| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 | /* *  CFQ, or complete fairness queueing, disk scheduler. * *  Based on ideas from a previously unfinished io *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. * *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> */#include <linux/module.h>#include <linux/slab.h>#include <linux/blkdev.h>#include <linux/elevator.h>#include <linux/jiffies.h>#include <linux/rbtree.h>#include <linux/ioprio.h>#include <linux/blktrace_api.h>#include "blk.h"#include "blk-cgroup.h"/* * tunables *//* max queue in one round of service */static const int cfq_quantum = 8;static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };/* maximum backwards seek, in KiB */static const int cfq_back_max = 16 * 1024;/* penalty of a backwards seek */static const int cfq_back_penalty = 2;static const int cfq_slice_sync = HZ / 10;static int cfq_slice_async = HZ / 25;static const int cfq_slice_async_rq = 2;static int cfq_slice_idle = HZ / 125;static int cfq_group_idle = HZ / 125;static const int cfq_target_latency = HZ * 3/10; /* 300 ms */static const int cfq_hist_divisor = 4;/* * offset from end of service tree */#define CFQ_IDLE_DELAY		(HZ / 5)/* * below this threshold, we consider thinktime immediate */#define CFQ_MIN_TT		(2)#define CFQ_SLICE_SCALE		(5)#define CFQ_HW_QUEUE_MIN	(5)#define CFQ_SERVICE_SHIFT       12#define CFQQ_SEEK_THR		(sector_t)(8 * 100)#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])static struct kmem_cache *cfq_pool;#define CFQ_PRIO_LISTS		IOPRIO_BE_NR#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)#define sample_valid(samples)	((samples) > 80)#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)struct cfq_ttime {	unsigned long last_end_request;	unsigned long ttime_total;	unsigned long ttime_samples;	unsigned long ttime_mean;};/* * Most of our rbtree usage is for sorting with min extraction, so * if we cache the leftmost node we don't have to walk down the tree * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should * move this into the elevator for the rq sorting as well. */struct cfq_rb_root {	struct rb_root rb;	struct rb_node *left;	unsigned count;	unsigned total_weight;	u64 min_vdisktime;	struct cfq_ttime ttime;};#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \			.ttime = {.last_end_request = jiffies,},}/* * Per process-grouping structure */struct cfq_queue {	/* reference count */	int ref;	/* various state flags, see below */	unsigned int flags;	/* parent cfq_data */	struct cfq_data *cfqd;	/* service_tree member */	struct rb_node rb_node;	/* service_tree key */	unsigned long rb_key;	/* prio tree member */	struct rb_node p_node;	/* prio tree root we belong to, if any */	struct rb_root *p_root;	/* sorted list of pending requests */	struct rb_root sort_list;	/* if fifo isn't expired, next request to serve */	struct request *next_rq;	/* requests queued in sort_list */	int queued[2];	/* currently allocated requests */	int allocated[2];	/* fifo list of requests in sort_list */	struct list_head fifo;	/* time when queue got scheduled in to dispatch first request. */	unsigned long dispatch_start;	unsigned int allocated_slice;	unsigned int slice_dispatch;	/* time when first request from queue completed and slice started. */	unsigned long slice_start;	unsigned long slice_end;	long slice_resid;	/* pending priority requests */	int prio_pending;	/* number of requests that are on the dispatch list or inside driver */	int dispatched;	/* io prio of this group */	unsigned short ioprio, org_ioprio;	unsigned short ioprio_class;	pid_t pid;	u32 seek_history;	sector_t last_request_pos;	struct cfq_rb_root *service_tree;	struct cfq_queue *new_cfqq;	struct cfq_group *cfqg;	/* Number of sectors dispatched from queue in single dispatch round */	unsigned long nr_sectors;};/* * First index in the service_trees. * IDLE is handled separately, so it has negative index */enum wl_prio_t {	BE_WORKLOAD = 0,	RT_WORKLOAD = 1,	IDLE_WORKLOAD = 2,	CFQ_PRIO_NR,};/* * Second index in the service_trees. */enum wl_type_t {	ASYNC_WORKLOAD = 0,	SYNC_NOIDLE_WORKLOAD = 1,	SYNC_WORKLOAD = 2};struct cfqg_stats {#ifdef CONFIG_CFQ_GROUP_IOSCHED	/* total bytes transferred */	struct blkg_rwstat		service_bytes;	/* total IOs serviced, post merge */	struct blkg_rwstat		serviced;	/* number of ios merged */	struct blkg_rwstat		merged;	/* total time spent on device in ns, may not be accurate w/ queueing */	struct blkg_rwstat		service_time;	/* total time spent waiting in scheduler queue in ns */	struct blkg_rwstat		wait_time;	/* number of IOs queued up */	struct blkg_rwstat		queued;	/* total