| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428 | /* * arch/arm/kernel/kprobes.h * * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. * * Some contents moved here from arch/arm/include/asm/kprobes.h which is * Copyright (C) 2006, 2007 Motorola Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. */#ifndef _ARM_KERNEL_KPROBES_H#define _ARM_KERNEL_KPROBES_H/* * These undefined instructions must be unique and * reserved solely for kprobes' use. */#define KPROBE_ARM_BREAKPOINT_INSTRUCTION	0x07f001f8#define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION	0xde18#define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION	0xf7f0a018enum kprobe_insn {	INSN_REJECTED,	INSN_GOOD,	INSN_GOOD_NO_SLOT};typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t,						struct arch_specific_insn *);#ifdef CONFIG_THUMB2_KERNELenum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t,						struct arch_specific_insn *);enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t,						struct arch_specific_insn *);#else /* !CONFIG_THUMB2_KERNEL */enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t,					struct arch_specific_insn *);#endifvoid __init arm_kprobe_decode_init(void);extern kprobe_check_cc * const kprobe_condition_checks[16];#if __LINUX_ARM_ARCH__ >= 7/* str_pc_offset is architecturally defined from ARMv7 onwards */#define str_pc_offset 8#define find_str_pc_offset()#else /* __LINUX_ARM_ARCH__ < 7 *//* We need a run-time check to determine str_pc_offset */extern int str_pc_offset;void __init find_str_pc_offset(void);#endif/* * Update ITSTATE after normal execution of an IT block instruction. * * The 8 IT state bits are split into two parts in CPSR: *	ITSTATE<1:0> are in CPSR<26:25> *	ITSTATE<7:2> are in CPSR<15:10> */static inline unsigned long it_advance(unsigned long cpsr)	{	if ((cpsr & 0x06000400) == 0) {		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */		cpsr &= ~PSR_IT_MASK;	} else {		/* We need to shift left ITSTATE<4:0> */		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */		unsigned long it = cpsr & mask;		it <<= 1;		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */		it &= mask;		cpsr &= ~mask;		cpsr |= it;	}	return cpsr;}static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs){	long cpsr = regs->ARM_cpsr;	if (pcv & 0x1) {		cpsr |= PSR_T_BIT;		pcv &= ~0x1;	} else {		cpsr &= ~PSR_T_BIT;		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */	}	regs->ARM_cpsr = cpsr;	regs->ARM_pc = pcv;}#if __LINUX_ARM_ARCH__ >= 6/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */#define load_write_pc_interworks true#define test_load_write_pc_interworking()#else /* __LINUX_ARM_ARCH__ < 6 *//* We need run-time testing to determine if load_write_pc() should interwork. */extern bool load_write_pc_interworks;void __init test_load_write_pc_interworking(void);#endifstatic inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs){	if (load_write_pc_interworks)		bx_write_pc(pcv, regs);	else		regs->ARM_pc = pcv;}#if __LINUX_ARM_ARCH__ >= 7#define alu_write_pc_interworks true#define test_alu_write_pc_interworking()#elif __LINUX_ARM_ARCH__ <= 5/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */#define alu_write_pc_interworks false#define test_alu_write_pc_interworking()#else /* __LINUX_ARM_ARCH__ == 6 *//* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */extern bool alu_write_pc_interworks;void __init test_alu_write_pc_interworking(void);#endif /* __LINUX_ARM_ARCH__ == 6 */static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs){	if (alu_write_pc_interworks)		bx_write_pc(pcv, regs);	else		regs->ARM_pc = pcv;}void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs);void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs);enum kprobe_insn __kprobeskprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi);/* * Test if load/store instructions writeback the address register. * if P (bit 24) == 0 or W (bit 21) == 1 */#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)/* * The following definitions and macros are used to build instruction * decoding tables for use by kprobe_decode_insn. * * These tables are a concatenation of entries each of which consist of one of * the decode_* structs. All of the fields in every type of decode structure * are of the union type decode_item, therefore the entire decode table can be * viewed as an array of these and declared like: * *	static const union decode_item table_name[] = {}; * * In order to construct each entry in the table, macros are used to * initialise a number of sequential decode_item values in a layout which * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct * decode_simulate by initialising four decode_item objects like this... * *	{.bits = _type}, *	{.bits = _mask}, *	{.bits = _value}, *	{.handler = _handler}, * * Initialising a specified member of the union means that the compiler * will produce a warning if the argument is of an incorrect type. * * Below is a list of each of the macros used to initialise entries and a * description of the action performed when that entry is matched to an * instruction. A match is found when (instruction & mask) == value. * * DECODE_TABLE(mask, value, table) *	Instruction decoding jumps to parsing the new sub-table 'table'. * * DECODE_CUSTOM(mask, value, decoder) *	The custom function 'decoder' is called to the complete decoding *	of an instruction. * * DECODE_SIMULATE(mask, value, handler) *	Set the probes instruction handler to 'handler', this will be used *	to simulate the instruction when the probe is hit. Decoding returns *	with INSN_GOOD_NO_SLOT. * * DECODE_EMULATE(mask, value, handler) *	Set the probes instruction handler to 'handler', this will be used *	to emulate the instruction when the probe is hit. The modified *	instruction (see below) is placed in the probes instruction slot