct roundingData *roundData, float32 a )
- {
- flag aSign;
- int16 aExp, zExp;
- bits32 aSig, zSig;
- bits64 rem, term;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, 0 );
- if ( ! aSign ) return a;
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- roundData->exception |= float_flag_invalid;
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return 0;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
- aSig = ( aSig | 0x00800000 )<<8;
- zSig = estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig & 0x7F ) <= 5 ) {
- if ( zSig < 2 ) {
- zSig = 0xFFFFFFFF;
- }
- else {
- aSig >>= aExp & 1;
- term = ( (bits64) zSig ) * zSig;
- rem = ( ( (bits64) aSig )<<32 ) - term;
- while ( (sbits64) rem < 0 ) {
- --zSig;
- rem += ( ( (bits64) zSig )<<1 ) | 1;
- }
- zSig |= ( rem != 0 );
- }
- }
- shift32RightJamming( zSig, 1, &zSig );
- return roundAndPackFloat32( roundData, 0, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to the
- corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float32_eq( float32 a, float32 b )
- {
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. The comparison is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float32_le( float32 a, float32 b )
- {
- flag aSign, bSign;
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float32_lt( float32 a, float32 b )
- {
- flag aSign, bSign;
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to the
- corresponding value `b', and 0 otherwise. The invalid exception is raised
- if either operand is a NaN. Otherwise, the comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float32_eq_signaling( float32 a, float32 b )
- {
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- cause an exception. Otherwise, the comparison is performed according to the
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float32_le_quiet( float32 a, float32 b )
- {
- flag aSign, bSign;
- //int16 aExp, bExp;
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- /* Do nothing, even if NaN as we're quiet */
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- exception. Otherwise, the comparison is performed according to the IEC/IEEE
- Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float32_lt_quiet( float32 a, float32 b )
- {
- flag aSign, bSign;
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- /* Do nothing, even if NaN as we're quiet */
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- */
- int32 float64_to_int32( struct roundingData *roundData, float64 a )
- {
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x42C - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32( roundData, aSign, aSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic, except that the conversion is always rounded toward zero. If
- `a' is a NaN, the largest positive integer is returned. Otherwise, if the
- conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- */
- int32 float64_to_int32_round_to_zero( float64 a )
- {
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig, savedASig;
- int32 z;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- shiftCount = 0x433 - aExp;
- if ( shiftCount < 21 ) {
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- goto invalid;
- }
- else if ( 52 < shiftCount ) {
- if ( aExp || aSig ) float_raise( float_flag_inexact );
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- float_raise( float_flag_inexact );
- }
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement unsigned integer format. The conversion
- is performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest positive integer is returned.
- -------------------------------------------------------------------------------
- */
- int32 float64_to_uint32( struct roundingData *roundData, float64 a )
- {
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = 0; //extractFloat64Sign( a );
- //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x42C - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32( roundData, aSign, aSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic, except that the conversion is always rounded toward zero. If
- `a' is a NaN, the largest positive integer is returned. Otherwise, if the
- conversion overflows, the largest positive integer is returned.
- -------------------------------------------------------------------------------
- */
- int32 float64_to_uint32_round_to_zero( float64 a )
- {
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig, savedASig;
- int32 z;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- shiftCount = 0x433 - aExp;
- if ( shiftCount < 21 ) {
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- goto invalid;
- }
- else if ( 52 < shiftCount ) {
- if ( aExp || aSig ) float_raise( float_flag_inexact );
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- float_raise( float_flag_inexact );
- }
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the single-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 float64_to_float32( struct roundingData *roundData, float64 a )
- {
- flag aSign;
- int16 aExp;
- bits64 aSig;
- bits32 zSig;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 22, &aSig );
- zSig = aSig;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x381;
- }
- return roundAndPackFloat32( roundData, aSign, aExp, zSig );
- }
- #ifdef FLOATX80
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the extended double-precision floating-point format. The conversion
- is performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic.
