| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749 | /* *  CFQ, or complete fairness queueing, disk scheduler. * *  Based on ideas from a previously unfinished io *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. * *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> */#include <linux/module.h>#include <linux/slab.h>#include <linux/blkdev.h>#include <linux/elevator.h>#include <linux/jiffies.h>#include <linux/rbtree.h>#include <linux/ioprio.h>#include <linux/blktrace_api.h>#include "blk.h"#include "blk-cgroup.h"/* * tunables *//* max queue in one round of service */static const int cfq_quantum = 8;static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };/* maximum backwards seek, in KiB */static const int cfq_back_max = 16 * 1024;/* penalty of a backwards seek */static const int cfq_back_penalty = 2;static const int cfq_slice_sync = HZ / 10;static int cfq_slice_async = HZ / 25;static const int cfq_slice_async_rq = 2;static int cfq_slice_idle = HZ / 125;static int cfq_group_idle = HZ / 125;static const int cfq_target_latency = HZ * 3/10; /* 300 ms */static const int cfq_hist_divisor = 4;/* * offset from end of service tree */#define CFQ_IDLE_DELAY		(HZ / 5)/* * below this threshold, we consider thinktime immediate */#define CFQ_MIN_TT		(2)#define CFQ_SLICE_SCALE		(5)#define CFQ_HW_QUEUE_MIN	(5)#define CFQ_SERVICE_SHIFT       12#define CFQQ_SEEK_THR		(sector_t)(8 * 100)#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])static struct kmem_cache *cfq_pool;#define CFQ_PRIO_LISTS		IOPRIO_BE_NR#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)#define sample_valid(samples)	((samples) > 80)#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)struct cfq_ttime {	unsigned long last_end_request;	unsigned long ttime_total;	unsigned long ttime_samples;	unsigned long ttime_mean;};/* * Most of our rbtree usage is for sorting with min extraction, so * if we cache the leftmost node we don't have to walk down the tree * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should * move this into the elevator for the rq sorting as well. */struct cfq_rb_root {	struct rb_root rb;	struct rb_node *left;	unsigned count;	unsigned total_weight;	u64 min_vdisktime;	struct cfq_ttime ttime;};#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \			.ttime = {.last_end_request = jiffies,},}/* * Per process-grouping structure */struct cfq_queue {	/* reference count */	int ref;	/* various state flags, see below */	unsigned int flags;	/* parent cfq_data */	struct cfq_data *cfqd;	/* service_tree member */	struct rb_node rb_node;	/* service_tree key */	unsigned long rb_key;	/* prio tree member */	struct rb_node p_node;	/* prio tree root we belong to, if any */	struct rb_root *p_root;	/* sorted list of pending requests */	struct rb_root sort_list;	/* if fifo isn't expired, next request to serve */	struct request *next_rq;	/* requests queued in sort_list */	int queued[2];	/* currently allocated requests */	int allocated[2];	/* fifo list of requests in sort_list */	struct list_head fifo;	/* time when queue got scheduled in to dispatch first request. */	unsigned long dispatch_start;	unsigned int allocated_slice;	unsigned int slice_dispatch;	/* time when first request from queue completed and slice started. */	unsigned long slice_start;	unsigned long slice_end;	long slice_resid;	/* pending priority requests */	int prio_pending;	/* number of requests that are on the dispatch list or inside driver */	int dispatched;	/* io prio of this group */	unsigned short ioprio, org_ioprio;	unsigned short ioprio_class;	pid_t pid;	u32 seek_history;	sector_t last_request_pos;	struct cfq_rb_root *service_tree;	struct cfq_queue *new_cfqq;	struct cfq_group *cfqg;	/* Number of sectors dispatched from queue in single dispatch round */	unsigned long nr_sectors;};/* * First index in the service_trees. * IDLE is handled