| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060 | /* *  linux/arch/arm/vfp/vfpdouble.c * * This code is derived in part from John R. Housers softfloat library, which * carries the following notice: * * =========================================================================== * This C source file is part of the SoftFloat IEC/IEEE Floating-point * Arithmetic Package, Release 2. * * Written by John R. Hauser.  This work was made possible in part by the * International Computer Science Institute, located at Suite 600, 1947 Center * Street, Berkeley, California 94704.  Funding was partially provided by the * National Science Foundation under grant MIP-9311980.  The original version * of this code was written as part of a project to build a fixed-point vector * processor in collaboration with the University of California at Berkeley, * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ * arithmetic/softfloat.html'. * * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. * * Derivative works are acceptable, even for commercial purposes, so long as * (1) they include prominent notice that the work is derivative, and (2) they * include prominent notice akin to these three paragraphs for those parts of * this code that are retained. * =========================================================================== */#include <linux/kernel.h>#include <linux/bitops.h>#include <asm/div64.h>#include <asm/vfp.h>#include "vfpinstr.h"#include "vfp.h"static struct vfp_double vfp_double_default_qnan = {	.exponent	= 2047,	.sign		= 0,	.significand	= VFP_DOUBLE_SIGNIFICAND_QNAN,};static void vfp_double_dump(const char *str, struct vfp_double *d){	pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",		 str, d->sign != 0, d->exponent, d->significand);}static void vfp_double_normalise_denormal(struct vfp_double *vd){	int bits = 31 - fls(vd->significand >> 32);	if (bits == 31)		bits = 63 - fls(vd->significand);	vfp_double_dump("normalise_denormal: in", vd);	if (bits) {		vd->exponent -= bits - 1;		vd->significand <<= bits;	}	vfp_double_dump("normalise_denormal: out", vd);}u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func){	u64 significand, incr;	int exponent, shift, underflow;	u32 rmode;	vfp_double_dump("pack: in", vd);	/*	 * Infinities and NaNs are a special case.	 */	if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))		goto pack;	/*	 * Special-case zero.	 */	if (vd->significand == 0) {		vd->exponent = 0;		goto pack;	}	exponent = vd->exponent;	significand = vd->significand;	shift = 32 - fls(significand >> 32);	if (shift == 32)		shift = 64 - fls(significand);	if (shift) {		exponent -= shift;		significand <<= shift;	}#ifdef DEBUG	vd->exponent = exponent;	vd->significand = significand;	vfp_double_dump("pack: normalised", vd);#endif	/*	 * Tiny number?	 */	underflow = exponent < 0;	if (underflow) {		significand = vfp_shiftright64jamming(significand, -exponent);		exponent = 0;#ifdef DEBUG		vd->exponent = exponent;		vd->significand = significand;		vfp_double_dump("pack: tiny number", vd);#endif		if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))			underflow = 0;	}	/*	 * Select rounding increment.	 */	incr = 0;	rmode = fpscr & FPSCR_RMODE_MASK;	if (rmode == FPSCR_ROUND_NEAREST) {		incr = 1ULL << VFP_DOUBLE_LOW_BITS;		if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)			incr -= 1;	} else if (rmode == FPSCR_ROUND_TOZERO) {		incr = 0;	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))		incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;	pr_debug("VFP: rounding increment = 0x%08llx\n", incr);	/*	 * Is our rounding going to overflow?	 */	if ((significand + incr) < significand) {		exponent += 1;		significand = (significand >> 1) | (significand & 1);		incr >>= 1;#ifdef DEBUG		vd->exponent = exponent;		vd->significand = significand;		vfp_double_dump("pack: overflow", vd);#endif	}	/*	 * If any of the low bits (which will be shifted out of the	 * number) are non-zero, the result is inexact.	 */	if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))		exceptions |= FPSCR_IXC;	/*	 * Do our rounding.	 */	significand += incr;	/*	 * Infinity?	 */	if (exponent >= 2046) {		exceptions |= FPSCR_OFC | FPSCR_IXC;		if (incr == 0) {			vd->exponent = 2045;			vd->significand = 0x7fffffffffffffffULL;		} else {			vd->exponent = 2047;		/* infinity */			vd->significand = 0;		}	} else {		if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)			exponent = 0;		if (exponent || significand > 0x8000000000000000ULL)			underflow = 0;		if (underflow)			exceptions |= FPSCR_UFC;		vd->exponent = exponent;		vd->significand = significand >> 1;	} pack:	vfp_double_dump("pack: final", vd);	{		s64 d = vfp_double_pack(vd);		pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,			 dd, d, exceptions);		vfp_put_double(d, dd);	}	return exceptions;}/* * Propagate the NaN, setting exceptions if it is signalling. * 'n' is always a NaN.  'm' may be a number, NaN or infinity. */static u32vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,		  struct vfp_double *vdm, u32 fpscr){	struct vfp_double *nan;	int tn, tm = 0;	tn = vfp_double_type(vdn);	if (vdm)		tm = vfp_double_type(vdm);	if (fpscr & FPSCR_DEFAULT_NAN)		/*		 * Default NaN mode - always returns a quiet NaN		 */		nan = &vfp_double_default_qnan;	else {		/*		 * Contemporary mode - select the first signalling		 * NAN, or if neither are signalling, the first		 * quiet NAN.		 */		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))			nan = vdn;		else			nan = vdm;		/*		 * Make the NaN quiet.		 */		nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;	}	*vdd = *nan;	/*	 * If one was a signalling NAN, raise invalid operation.	 */	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;}/* * Extended operations */static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr){	vfp_put_double(vfp_double_packed_abs(vfp_get_double(dm)), dd);	return 0;}static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr){	vfp_put_double(vfp_get_double(dm), dd);	return 0;}static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr){	vfp_put_double(vfp_double_packed_negate(vfp_get_double(dm)), dd);	return 0;}static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr){	struct vfp_double vdm, vdd;	int ret, tm;	vfp_double_unpack(&vdm, vfp_get_double(dm));	tm = vfp_double_type(&vdm);	if (tm & (VFP_NAN|VFP_INFINITY)) {		struct vfp_double *vdp = &vdd;		if (tm & VFP_NAN)			ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);		else if (vdm.sign == 0) { sqrt_copy:			vdp = &vdm;			ret = 0;		} else { sqrt_invalid:			vdp = &vfp_double_default_qnan;			ret = FPSCR_IOC;		}		vfp_put_double(vfp_double_pack(vdp), dd);		return ret;	}	/*	 * sqrt(+/- 0) == +/- 0	 */	if (tm & VFP_ZERO)		goto sqrt_copy;	/*	 * Normalise a denormalised number	 */	if (tm & VFP_DENORMAL)		vfp_double_normalise_denormal(&vdm);	/*	 * sqrt(<0) = invalid	 */	if (vdm.sign)		goto sqrt_invalid;	vfp_double_dump("sqrt", &vdm);	/*	 * Estimate the square root.	 */	vdd.sign = 0;	vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;	vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;	vfp_double_dump("sqrt estimate1", &vdd);	vdm.significand >>= 1 + (vdm.exponent & 1);	vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);	vfp_double_dump("sqrt estimate2", &vdd);	/*	 * And now adjust.	 */	if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {		if (vdd.significand < 2) {			vdd.significand = ~0ULL;		} else {			u64 termh, terml, remh, reml;			vdm.significand <<= 2;			mul64to128(&termh, &terml, vdd.significand, vdd.significand);			sub128(&remh, &reml, vdm.significand, 0, termh, terml);			while ((s64)remh < 0) {				vdd.significand -= 1;				shift64left(&termh, &terml, vdd.significand);				terml |= 1;				add128(&remh, &reml, remh, reml, termh, terml);			}			vdd.significand |= (remh | reml) != 0;		}	}	vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);	return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");}/* * Equal	:= ZC * Less than	:= N * Greater than	:= C * Unordered	:= CV */static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr){	s64 d, m;	u32 ret = 0;	m = vfp_get_double(dm);	if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {		ret |= FPSCR_C | FPSCR_V;		if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))			/*			 * Signalling NaN, or signalling on quiet NaN			 */			ret |= FPSCR_IOC;	}	d = vfp_get_double(dd);	if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {		ret |= FPSCR_C | FPSCR_V;		if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))			/*			 * Signalling NaN, or signalling on quiet NaN			 */			ret |= FPSCR_IOC;	}	if (ret == 0) {		if (d == m || vfp_double_packed_abs(d | m) == 0) {			/*			 * equal			 */			ret |= FPSCR_Z | FPSCR_C;		} else if (vfp_double_packed_sign(d ^ m)) {			/*			 * different signs			 */			if (vfp_double_packed_sign(d))				/*				 * d is negative, so d < m				 */				ret |= FPSCR_N;			else				/*				 * d is positive, so d > m				 */				ret |= FPSCR_C;		} else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {			/*			 * d < m			 */			ret |= FPSCR_N;		} else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {			/*			 * d > m			 */			ret |= FPSCR_C;		}	}	return ret;}static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr){	return vfp_compare(dd, 0, dm, fpscr);}static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr){	return vfp_compare(dd, 1, dm, fpscr);}static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr){	return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);}static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr){	return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);}static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr){	struct vfp_double vdm;	struct vfp_single vsd;	int tm;	u32 exceptions = 0;	vfp_double_unpack(&vdm, vfp_get_double(dm));	tm = vfp_double_type(&vdm);	/*	 * If we have a signalling NaN, signal invalid operation.	 */	if (tm == VFP_SNAN)		exceptions = FPSCR_IOC;	if (tm & VFP_DENORMAL)		vfp_double_normalise_denormal(&vdm);	vsd.sign = vdm.sign;	vsd.significand = vfp_hi64to32jamming(vdm.significand);	/*	 * If we have an infinity or a NaN, the exponent must be 255	 */	if (tm & (VFP_INFINITY|VFP_NAN)) {		vsd.exponent = 255;		if (tm == VFP_QNAN)			vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;		goto pack_nan;	} else if (tm & VFP_ZERO)		vsd.exponent = 0;	else		vsd.exponent = vdm.exponent - (1023 - 127);	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts"); pack_nan:	vfp_put_float(vfp_single_pack(&vsd), sd);	return exceptions;}static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr){	struct vfp_double vdm;	u32 m = vfp_get_float(dm);	vdm.sign = 0;	vdm.exponent = 1023 + 63 - 1;	vdm.significand = (u64)m;	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");}static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr){	struct vfp_double vdm;	u32 m = vfp_get_float(dm);	vdm.sign = (m & 0x80000000) >> 16;	vdm.exponent = 1023 + 63 - 1;	vdm.significand = vdm.sign ? -m : m;	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");}static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr){	struct vfp_double vdm;	u32 d, exceptions = 0;	int rmode = fpscr & FPSCR_RMODE_MASK;	int tm;	vfp_double_unpack(&vdm, vfp_get_double(dm));	/*	 * Do we have a denormalised number?	 */	tm = vfp_double_type(&vdm);	if (tm & VFP_DENORMAL)		exceptions |= FPSCR_IDC;	if (tm & VFP_NAN)		vdm.sign = 0;	if (vdm.exponent >= 1023 + 32) {		d = vdm.sign ? 