so it *	may be called by the emulation code. Decoding returns with INSN_GOOD. * * DECODE_REJECT(mask, value) *	Instruction decoding fails with INSN_REJECTED * * DECODE_OR(mask, value) *	This allows the mask/value test of multiple table entries to be *	logically ORed. Once an 'or' entry is matched the decoding action to *	be performed is that of the next entry which isn't an 'or'. E.g. * *		DECODE_OR	(mask1, value1) *		DECODE_OR	(mask2, value2) *		DECODE_SIMULATE	(mask3, value3, simulation_handler) * *	This means that if any of the three mask/value pairs match the *	instruction being decoded, then 'simulation_handler' will be used *	for it. * * Both the SIMULATE and EMULATE macros have a second form which take an * additional 'regs' argument. * *	DECODE_SIMULATEX(mask, value, handler, regs) *	DECODE_EMULATEX	(mask, value, handler, regs) * * These are used to specify what kind of CPU register is encoded in each of the * least significant 5 nibbles of the instruction being decoded. The regs value * is specified using the REGS macro, this takes any of the REG_TYPE_* values * from enum decode_reg_type as arguments; only the '*' part of the name is * given. E.g. * *	REGS(0, ANY, NOPC, 0, ANY) * * This indicates an instruction is encoded like: * *	bits 19..16	ignore *	bits 15..12	any register allowed here *	bits 11.. 8	any register except PC allowed here *	bits  7.. 4	ignore *	bits  3.. 0	any register allowed here * * This register specification is checked after a decode table entry is found to * match an instruction (through the mask/value test). Any invalid register then * found in the instruction will cause decoding to fail with INSN_REJECTED. In * the above example this would happen if bits 11..8 of the instruction were * 1111, indicating R15 or PC. * * As well as checking for legal combinations of registers, this data is also * used to modify the registers encoded in the instructions so that an * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) * * Here is a real example which matches ARM instructions of the form * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>" * *	DECODE_EMULATEX	(0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags, *						 REGS(ANY, ANY, NOPC, 0, ANY)), *						      ^    ^    ^        ^ *						      Rn   Rd   Rs       Rm * * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because * Rs == R15 * * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into * the kprobes instruction slot. This can then be called later by the handler * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction. */enum decode_type {	DECODE_TYPE_END,	DECODE_TYPE_TABLE,	DECODE_TYPE_CUSTOM,	DECODE_TYPE_SIMULATE,	DECODE_TYPE_EMULATE,	DECODE_TYPE_OR,	DECODE_TYPE_REJECT,	NUM_DECODE_TYPES /* Must be last enum */};#define DECODE_TYPE_BITS	4#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)enum decode_reg_type {	REG_TYPE_NONE = 0, /* Not a register, ignore */	REG_TYPE_ANY,	   /* Any register allowed */	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */	REG_TYPE_SP,	   /* Register must be SP */	REG_TYPE_PC,	   /* Register must be PC */	REG_TYPE_NOSP,	   /* Register must not be SP */	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */	REG_TYPE_NOPC,	   /* Register must not be PC */	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */	/* The following types are used when the encoding for PC indicates	 * another instruction form. This distiction only matters for test	 * case coverage checks.	 */	REG_TYPE_NOPCX,	   /* Register must not be PC */	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */	/* Alias to allow '0' arg to be used in REGS macro. */	REG_TYPE_0 = REG_TYPE_NONE};#define REGS(r16, r12, r8, r4, r0)	\	((REG_TYPE_##r16) << 16) +	\	((REG_TYPE_##r12) << 12) +	\	((REG_TYPE_##r8) << 8) +	\	((REG_TYPE_##r4) << 4) +	\	(REG_TYPE_##r0)union decode_item {	u32			bits;	const union decode_item	*table;	kprobe_insn_handler_t	*handler;	kprobe_decode_insn_t	*decoder;};#define DECODE_END			\	{.bits = DECODE_TYPE_END}struct decode_header {	union decode_item	type_regs;	union decode_item	mask;	union decode_item	value;};#define DECODE_HEADER(_type, _mask, _value, _regs)		\	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\	{.bits = (_mask)},					\	{.bits = (_value)}struct decode_table {	struct decode_header	header;	union decode_item	table;};#define DECODE_TABLE(_mask, _value, _table)			\	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\	{.table = (_table)}struct decode_custom {	struct decode_header	header;	union decode_item	decoder;};#define DECODE_CUSTOM(_mask, _value, _decoder)			\	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\	{.decoder = (_decoder)}struct decode_simulate {	struct decode_header	header;	union decode_item	handler;};#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\	{.handler = (_handler)}#define DECODE_SIMULATE(_mask, _value, _handler)	\	DECODE_SIMULATEX(_mask, _value, _handler, 0)struct decode_emulate {	struct decode_header	header;	union decode_item	handler;};#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\	{.handler = (_handler)}#define DECODE_EMULATE(_mask, _value, _handler)		\	DECODE_EMULATEX(_mask, _value, _handler, 0)struct decode_or {	struct decode_header	header;};#define DECODE_OR(_mask, _value)				\	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)struct decode_reject {	struct decode_header	header;};#define DECODE_REJECT(_mask, _value)				\	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)#ifdef CONFIG_THUMB2_KERNELextern const union decode_item kprobe_decode_thumb16_table[];extern const union decode_item kprobe_decode_thumb32_table[];#elseextern const union decode_item kprobe_decode_arm_table[];#endifint kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,			const union decode_item *table, bool thumb16);#endif /* _ARM_KERNEL_KPROBES_H */
 |