| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523 | 
							- /*
 
-  *  linux/arch/arm/vfp/vfpsingle.c
 
-  *
 
-  * This code is derived in part from John R. Housers softfloat library, which
 
-  * carries the following notice:
 
-  *
 
-  * ===========================================================================
 
-  * This C source file is part of the SoftFloat IEC/IEEE Floating-point
 
-  * Arithmetic Package, Release 2.
 
-  *
 
-  * Written by John R. Hauser.  This work was made possible in part by the
 
-  * International Computer Science Institute, located at Suite 600, 1947 Center
 
-  * Street, Berkeley, California 94704.  Funding was partially provided by the
 
-  * National Science Foundation under grant MIP-9311980.  The original version
 
-  * of this code was written as part of a project to build a fixed-point vector
 
-  * processor in collaboration with the University of California at Berkeley,
 
-  * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 
-  * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 
-  * arithmetic/softfloat.html'.
 
-  *
 
-  * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 
-  * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 
-  * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 
-  * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 
-  * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 
-  *
 
-  * Derivative works are acceptable, even for commercial purposes, so long as
 
-  * (1) they include prominent notice that the work is derivative, and (2) they
 
-  * include prominent notice akin to these three paragraphs for those parts of
 
-  * this code that are retained.
 
-  * ===========================================================================
 
-  */
 
- #include <linux/kernel.h>
 
- #include <linux/bitops.h>
 
- #include <asm/div64.h>
 
- #include <asm/vfp.h>
 
- #include "vfpinstr.h"
 
- #include "vfp.h"
 
- static struct vfp_single vfp_single_default_qnan = {
 
- 	.exponent	= 255,
 
- 	.sign		= 0,
 
- 	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
 
- };
 
- static void vfp_single_dump(const char *str, struct vfp_single *s)
 
- {
 
- 	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
 
- 		 str, s->sign != 0, s->exponent, s->significand);
 
- }
 
- static void vfp_single_normalise_denormal(struct vfp_single *vs)
 
- {
 
- 	int bits = 31 - fls(vs->significand);
 
- 	vfp_single_dump("normalise_denormal: in", vs);
 
- 	if (bits) {
 
- 		vs->exponent -= bits - 1;
 
- 		vs->significand <<= bits;
 
- 	}
 
- 	vfp_single_dump("normalise_denormal: out", vs);
 
- }
 
- #ifndef DEBUG
 
- #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
 
- u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
 
- #else
 
- u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
 
- #endif
 
- {
 
- 	u32 significand, incr, rmode;
 
- 	int exponent, shift, underflow;
 
- 	vfp_single_dump("pack: in", vs);
 
- 	/*
 
- 	 * Infinities and NaNs are a special case.
 
- 	 */
 
- 	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
 
- 		goto pack;
 
- 	/*
 
- 	 * Special-case zero.
 
- 	 */
 
- 	if (vs->significand == 0) {
 
- 		vs->exponent = 0;
 
- 		goto pack;
 
- 	}
 
- 	exponent = vs->exponent;
 
- 	significand = vs->significand;
 
- 	/*
 
- 	 * Normalise first.  Note that we shift the significand up to
 
- 	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
 
- 	 * significant bit.
 
- 	 */
 
- 	shift = 32 - fls(significand);
 
- 	if (shift < 32 && shift) {
 
- 		exponent -= shift;
 
- 		significand <<= shift;
 
- 	}
 
- #ifdef DEBUG
 
- 	vs->exponent = exponent;
 
- 	vs->significand = significand;
 
- 	vfp_single_dump("pack: normalised", vs);
 
- #endif
 
- 	/*
 
- 	 * Tiny number?
 
- 	 */
 
- 	underflow = exponent < 0;
 
- 	if (underflow) {
 
- 		significand = vfp_shiftright32jamming(significand, -exponent);
 
- 		exponent = 0;
 
- #ifdef DEBUG
 
- 		vs->exponent = exponent;
 
- 		vs->significand = significand;
 
- 		vfp_single_dump("pack: tiny number", vs);
 
- #endif
 
- 		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
 
- 			underflow = 0;
 
- 	}
 
- 	/*
 
- 	 * Select rounding increment.
 