0 : 0xffffffff;		exceptions = FPSCR_IOC;	} else if (vdm.exponent >= 1023 - 1) {		int shift = 1023 + 63 - vdm.exponent;		u64 rem, incr = 0;		/*		 * 2^0 <= m < 2^32-2^8		 */		d = (vdm.significand << 1) >> shift;		rem = vdm.significand << (65 - shift);		if (rmode == FPSCR_ROUND_NEAREST) {			incr = 0x8000000000000000ULL;			if ((d & 1) == 0)				incr -= 1;		} else if (rmode == FPSCR_ROUND_TOZERO) {			incr = 0;		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {			incr = ~0ULL;		}		if ((rem + incr) < rem) {			if (d < 0xffffffff)				d += 1;			else				exceptions |= FPSCR_IOC;		}		if (d && vdm.sign) {			d = 0;			exceptions |= FPSCR_IOC;		} else if (rem)			exceptions |= FPSCR_IXC;	} else {		d = 0;		if (vdm.exponent | vdm.significand) {			exceptions |= FPSCR_IXC;			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)				d = 1;			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {				d = 0;				exceptions |= FPSCR_IOC;			}		}	}	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);	vfp_put_float(d, sd);	return exceptions;}static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr){	return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);}static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr){	struct vfp_double vdm;	u32 d, exceptions = 0;	int rmode = fpscr & FPSCR_RMODE_MASK;	int tm;	vfp_double_unpack(&vdm, vfp_get_double(dm));	vfp_double_dump("VDM", &vdm);	/*	 * Do we have denormalised number?	 */	tm = vfp_double_type(&vdm);	if (tm & VFP_DENORMAL)		exceptions |= FPSCR_IDC;	if (tm & VFP_NAN) {		d = 0;		exceptions |= FPSCR_IOC;	} else if (vdm.exponent >= 1023 + 32) {		d = 0x7fffffff;		if (vdm.sign)			d = ~d;		exceptions |= FPSCR_IOC;	} else if (vdm.exponent >= 1023 - 1) {		int shift = 1023 + 63 - vdm.exponent;	/* 58 */		u64 rem, incr = 0;		d = (vdm.significand << 1) >> shift;		rem = vdm.significand << (65 - shift);		if (rmode == FPSCR_ROUND_NEAREST) {			incr = 0x8000000000000000ULL;			if ((d & 1) == 0)				incr -= 1;		} else if (rmode == FPSCR_ROUND_TOZERO) {			incr = 0;		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {			incr = ~0ULL;		}		if ((rem + incr) < rem && d < 0xffffffff)			d += 1;		if (d > 0x7fffffff + (vdm.sign != 0)) {			d = 0x7fffffff + (vdm.sign != 0);			exceptions |= FPSCR_IOC;		} else if (rem)			exceptions |= FPSCR_IXC;		if (vdm.sign)			d = -d;	} else {		d = 0;		if (vdm.exponent | vdm.significand) {			exceptions |= FPSCR_IXC;			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)				d = 1;			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)				d = -1;		}	}	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);	vfp_put_float((s32)d, sd);	return exceptions;}static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr){	return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);}static struct op fops_ext[32] = {	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_double_fcpy,   0 },	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_double_fabs,   0 },	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_double_fneg,   0 },	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_double_fsqrt,  0 },	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_double_fcmp,   OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_double_fcmpe,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_double_fcmpz,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_double_fcmpez, OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_double_fcvts,  OP_SCALAR|OP_SD },	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_double_fuito,  OP_SCALAR|OP_SM },	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_double_fsito,  OP_SCALAR|OP_SM },	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_double_ftoui,  OP_SCALAR|OP_SD },	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_double_ftouiz, OP_SCALAR|OP_SD },	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_double_ftosi,  OP_SCALAR|OP_SD },	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_double_ftosiz, OP_SCALAR|OP_SD },};static u32vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,			  struct vfp_double *vdm, u32 fpscr){	struct vfp_double *vdp;	u32 exceptions = 0;	int tn, tm;	tn = vfp_double_type(vdn);	tm = vfp_double_type(vdm);	if (tn & tm & VFP_INFINITY) {		/*		 * Two infinities.  