- -------------------------------------------------------------------------------
- */
- floatx80 float64_to_floatx80( float64 a )
- {
- flag aSign;
- int16 aExp;
- bits64 aSig;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- return
- packFloatx80(
- aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
- }
- #endif
- /*
- -------------------------------------------------------------------------------
- Rounds the double-precision floating-point value `a' to an integer, and
- returns the result as a double-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float64_round_to_int( struct roundingData *roundData, float64 a )
- {
- flag aSign;
- int16 aExp;
- bits64 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float64 z;
- aExp = extractFloat64Exp( a );
- if ( 0x433 <= aExp ) {
- if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
- return propagateFloat64NaN( a, a );
- }
- return a;
- }
- if ( aExp <= 0x3FE ) {
- if ( (bits64) ( a<<1 ) == 0 ) return a;
- roundData->exception |= float_flag_inexact;
- aSign = extractFloat64Sign( a );
- switch ( roundData->mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
- return packFloat64( aSign, 0x3FF, 0 );
- }
- break;
- case float_round_down:
- return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
- case float_round_up:
- return
- aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
- }
- return packFloat64( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x433 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = roundData->mode;
- if ( roundingMode == float_round_nearest_even ) {
- z += lastBitMask>>1;
- if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z += roundBitsMask;
- }
- }
- z &= ~ roundBitsMask;
- if ( z != a ) roundData->exception |= float_flag_inexact;
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of adding the absolute values of the double-precision
- floating-point values `a' and `b'. If `zSign' is true, the sum is negated
- before being returned. `zSign' is ignored if the result is a NaN. The
- addition is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static float64 addFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
- {
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
- int16 expDiff;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 9;
- bSig <<= 9;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FF ) {
- if ( aSig | bSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
- zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= LIT64( 0x2000000000000000 );
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (sbits64) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat64( roundData, zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the absolute values of the double-
- precision floating-point values `a' and `b'. If `zSign' is true, the
- difference is negated before being returned. `zSign' is ignored if the
- result is a NaN. The subtraction is performed according to the IEC/IEEE
- Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static float64 subFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
- {
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
- int16 expDiff;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 10;
- bSig <<= 10;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FF ) {
- if ( aSig | bSig ) return propagateFloat64NaN( a, b );
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat64( roundData->mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign ^ 1, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- bSig |= LIT64( 0x4000000000000000 );
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- aSig |= LIT64( 0x4000000000000000 );
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat64( roundData, zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of adding the double-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float64_add( struct roundingData *roundData, float64 a, float64 b )
- {
- flag aSign, bSign;
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return addFloat64Sigs( roundData, a, b, aSign );
- }
- else {
- return subFloat64Sigs( roundData, a, b, aSign );
- }
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float64_sub( struct roundingData *roundData, float64 a, float64 b )
- {
- flag aSign, bSign;
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return subFloat64Sigs( roundData, a, b, aSign );
- }
- else {
- return addFloat64Sigs( roundData, a, b, aSign );
- }
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float64_mul( struct roundingData *roundData, float64 a, float64 b )
- {
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FF;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- zSig0 |= ( zSig1 != 0 );
- if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
- zSig0 <<= 1;
- --zExp;
- }
- return roundAndPackFloat64( roundData, zSign, zExp, zSig0 );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of dividing the double-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to
- the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float64_div( struct roundingData *roundData, float64 a, float64 b )
- {
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
- bits64 rem0, rem1;
- bits64 term0, term1;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, b );
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- roundData->exception |= float_flag_divbyzero;
- return packFloat64( zSign, 0x7FF, 0 );
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FD;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = estimateDiv128To64( aSig, 0, bSig );
- if ( ( zSig & 0x1FF ) <= 2 ) {
- mul64To128( bSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig |= ( rem1 != 0 );
- }
- return roundAndPackFloat64( roundData, zSign, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the remainder of the double-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float64_rem( struct roundingData *roundData, float64 a, float64 b )
- {
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits64 aSig, bSig;
- bits64 q, alternateASig;
- sbits64 sigMean;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN( a, b );
- }
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- aSig = - ( ( bSig>>2 ) * q );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (sbits64) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (sbits64) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat64( roundData, aSign ^ zSign, bExp, aSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the square root of the double-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 float64_sqrt( struct roundingData *roundData, float64 a )
- {
- flag aSign;
- int16 aExp, zExp;