- 	 */
 
- 	incr = 0;
 
- 	rmode = fpscr & FPSCR_RMODE_MASK;
 
- 	if (rmode == FPSCR_ROUND_NEAREST) {
 
- 		incr = 1 << VFP_SINGLE_LOW_BITS;
 
- 		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
 
- 			incr -= 1;
 
- 	} else if (rmode == FPSCR_ROUND_TOZERO) {
 
- 		incr = 0;
 
- 	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
 
- 		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
 
- 	pr_debug("VFP: rounding increment = 0x%08x\n", incr);
 
- 	/*
 
- 	 * Is our rounding going to overflow?
 
- 	 */
 
- 	if ((significand + incr) < significand) {
 
- 		exponent += 1;
 
- 		significand = (significand >> 1) | (significand & 1);
 
- 		incr >>= 1;
 
- #ifdef DEBUG
 
- 		vs->exponent = exponent;
 
- 		vs->significand = significand;
 
- 		vfp_single_dump("pack: overflow", vs);
 
- #endif
 
- 	}
 
- 	/*
 
- 	 * If any of the low bits (which will be shifted out of the
 
- 	 * number) are non-zero, the result is inexact.
 
- 	 */
 
- 	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
 
- 		exceptions |= FPSCR_IXC;
 
- 	/*
 
- 	 * Do our rounding.
 
- 	 */
 
- 	significand += incr;
 
- 	/*
 
- 	 * Infinity?
 
- 	 */
 
- 	if (exponent >= 254) {
 
- 		exceptions |= FPSCR_OFC | FPSCR_IXC;
 
- 		if (incr == 0) {
 
- 			vs->exponent = 253;
 
- 			vs->significand = 0x7fffffff;
 
- 		} else {
 
- 			vs->exponent = 255;		/* infinity */
 
- 			vs->significand = 0;
 
- 		}
 
- 	} else {
 
- 		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
 
- 			exponent = 0;
 
- 		if (exponent || significand > 0x80000000)
 
- 			underflow = 0;
 
- 		if (underflow)
 
- 			exceptions |= FPSCR_UFC;
 
- 		vs->exponent = exponent;
 
- 		vs->significand = significand >> 1;
 
- 	}
 
-  pack:
 
- 	vfp_single_dump("pack: final", vs);
 
- 	{
 
- 		s32 d = vfp_single_pack(vs);
 
- #ifdef DEBUG
 
- 		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
 
- 			 sd, d, exceptions);
 
- #endif
 
- 		vfp_put_float(d, sd);
 
- 	}
 
- 	return exceptions;
 
- }
 
- /*
 
-  * Propagate the NaN, setting exceptions if it is signalling.
 
-  * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
 
-  */
 
- static u32
 
- vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
 
- 		  struct vfp_single *vsm, u32 fpscr)
 
- {
 
- 	struct vfp_single *nan;
 
- 	int tn, tm = 0;
 
- 	tn = vfp_single_type(vsn);
 
- 	if (vsm)
 
- 		tm = vfp_single_type(vsm);
 
- 	if (fpscr & FPSCR_DEFAULT_NAN)
 
- 		/*
 
- 		 * Default NaN mode - always returns a quiet NaN
 
- 		 */
 
- 		nan = &vfp_single_default_qnan;
 
- 	else {
 
- 		/*
 
- 		 * Contemporary mode - select the first signalling
 
- 		 * NAN, or if neither are signalling, the first
 
- 		 * quiet NAN.
 
- 		 */
 
- 		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
 
- 			nan = vsn;
 
- 		else
 
- 			nan = vsm;
 
- 		/*
 
- 		 * Make the NaN quiet.
 