Are they different signs?		 */		if (vdn->sign ^ vdm->sign) {			/*			 * different signs -> invalid			 */			exceptions = FPSCR_IOC;			vdp = &vfp_double_default_qnan;		} else {			/*			 * same signs -> valid			 */			vdp = vdn;		}	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {		/*		 * One infinity and one number -> infinity		 */		vdp = vdn;	} else {		/*		 * 'n' is a NaN of some type		 */		return vfp_propagate_nan(vdd, vdn, vdm, fpscr);	}	*vdd = *vdp;	return exceptions;}static u32vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,	       struct vfp_double *vdm, u32 fpscr){	u32 exp_diff;	u64 m_sig;	if (vdn->significand & (1ULL << 63) ||	    vdm->significand & (1ULL << 63)) {		pr_info("VFP: bad FP values in %s\n", __func__);		vfp_double_dump("VDN", vdn);		vfp_double_dump("VDM", vdm);	}	/*	 * Ensure that 'n' is the largest magnitude number.  Note that	 * if 'n' and 'm' have equal exponents, we do not swap them.	 * This ensures that NaN propagation works correctly.	 */	if (vdn->exponent < vdm->exponent) {		struct vfp_double *t = vdn;		vdn = vdm;		vdm = t;	}	/*	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,	 * infinity or a NaN here.	 */	if (vdn->exponent == 2047)		return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);	/*	 * We have two proper numbers, where 'vdn' is the larger magnitude.	 *	 * Copy 'n' to 'd' before doing the arithmetic.	 */	*vdd = *vdn;	/*	 * Align 'm' with the result.	 */	exp_diff = vdn->exponent - vdm->exponent;	m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);	/*	 * If the signs are different, we are really subtracting.	 */	if (vdn->sign ^ vdm->sign) {		m_sig = vdn->significand - m_sig;		if ((s64)m_sig < 0) {			vdd->sign = vfp_sign_negate(vdd->sign);			m_sig = -m_sig;		} else if (m_sig == 0) {			vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;		}	} else {		m_sig += vdn->significand;	}	vdd->significand = m_sig;	return 0;}static u32vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,		    struct vfp_double *vdm, u32 fpscr){	vfp_double_dump("VDN", vdn);	vfp_double_dump("VDM", vdm);	/*	 * Ensure that 'n' is the largest magnitude number.  Note that	 * if 'n' and 'm' have equal exponents, we do not swap them.	 * This ensures that NaN propagation works correctly.	 */	if (vdn->exponent < vdm->exponent) {		struct vfp_double *t = vdn;		vdn = vdm;		vdm = t;		pr_debug("VFP: swapping M <-> N\n");	}	vdd->sign = vdn->sign ^ vdm->sign;	/*	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.	 */	if (vdn->exponent == 2047) {		if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))			return vfp_propagate_nan(vdd, vdn, vdm, fpscr);		if ((vdm->exponent | vdm->significand) == 0) {			*vdd = vfp_double_default_qnan;			return FPSCR_IOC;		}		vdd->exponent = vdn->exponent;		vdd->significand = 0;		return 0;	}	/*	 * If 'm' is zero, the result is always zero.  In this case,	 * 'n' may be zero or a number, but it doesn't matter which.	 */	if ((vdm->exponent | vdm->significand) == 0) {		vdd->exponent = 0;		vdd->significand = 0;		return 0;	}	/*	 * We add 2 to the destination exponent for the same reason	 * as the addition case - though this time we have +1 from	 * each input operand.	 */	vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;	vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);	vfp_double_dump("VDD", vdd);	return 0;}#define NEG_MULTIPLY	(1 << 0)#define NEG_SUBTRACT	(1 << 1)static u32vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func){	struct vfp_double vdd, vdp, vdn, vdm;	u32 exceptions;	vfp_double_unpack(&vdn, vfp_get_double(dn));	if (vdn.exponent == 0 && vdn.significand)		vfp_double_normalise_denormal(&vdn);	vfp_double_unpack(&vdm, vfp_get_double(dm));	if (vdm.exponent == 0 && vdm.significand)		vfp_double_normalise_denormal(&vdm);	exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);	if (negate & NEG_MULTIPLY)		vdp.sign = vfp_sign_negate(vdp.sign);	vfp_double_unpack(&vdn, vfp_get_double(dd));	if (negate & NEG_SUBTRACT)		vdn.sign = vfp_sign_negate(vdn.sign);	exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);}/* * Standard operations *//* * sd = sd + (sn * sm) */static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr){	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");}/* * sd = sd - (sn * sm) */static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr){	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");}/* * sd = -sd + (sn * sm) */static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr){	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");}/* * sd = -sd - (sn * sm) */static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr){	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");}/* * sd = sn * sm */static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr){	struct vfp_double vdd, vdn, vdm;	u32 exceptions;	vfp_double_unpack(&vdn, vfp_get_double(dn));	if (vdn.exponent == 0 && vdn.significand)		vfp_double_normalise_denormal(&vdn);	vfp_double_unpack(&vdm, vfp_get_double(dm));	if (vdm.exponent == 0 && vdm.significand)		vfp_double_normalise_denormal(&vdm);	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");}/* * sd = -(sn * sm) */static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr){	struct vfp_double vdd, vdn, vdm;	u32 exceptions;	vfp_double_unpack(&vdn, vfp_get_double(dn));	if (vdn.exponent == 0 && vdn.significand)		vfp_double_normalise_denormal(&vdn);	vfp_double_unpack(&vdm, vfp_get_double(dm));	if (vdm.exponent == 0 && vdm.significand)		vfp_double_normalise_denormal(&vdm);	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);	vdd.sign = vfp_sign_negate(vdd.sign);	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");}/* * sd = sn + sm */static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr){	struct vfp_double vdd, vdn, vdm;	u32 exceptions;	vfp_double_unpack(&vdn, vfp_get_double(dn));	if (vdn.exponent == 0 && vdn.significand)		vfp_double_normalise_denormal(&vdn);	vfp_double_unpack(&vdm, vfp_get_double(dm));	if (vdm.exponent == 0 && vdm.significand)		vfp_double_normalise_denormal(&vdm);	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");}/* * sd = sn - sm */static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr){	struct vfp_double vdd, vdn, vdm;	u32 exceptions;	vfp_double_unpack(&vdn, vfp_get_double(dn));	if (vdn.exponent == 0 && vdn.significand)		vfp_double_normalise_denormal(&vdn);	vfp_double_unpack(&vdm, vfp_get_double(dm));	if (vdm.exponent == 0 && vdm.significand)		vfp_double_normalise_denormal(&vdm);	/*	 * Subtraction is like addition, but with a negated operand.	 */	vdm.sign = vfp_sign_negate(vdm.sign);	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");}/* * sd = sn / sm */static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr){	struct vfp_double vdd, vdn, vdm;	u32 exceptions = 0;	int tm, tn;	vfp_double_unpack(&vdn, vfp_get_double(dn));	vfp_double_unpack(&vdm, vfp_get_double(dm));	vdd.sign = vdn.sign ^ vdm.sign;	tn = vfp_double_type(&vdn);	tm = vfp_double_type(&vdm);	/*	 * Is n a NAN?	 */	if (tn & VFP_NAN)		goto vdn_nan;	/*	 * Is m a NAN?	 */	if (tm & VFP_NAN)		goto vdm_nan;	/*	 * If n and m are infinity, the result is invalid	 * If n and m are zero, the result is invalid	 */	if (tm & tn & (VFP_INFINITY|VFP_ZERO))		goto invalid;	/*	 * If n is infinity, the result is infinity	 */	if (tn & VFP_INFINITY)		goto infinity;	/*	 * If m is zero, raise div0 exceptions	 */	if (tm & VFP_ZERO)		goto divzero;	/*	 * If m is infinity, or n is zero, the result is zero	 */	if (tm & VFP_INFINITY || tn & VFP_ZERO)		goto zero;	if (tn & VFP_DENORMAL)		vfp_double_normalise_denormal(&vdn);	if (tm & VFP_DENORMAL)		vfp_double_normalise_denormal(&vdm);
 |