| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623 | /* * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 1995 Waldorf GmbH * Copyright (C) 1994 - 2000, 06 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved. *	Author:	Maciej W. Rozycki <macro@mips.com> */#ifndef _ASM_IO_H#define _ASM_IO_H#include <linux/compiler.h>#include <linux/kernel.h>#include <linux/types.h>#include <linux/irqflags.h>#include <asm/addrspace.h>#include <asm/bug.h>#include <asm/byteorder.h>#include <asm/cpu.h>#include <asm/cpu-features.h>#include <asm-generic/iomap.h>#include <asm/page.h>#include <asm/pgtable-bits.h>#include <asm/processor.h>#include <asm/string.h>#include <ioremap.h>#include <mangle-port.h>/* * Slowdown I/O port space accesses for antique hardware. */#undef CONF_SLOWDOWN_IO/* * Raw operations are never swapped in software.  OTOH values that raw * operations are working on may or may not have been swapped by the bus * hardware.  An example use would be for flash memory that's used for * execute in place. */# define __raw_ioswabb(a, x)	(x)# define __raw_ioswabw(a, x)	(x)# define __raw_ioswabl(a, x)	(x)# define __raw_ioswabq(a, x)	(x)# define ____raw_ioswabq(a, x)	(x)/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */#define IO_SPACE_LIMIT 0xffff/* * On MIPS I/O ports are memory mapped, so we access them using normal * load/store instructions. mips_io_port_base is the virtual address to * which all ports are being mapped.  For sake of efficiency some code * assumes that this is an address that can be loaded with a single lui * instruction, so the lower 16 bits must be zero.  Should be true on * on any sane architecture; generic code does not use this assumption. */extern const unsigned long mips_io_port_base;/* * Gcc will generate code to load the value of mips_io_port_base after each * function call which may be fairly wasteful in some cases.  So we don't * play quite by the book.  We tell gcc mips_io_port_base is a long variable * which solves the code generation issue.  Now we need to violate the * aliasing rules a little to make initialization possible and finally we * will need the barrier() to fight side effects of the aliasing chat. * This trickery will eventually collapse under gcc's optimizer.  Oh well. */static inline void set_io_port_base(unsigned long base){	* (unsigned long *) &mips_io_port_base = base;	barrier();}/* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * *		Linus * */#define __SLOW_DOWN_IO \	__asm__ __volatile__( \		"sb\t$0,0x80(%0)" \		: : "r" (mips_io_port_base));#ifdef CONF_SLOWDOWN_IO#ifdef REALLY_SLOW_IO#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }#else#define SLOW_DOWN_IO __SLOW_DOWN_IO#endif#else#define SLOW_DOWN_IO#endif/* *     virt_to_phys    -       map virtual addresses to physical *     @address: address to remap * *     The returned physical address is the physical (CPU) mapping for *     the memory address given. It is only valid to use this function on *     addresses directly mapped or allocated via kmalloc. * *     This function does not give bus mappings for DMA transfers. In *     almost all conceivable cases a device driver should not be using *     this function */static inline unsigned long virt_to_phys(volatile const void *address){	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;}/* *     phys_to_virt    -       map physical address to virtual *     @address: address to remap * *     The returned virtual address is a current CPU mapping for *     the memory address given. It is only valid to use this function on *     addresses that have a kernel mapping * *     This function does not handle bus mappings for DMA transfers. In *     almost all conceivable cases a device driver should not be using *     this function */static inline void * phys_to_virt(unsigned long address){	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);}/* * ISA I/O bus memory addresses are 1:1 with the physical address. */static inline unsigned long isa_virt_to_bus(volatile void * address){	return (unsigned long)address - PAGE_OFFSET;}static inline void * isa_bus_to_virt(unsigned long address){	return (void *)(address + PAGE_OFFSET);}#define isa_page_to_bus page_to_phys/* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them for x86 for legacy drivers, though. */#define virt_to_bus virt_to_phys#define bus_to_virt phys_to_virt/* * Change "struct page" to physical address. */#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);extern void __iounmap(const volatile void __iomem *addr);static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,	unsigned long flags){	void __iomem *addr = plat_ioremap(offset, size, flags);	if (addr)		return addr;#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))	if (cpu_has_64bit_addresses) {		u64 base = UNCAC_BASE;		/*		 * R10000 supports a 2 bit uncached attribute therefore		 * UNCAC_BASE may not equal IO_BASE.		 */		if (flags == _CACHE_UNCACHED)			base = (u64) IO_BASE;		return (void __iomem *) (unsigned long) (base + offset);	} else if (__builtin_constant_p(offset) &&		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {		phys_t phys_addr, last_addr;		phys_addr = fixup_bigphys_addr(offset, size);		/* Don't allow wraparound or zero size. */		last_addr = phys_addr + size - 1;		if (!size || last_addr < phys_addr)			return NULL;		/*		 * Map uncached objects in the low 512MB of address		 * space using KSEG1.		 */		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&		    flags == _CACHE_UNCACHED)			return (void __iomem *)				(unsigned long)CKSEG1ADDR(phys_addr);	}	return __ioremap(offset, size, flags);#undef __IS_LOW512}/* * ioremap     -   map bus memory into CPU space * @offset:    bus address of the memory * @size:      size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. */#define ioremap(offset, size)						\	__ioremap_mode((offset), (size), _CACHE_UNCACHED)/* * ioremap_nocache     -   map bus memory into CPU space * @offset:    bus address of the memory * @size:      size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked uncachable * on the CPU as well as honouring existing caching rules from things like * the PCI bus. Note that there are other caches and buffers on many * busses. In particular driver authors should read up on PCI writes * * It's useful if some control registers are in such an area and * write combining or read caching is not desirable: */#define ioremap_nocache(offset, size)					\	__ioremap_mode((offset), (size), _CACHE_UNCACHED)/* * ioremap_cachable -   map bus memory into CPU space * @offset:         bus address of the memory * @size:           size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked cachable by * the CPU.  Also enables full write-combining.  Useful for some * memory-like regions on I/O busses. */#define ioremap_cachable(offset, size)					\	__ioremap_mode((offset), (size), _page_cachable_default)/* * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow * requests a cachable mapping, ioremap_uncached_accelerated requests a * mapping using the uncached accelerated mode which isn't supported on * all processors. */#define ioremap_cacheable_cow(offset, size)				\	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)#define ioremap_uncached_accelerated(offset, size)			\	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)static inline void iounmap(const volatile void __iomem *addr){	if (plat_iounmap(addr))		return;#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)	if (cpu_has_64bit_addresses ||	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))		return;	__iounmap(addr);#undef __IS_KSEG1}#ifdef CONFIG_CPU_CAVIUM_OCTEON#define war_octeon_io_reorder_wmb()  		wmb()#else#define war_octeon_io_reorder_wmb()		do { } while (0)#endif#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\									\static inline void pfx##write##bwlq(type val,				\				    volatile void __iomem *mem)		\{									\	volatile type *__mem;						\	type __val;							\									\	war_octeon_io_reorder_wmb();					\									\	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\									\	__val = pfx##ioswab##bwlq(__mem, val);				\									\	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\		*__mem = __val;						\	else if (cpu_has_64bits) {					\		unsigned long __flags;					\		type __tmp;						\									\		if (irq)						\			local_irq_save(__flags);			\		__asm__ __volatile__(					\			".set	mips3"		"\t\t# __writeq""\n\t"	\			"dsll32	%L0, %L0, 0"			"\n\t"	\			"dsrl32	%L0, %L0, 0"			"\n\t"	\			"dsll32	%M0, %M0, 0"			"\n\t"	\			"or	%L0, %L0, %M0"			"\n\t"	\			"sd	%L0, %2"			"\n\t"	\			".set	mips0"				"\n"	\			: "=r" (__tmp)					\			: "0" (__val), "m" (*__mem));			\		if (irq)						\			local_irq_restore(__flags);			\	} else								\		BUG();							\}									\									\static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\{									\	volatile type *__mem;						\	type __val;							\									\	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\									\	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\		__val = *__mem;						\	else if (cpu_has_64bits) {					\		unsigned long __flags;					\									\		if (irq)						\			local_irq_save(__flags);			\		__asm__ __volatile__(					\			".set	mips3"		"\t\t# __readq"	"\n\t"	\			"ld	%L0, %1"			"\n\t"	\			"dsra32	%M0, %L0, 0"			"\n\t"	\			"sll	%L0, %L0, 0"			"\n\t"	\			".set	mips0"				"\n"	\			: "=r" (__val)					\			: "m" (*__mem));				\		if (irq)						\			local_irq_restore(__flags);			\	} else {							\		__val = 0;						\		BUG();							\	}								\									\	return pfx##ioswab##bwlq(__mem, __val);				\}#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\									\static inline void pfx##out##bwlq##p(type val, unsigned long port)	\{									\	volatile type *__addr;						\	type __val;							\									\	war_octeon_io_reorder_wmb();					\									\	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \									\	__val = pfx##ioswab##bwlq(__addr, val);				\									\	/* Really, we want this to be atomic */				\	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\									\	*__addr = __val;						\	slow;								\}									\									\static inline type pfx##in##bwlq##p(unsigned long port)			\{									\	volatile type *__addr;						\	type __val;							\									\	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \									\	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\									\	__val = *__addr;						\	slow;								\									\	return pfx##ioswab##bwlq(__addr, __val);			\}#define __BUILD_MEMORY_PFX(bus, bwlq, type)				\									\__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)#define BUILDIO_MEM(bwlq, type)						\									