sectors transferred */	struct blkg_stat		sectors;	/* total disk time and nr sectors dispatched by this group */	struct blkg_stat		time;#ifdef CONFIG_DEBUG_BLK_CGROUP	/* time not charged to this cgroup */	struct blkg_stat		unaccounted_time;	/* sum of number of ios queued across all samples */	struct blkg_stat		avg_queue_size_sum;	/* count of samples taken for average */	struct blkg_stat		avg_queue_size_samples;	/* how many times this group has been removed from service tree */	struct blkg_stat		dequeue;	/* total time spent waiting for it to be assigned a timeslice. */	struct blkg_stat		group_wait_time;	/* time spent idling for this blkcg_gq */	struct blkg_stat		idle_time;	/* total time with empty current active q with other requests queued */	struct blkg_stat		empty_time;	/* fields after this shouldn't be cleared on stat reset */	uint64_t			start_group_wait_time;	uint64_t			start_idle_time;	uint64_t			start_empty_time;	uint16_t			flags;#endif	/* CONFIG_DEBUG_BLK_CGROUP */#endif	/* CONFIG_CFQ_GROUP_IOSCHED */};/* This is per cgroup per device grouping structure */struct cfq_group {	/* must be the first member */	struct blkg_policy_data pd;	/* group service_tree member */	struct rb_node rb_node;	/* group service_tree key */	u64 vdisktime;	unsigned int weight;	unsigned int new_weight;	unsigned int dev_weight;	/* number of cfqq currently on this group */	int nr_cfqq;	/*	 * Per group busy queues average. Useful for workload slice calc. We	 * create the array for each prio class but at run time it is used	 * only for RT and BE class and slot for IDLE class remains unused.	 * This is primarily done to avoid confusion and a gcc warning.	 */	unsigned int busy_queues_avg[CFQ_PRIO_NR];	/*	 * rr lists of queues with requests. We maintain service trees for	 * RT and BE classes. These trees are subdivided in subclasses	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE	 * class there is no subclassification and all the cfq queues go on	 * a single tree service_tree_idle.	 * Counts are embedded in the cfq_rb_root	 */	struct cfq_rb_root service_trees[2][3];	struct cfq_rb_root service_tree_idle;	unsigned long saved_workload_slice;	enum wl_type_t saved_workload;	enum wl_prio_t saved_serving_prio;	/* number of requests that are on the dispatch list or inside driver */	int dispatched;	struct cfq_ttime ttime;	struct cfqg_stats stats;};struct cfq_io_cq {	struct io_cq		icq;		/* must be the first member */	struct cfq_queue	*cfqq[2];	struct cfq_ttime	ttime;	int			ioprio;		/* the current ioprio */#ifdef CONFIG_CFQ_GROUP_IOSCHED	uint64_t		blkcg_id;	/* the current blkcg ID */#endif};/* * Per block device queue structure */struct cfq_data {	struct request_queue *queue;	/* Root service tree for cfq_groups */	struct cfq_rb_root grp_service_tree;	struct cfq_group *root_group;	/*	 * The priority currently being served	 */	enum wl_prio_t serving_prio;	enum wl_type_t serving_type;	unsigned long workload_expires;	struct cfq_group *serving_group;	/*	 * Each priority tree is sorted by next_request position.  These	 * trees are used when determining if two or more queues are	 * interleaving requests (see cfq_close_cooperator).	 */	struct rb_root prio_trees[CFQ_PRIO_LISTS];	unsigned int busy_queues;	unsigned int busy_sync_queues;	int rq_in_driver;	int rq_in_flight[2];	/*	 * queue-depth detection	 */	int rq_queued;	int hw_tag;	/*	 * hw_tag can be	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)	 *  0 => no NCQ	 */	int hw_tag_est_depth;	unsigned int hw_tag_samples;	/*	 * idle window management	 */	struct timer_list idle_slice_timer;	struct work_struct unplug_work;	struct cfq_queue *active_queue;	struct cfq_io_cq *active_cic;	/*	 * async queue for each priority case	 */	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];	struct cfq_queue *async_idle_cfqq;	sector_t last_position;	/*	 * tunables, see top of file	 */	unsigned int cfq_quantum;	unsigned int cfq_fifo_expire[2];	unsigned int cfq_back_penalty;	unsigned int cfq_back_max;	unsigned int cfq_slice[2];	unsigned int cfq_slice_async_rq;	unsigned int cfq_slice_idle;	unsigned int cfq_group_idle;	unsigned int cfq_latency;	unsigned int cfq_target_latency;	/*	 * Fallback dummy cfqq for extreme OOM conditions	 */	struct cfq_queue oom_cfqq;	unsigned long last_delayed_sync;};static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,					    enum wl_prio_t prio,					    enum wl_type_t type){	if (!cfqg)		return NULL;	if (prio == IDLE_WORKLOAD)		return &cfqg->service_tree_idle;	return &cfqg->service_trees[prio][type];}enum cfqq_state_flags {	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
 |