- 		 */
 
- 		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
 
- 	}
 
- 	*vsd = *nan;
 
- 	/*
 
- 	 * If one was a signalling NAN, raise invalid operation.
 
- 	 */
 
- 	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
 
- }
 
- /*
 
-  * Extended operations
 
-  */
 
- static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	vfp_put_float(vfp_single_packed_abs(m), sd);
 
- 	return 0;
 
- }
 
- static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	vfp_put_float(m, sd);
 
- 	return 0;
 
- }
 
- static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	vfp_put_float(vfp_single_packed_negate(m), sd);
 
- 	return 0;
 
- }
 
- static const u16 sqrt_oddadjust[] = {
 
- 	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
 
- 	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
 
- };
 
- static const u16 sqrt_evenadjust[] = {
 
- 	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
 
- 	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
 
- };
 
- u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
 
- {
 
- 	int index;
 
- 	u32 z, a;
 
- 	if ((significand & 0xc0000000) != 0x40000000) {
 
- 		printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
 
- 	}
 
- 	a = significand << 1;
 
- 	index = (a >> 27) & 15;
 
- 	if (exponent & 1) {
 
- 		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
 
- 		z = ((a / z) << 14) + (z << 15);
 
- 		a >>= 1;
 
- 	} else {
 
- 		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
 
- 		z = a / z + z;
 
- 		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
 
- 		if (z <= a)
 
- 			return (s32)a >> 1;
 
- 	}
 
- 	{
 
- 		u64 v = (u64)a << 31;
 
- 		do_div(v, z);
 
- 		return v + (z >> 1);
 
- 	}
 
- }
 
- static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	struct vfp_single vsm, vsd;
 
- 	int ret, tm;
 
- 	vfp_single_unpack(&vsm, m);
 
- 	tm = vfp_single_type(&vsm);
 
- 	if (tm & (VFP_NAN|VFP_INFINITY)) {
 
- 		struct vfp_single *vsp = &vsd;
 
- 		if (tm & VFP_NAN)
 
- 			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
 
- 		else if (vsm.sign == 0) {
 
-  sqrt_copy:
 
- 			vsp = &vsm;
 
- 			ret = 0;
 
- 		} else {
 
-  sqrt_invalid:
 
- 			vsp = &vfp_single_default_qnan;
 
- 			ret = FPSCR_IOC;
 
- 		}
 
- 		vfp_put_float(vfp_single_pack(vsp), sd);
 
- 		return ret;
 
- 	}
 
- 	/*
 
- 	 * sqrt(+/- 0) == +/- 0
 
- 	 */
 
- 	if (tm & VFP_ZERO)
 
- 		goto sqrt_copy;
 
- 	/*
 
- 	 * Normalise a denormalised number
 
- 	 */
 
- 	if (tm & VFP_DENORMAL)
 
- 		vfp_single_normalise_denormal(&vsm);
 
- 	/*
 
- 	 * sqrt(<0) = invalid
 
- 	 */
 
- 	if (vsm.sign)
 
- 		goto sqrt_invalid;
 
- 	vfp_single_dump("sqrt", &vsm);
 
- 	/*
 
- 	 * Estimate the square root.
 
- 	 */
 
- 	vsd.sign = 0;
 
- 	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
 
- 	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
 
- 	vfp_single_dump("sqrt estimate", &vsd);
 
- 	/*
 
- 	 * And now adjust.
 