\__BUILD_MEMORY_PFX(__raw_, bwlq, type)					\__BUILD_MEMORY_PFX(, bwlq, type)					\__BUILD_MEMORY_PFX(__mem_, bwlq, type)					\BUILDIO_MEM(b, u8)BUILDIO_MEM(w, u16)BUILDIO_MEM(l, u32)BUILDIO_MEM(q, u64)#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)#define BUILDIO_IOPORT(bwlq, type)					\	__BUILD_IOPORT_PFX(, bwlq, type)				\	__BUILD_IOPORT_PFX(__mem_, bwlq, type)BUILDIO_IOPORT(b, u8)BUILDIO_IOPORT(w, u16)BUILDIO_IOPORT(l, u32)#ifdef CONFIG_64BITBUILDIO_IOPORT(q, u64)#endif#define __BUILDIO(bwlq, type)						\									\__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)__BUILDIO(q, u64)#define readb_relaxed			readb#define readw_relaxed			readw#define readl_relaxed			readl#define readq_relaxed			readq#define readb_be(addr)							\	__raw_readb((__force unsigned *)(addr))#define readw_be(addr)							\	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))#define readl_be(addr)							\	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))#define readq_be(addr)							\	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))#define writeb_be(val, addr)						\	__raw_writeb((val), (__force unsigned *)(addr))#define writew_be(val, addr)						\	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))#define writel_be(val, addr)						\	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))#define writeq_be(val, addr)						\	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))/* * Some code tests for these symbols */#define readq				readq#define writeq				writeq#define __BUILD_MEMORY_STRING(bwlq, type)				\									\static inline void writes##bwlq(volatile void __iomem *mem,		\				const void *addr, unsigned int count)	\{									\	const volatile type *__addr = addr;				\									\	while (count--) {						\		__mem_write##bwlq(*__addr, mem);			\		__addr++;						\	}								\}									\									\static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\			       unsigned int count)			\{									\	volatile type *__addr = addr;					\									\	while (count--) {						\		*__addr = __mem_read##bwlq(mem);			\		__addr++;						\	}								\}#define __BUILD_IOPORT_STRING(bwlq, type)				\									\static inline void outs##bwlq(unsigned long port, const void *addr,	\			      unsigned int count)			\{									\	const volatile type *__addr = addr;				\									\	while (count--) {						\		__mem_out##bwlq(*__addr, port);				\		__addr++;						\	}								\}									\									\static inline void ins##bwlq(unsigned long port, void *addr,		\			     unsigned int count)			\{									\	volatile type *__addr = addr;					\									\	while (count--) {						\		*__addr = __mem_in##bwlq(port);				\		__addr++;						\	}								\}#define BUILDSTRING(bwlq, type)						\									\__BUILD_MEMORY_STRING(bwlq, type)					\__BUILD_IOPORT_STRING(bwlq, type)BUILDSTRING(b, u8)BUILDSTRING(w, u16)BUILDSTRING(l, u32)#ifdef CONFIG_64BITBUILDSTRING(q, u64)#endif#ifdef CONFIG_CPU_CAVIUM_OCTEON#define mmiowb() wmb()#else/* Depends on MIPS II instruction set */#define mmiowb() asm volatile ("sync" ::: "memory")#endifstatic inline void memset_io(volatile void __iomem *addr, unsigned char val, int count){	memset((void __force *) addr, val, count);}static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count){	memcpy(dst, (void __force *) src, count);}static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count){	memcpy((void __force *) dst, src, count);}/* * The caches on some architectures aren't dma-coherent and have need to * handle this in software.  There are three types of operations that * can be applied to dma buffers. * *  - dma_cache_wback_inv(start, size) makes caches and coherent by *    writing the content of the caches back to memory, if necessary. *    The function also invalidates the affected part of the caches as *    necessary before DMA transfers from outside to memory. *  - dma_cache_wback(start, size) makes caches and coherent by *    writing the content of the caches back to memory, if necessary. *    The function also invalidates the affected part of the caches as *    necessary before DMA transfers from outside to memory. *  - dma_cache_inv(start, size) invalidates the affected parts of the *    caches.  Dirty lines of the caches may be written back or simply *    be discarded.  This operation is necessary before dma operations *    to the memory. * * This API used to be exported; it now is for arch code internal use only. */#ifdef CONFIG_DMA_NONCOHERENTextern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)#else /* Sane hardware */#define dma_cache_wback_inv(start,size)	\	do { (void) (start); (void) (size); } while (0)#define dma_cache_wback(start,size)	\	do { (void) (start); (void) (size); } while (0)#define dma_cache_inv(start,size)	\	do { (void) (start); (void) (size); } while (0)#endif /* CONFIG_DMA_NONCOHERENT *//* * Read a 32-bit register that requires a 64-bit read cycle on the bus. * Avoid interrupt mucking, just adjust the address for 4-byte access. * Assume the addresses are 8-byte aligned. */#ifdef __MIPSEB__#define __CSR_32_ADJUST 4#else#define __CSR_32_ADJUST 0#endif#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))/* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */#define xlate_dev_mem_ptr(p)	__va(p)/* * Convert a virtual cached pointer to an uncached pointer */#define xlate_dev_kmem_ptr(p)	p#endif /* _ASM_IO_H */
 |