- bits64 aSig, zSig;
- bits64 rem0, rem1, term0, term1; //, shiftedRem;
- //float64 z;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, a );
- if ( ! aSign ) return a;
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- roundData->exception |= float_flag_invalid;
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return 0;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
- aSig |= LIT64( 0x0010000000000000 );
- zSig = estimateSqrt32( aExp, aSig>>21 );
- zSig <<= 31;
- aSig <<= 9 - ( aExp & 1 );
- zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2;
- if ( ( zSig & 0x3FF ) <= 5 ) {
- if ( zSig < 2 ) {
- zSig = LIT64( 0xFFFFFFFFFFFFFFFF );
- }
- else {
- aSig <<= 2;
- mul64To128( zSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig;
- shortShift128Left( 0, zSig, 1, &term0, &term1 );
- term1 |= 1;
- add128( rem0, rem1, term0, term1, &rem0, &rem1 );
- }
- zSig |= ( ( rem0 | rem1 ) != 0 );
- }
- }
- shift64RightJamming( zSig, 1, &zSig );
- return roundAndPackFloat64( roundData, 0, zExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to the
- corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float64_eq( float64 a, float64 b )
- {
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. The comparison is
- performed according to the IEC/IEEE Standard for Binary Floating-point
- Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float64_le( float64 a, float64 b )
- {
- flag aSign, bSign;
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float64_lt( float64 a, float64 b )
- {
- flag aSign, bSign;
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to the
- corresponding value `b', and 0 otherwise. The invalid exception is raised
- if either operand is a NaN. Otherwise, the comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float64_eq_signaling( float64 a, float64 b )
- {
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- cause an exception. Otherwise, the comparison is performed according to the
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float64_le_quiet( float64 a, float64 b )
- {
- flag aSign, bSign;
- //int16 aExp, bExp;
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- /* Do nothing, even if NaN as we're quiet */
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
- }
- /*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- exception. Otherwise, the comparison is performed according to the IEC/IEEE
- Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- flag float64_lt_quiet( float64 a, float64 b )
- {
- flag aSign, bSign;
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- /* Do nothing, even if NaN as we're quiet */
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
- }
- #ifdef FLOATX80
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the extended double-precision floating-
- point value `a' to the 32-bit two's complement integer format. The
- conversion is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic---which means in particular that the conversion
- is rounded according to the current rounding mode. If `a' is a NaN, the
- largest positive integer is returned. Otherwise, if the conversion
- overflows, the largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- */
- int32 floatx80_to_int32( struct roundingData *roundData, floatx80 a )
- {
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
- shiftCount = 0x4037 - aExp;
- if ( shiftCount <= 0 ) shiftCount = 1;
- shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32( roundData, aSign, aSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the extended double-precision floating-
- point value `a' to the 32-bit two's complement integer format. The
- conversion is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic, except that the conversion is always rounded
- toward zero. If `a' is a NaN, the largest positive integer is returned.
- Otherwise, if the conversion overflows, the largest integer with the same
- sign as `a' is returned.
- -------------------------------------------------------------------------------
- */
- int32 floatx80_to_int32_round_to_zero( floatx80 a )
- {
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig, savedASig;
- int32 z;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = 0x403E - aExp;
- if ( shiftCount < 32 ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
- goto invalid;
- }
- else if ( 63 < shiftCount ) {
- if ( aExp || aSig ) float_raise( float_flag_inexact );
- return 0;
- }
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- float_raise( float_flag_inexact );
- }
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the extended double-precision floating-
- point value `a' to the single-precision floating-point format. The
- conversion is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float32 floatx80_to_float32( struct roundingData *roundData, floatx80 a )
- {
- flag aSign;
- int32 aExp;
- bits64 aSig;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 33, &aSig );
- if ( aExp || aSig ) aExp -= 0x3F81;
- return roundAndPackFloat32( roundData, aSign, aExp, aSig );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of converting the extended double-precision floating-
- point value `a' to the double-precision floating-point format. The
- conversion is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- float64 floatx80_to_float64( struct roundingData *roundData, floatx80 a )
- {
- flag aSign;
- int32 aExp;
- bits64 aSig, zSig;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shift64RightJamming( aSig, 1, &zSig );
- if ( aExp || aSig ) aExp -= 0x3C01;
- return roundAndPackFloat64( roundData, aSign, aExp, zSig );
- }
- /*
- -------------------------------------------------------------------------------
- Rounds the extended double-precision floating-point value `a' to an integer,
- and returns the result as an extended quadruple-precision floating-point
- value. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- floatx80 floatx80_round_to_int( struct roundingData *roundData, floatx80 a )
- {
- flag aSign;
- int32 aExp;
- bits64 lastBitMask, roundBitsMask;
- int8 roundingMode;
- floatx80 z;
- aExp = extractFloatx80Exp( a );
- if ( 0x403E <= aExp ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
- return propagateFloatx80NaN( a, a );
- }
- return a;
- }
- if ( aExp <= 0x3FFE ) {
- if ( ( aExp == 0 )
- && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
- return a;
- }
- roundData->exception |= float_flag_inexact;
- aSign = extractFloatx80Sign( a );
- switch ( roundData->mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
- ) {
- return
- packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- break;
- case float_round_down:
- return
- aSign ?
- packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
- : packFloatx80( 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloatx80( 1, 0, 0 )
- : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- return packFloatx80( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x403E - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = roundData->mode;
- if ( roundingMode == float_round_nearest_even ) {
- z.low += lastBitMask>>1;
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z.low += roundBitsMask;
- }
- }
- z.low &= ~ roundBitsMask;
- if ( z.low == 0 ) {
- ++z.high;
- z.low = LIT64( 0x8000000000000000 );
- }
- if ( z.low != a.low ) roundData->exception |= float_flag_inexact;
- return z;
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of adding the absolute values of the extended double-
- precision floating-point values `a' and `b'. If `zSign' is true, the sum is
- negated before being returned. `zSign' is ignored if the result is a NaN.
- The addition is performed according to the IEC/IEEE Standard for Binary
- Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static floatx80 addFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
- {
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- int32 expDiff;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN( a, b );
- }
- return a;
- }
- zSig1 = 0;
- zSig0 = aSig + bSig;
- if ( aExp == 0 ) {
- normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
- goto roundAndPack;
- }
- zExp = aExp;
- goto shiftRight1;
- }
-
- zSig0 = aSig + bSig;
- if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= LIT64( 0x8000000000000000 );
- ++zExp;
- roundAndPack:
- return
- roundAndPackFloatx80(
- roundData, zSign, zExp, zSig0, zSig1 );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the absolute values of the extended
- double-precision floating-point values `a' and `b'. If `zSign' is true,
- the difference is negated before being returned. `zSign' is ignored if the
- result is a NaN. The subtraction is performed according to the IEC/IEEE
- Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- static floatx80 subFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
- {
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- int32 expDiff;
- floatx80 z;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN( a, b );
- }
- roundData->exception |= float_flag_invalid;
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- z.__padding = 0;
- return z;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- zSig1 = 0;
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloatx80( roundData->mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- bBigger:
- sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- aBigger:
- sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- return
- normalizeRoundAndPackFloatx80(
- roundData, zSign, zExp, zSig0, zSig1 );
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of adding the extended double-precision floating-point
- values `a' and `b'. The operation is performed according to the IEC/IEEE
- Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- floatx80 floatx80_add( struct roundingData *roundData, floatx80 a, floatx80 b )
- {
- flag aSign, bSign;
-
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return addFloatx80Sigs( roundData, a, b, aSign );
- }
- else {
- return subFloatx80Sigs( roundData, a, b, aSign );
- }
-
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the extended double-precision floating-
- point values `a' and `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- floatx80 floatx80_sub( struct roundingData *roundData, floatx80 a, floatx80 b )
- {
- flag aSign, bSign;
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return subFloatx80Sigs( roundData, a, b, aSign );
- }
- else {
- return addFloatx80Sigs( roundData, a, b, aSign );
- }
- }
- /*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the extended double-precision floating-
- point values `a' and `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
- -------------------------------------------------------------------------------
- */
- floatx80 floatx80_mul( struct roundingData *roundData, floatx80 a, floatx80 b )
- {
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- floatx80 z;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 )
- || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) goto invalid;
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- roundData->exception |= float_flag_invalid;
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- z.__padding = 0;
- return z;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FFE;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
|