- 	 */
 
- 	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
 
- 		if (vsd.significand < 2) {
 
- 			vsd.significand = 0xffffffff;
 
- 		} else {
 
- 			u64 term;
 
- 			s64 rem;
 
- 			vsm.significand <<= !(vsm.exponent & 1);
 
- 			term = (u64)vsd.significand * vsd.significand;
 
- 			rem = ((u64)vsm.significand << 32) - term;
 
- 			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
 
- 			while (rem < 0) {
 
- 				vsd.significand -= 1;
 
- 				rem += ((u64)vsd.significand << 1) | 1;
 
- 			}
 
- 			vsd.significand |= rem != 0;
 
- 		}
 
- 	}
 
- 	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
 
- 	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
 
- }
 
- /*
 
-  * Equal	:= ZC
 
-  * Less than	:= N
 
-  * Greater than	:= C
 
-  * Unordered	:= CV
 
-  */
 
- static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
 
- {
 
- 	s32 d;
 
- 	u32 ret = 0;
 
- 	d = vfp_get_float(sd);
 
- 	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
 
- 		ret |= FPSCR_C | FPSCR_V;
 
- 		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 
- 			/*
 
- 			 * Signalling NaN, or signalling on quiet NaN
 
- 			 */
 
- 			ret |= FPSCR_IOC;
 
- 	}
 
- 	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
 
- 		ret |= FPSCR_C | FPSCR_V;
 
- 		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
 
- 			/*
 
- 			 * Signalling NaN, or signalling on quiet NaN
 
- 			 */
 
- 			ret |= FPSCR_IOC;
 
- 	}
 
- 	if (ret == 0) {
 
- 		if (d == m || vfp_single_packed_abs(d | m) == 0) {
 
- 			/*
 
- 			 * equal
 
- 			 */
 
- 			ret |= FPSCR_Z | FPSCR_C;
 
- 		} else if (vfp_single_packed_sign(d ^ m)) {
 
- 			/*
 
- 			 * different signs
 
- 			 */
 
- 			if (vfp_single_packed_sign(d))
 
- 				/*
 
- 				 * d is negative, so d < m
 
- 				 */
 
- 				ret |= FPSCR_N;
 
- 			else
 
- 				/*
 
- 				 * d is positive, so d > m
 
- 				 */
 
- 				ret |= FPSCR_C;
 
- 		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
 
- 			/*
 
- 			 * d < m
 
- 			 */
 
- 			ret |= FPSCR_N;
 
- 		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
 
- 			/*
 
- 			 * d > m
 
- 			 */
 
- 			ret |= FPSCR_C;
 
- 		}
 
- 	}
 
- 	return ret;
 
- }
 
- static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	return vfp_compare(sd, 0, m, fpscr);
 
- }
 
- static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	return vfp_compare(sd, 1, m, fpscr);
 
- }
 
- static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	return vfp_compare(sd, 0, 0, fpscr);
 
- }
 
- static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	return vfp_compare(sd, 1, 0, fpscr);
 
- }
 
- static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
 
- {
 
- 	struct vfp_single vsm;
 
- 	struct vfp_double vdd;
 
- 	int tm;
 
- 	u32 exceptions = 0;
 
- 	vfp_single_unpack(&vsm, m);
 
- 	tm = vfp_single_type(&vsm);
 
- 	/*
 
- 	 * If we have a signalling NaN, signal invalid operation.
 
- 	 */
 
- 	if (tm == VFP_SNAN)
 
- 		exceptions = FPSCR_IOC;
 
- 	if (tm & VFP_DENORMAL)
 
- 		vfp_single_normalise_denormal(&vsm);
 
- 	vdd.sign = vsm.sign;
 
- 	vdd.significand = (u64)vsm.significand << 32;
 
- 	/*
 
- 	 * If we have an infinity or NaN, the exponent must be 2047.
 
- 	 */
 
- 	if (tm & (VFP_INFINITY|VFP_NAN)) {
 
- 		vdd.exponent = 2047;
 
- 		if (tm == VFP_QNAN)
 
- 			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
 
- 		goto pack_nan;
 
- 	} else if (tm & VFP_ZERO)
 
- 		vdd.exponent = 0;
 
- 	else
 
- 		vdd.exponent = vsm.exponent + (1023 - 127);
 
- 	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
 
-  pack_nan:
 
- 	vfp_put_double(vfp_double_pack(&vdd), dd);
 
- 	return exceptions;
 
- }
 
 
  |