separately, so it has negative index */enum wl_prio_t {	BE_WORKLOAD = 0,	RT_WORKLOAD = 1,	IDLE_WORKLOAD = 2,	CFQ_PRIO_NR,};/* * Second index in the service_trees. */enum wl_type_t {	ASYNC_WORKLOAD = 0,	SYNC_NOIDLE_WORKLOAD = 1,	SYNC_WORKLOAD = 2};struct cfqg_stats {#ifdef CONFIG_CFQ_GROUP_IOSCHED	/* total bytes transferred */	struct blkg_rwstat		service_bytes;	/* total IOs serviced, post merge */	struct blkg_rwstat		serviced;	/* number of ios merged */	struct blkg_rwstat		merged;	/* total time spent on device in ns, may not be accurate w/ queueing */	struct blkg_rwstat		service_time;	/* total time spent waiting in scheduler queue in ns */	struct blkg_rwstat		wait_time;	/* number of IOs queued up */	struct blkg_rwstat		queued;	/* total sectors transferred */	struct blkg_stat		sectors;	/* total disk time and nr sectors dispatched by this group */	struct blkg_stat		time;#ifdef CONFIG_DEBUG_BLK_CGROUP	/* time not charged to this cgroup */	struct blkg_stat		unaccounted_time;	/* sum of number of ios queued across all samples */	struct blkg_stat		avg_queue_size_sum;	/* count of samples taken for average */	struct blkg_stat		avg_queue_size_samples;	/* how many times this group has been removed from service tree */	struct blkg_stat		dequeue;	/* total time spent waiting for it to be assigned a timeslice. */	struct blkg_stat		group_wait_time;	/* time spent idling for this blkcg_gq */	struct blkg_stat		idle_time;	/* total time with empty current active q with other requests queued */	struct blkg_stat		empty_time;	/* fields after this shouldn't be cleared on stat reset */	uint64_t			start_group_wait_time;	uint64_t			start_idle_time;	uint64_t			start_empty_time;	uint16_t			flags;#endif	/* CONFIG_DEBUG_BLK_CGROUP */#endif	/* CONFIG_CFQ_GROUP_IOSCHED */};/* This is per cgroup per device grouping structure */struct cfq_group {	/* must be the first member */	struct blkg_policy_data pd;	/* group service_tree member */	struct rb_node rb_node;	/* group service_tree key */	u64 vdisktime;	unsigned int weight;	unsigned int new_weight;	unsigned int dev_weight;	/* number of cfqq currently on this group */	int nr_cfqq;	/*	 * Per group busy queues average. Useful for workload slice calc. We	 * create the array for each prio class but at run time it is used	 * only for RT and BE class and slot for IDLE class remains unused.	 * This is primarily done to avoid confusion and a gcc warning.	 */	unsigned int busy_queues_avg[CFQ_PRIO_NR];	/*	 * rr lists of queues with requests. We maintain service trees for	 * RT and BE classes. These trees are subdivided in subclasses	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE	 * class there is no subclassification and all the cfq queues go on	 * a single tree service_tree_idle.	 * Counts are embedded in the cfq_rb_root	 */	struct cfq_rb_root service_trees[2][3];	struct cfq_rb_root service_tree_idle;	unsigned long saved_workload_slice;	enum wl_type_t saved_workload;	enum wl_prio_t saved_serving_prio;	/* number of requests that are on the dispatch list or inside driver */	int dispatched;	struct cfq_ttime ttime;	struct cfqg_stats stats;};struct cfq_io_cq {	struct io_cq		icq;		/* must be the first member */	struct cfq_queue	*cfqq[2];	struct cfq_ttime	ttime;	int			ioprio;		/* the current ioprio */#ifdef CONFIG_CFQ_GROUP_IOSCHED	uint64_t		blkcg_id;	/* the current blkcg ID */#endif};/* * Per block device queue structure */struct cfq_data {	struct request_queue *queue;	/* Root service tree for cfq_groups */	struct cfq_rb_root grp_service_tree;	struct cfq_group *root_group;	/*	 * The priority currently being served	 */	enum wl_prio_t serving_prio;	enum wl_type_t serving_type;	unsigned long workload_expires;	struct cfq_group *serving_group;	/*	 * Each priority tree is sorted by next_request position.  These	 * trees are used when determining if two or more queues are	 * interleaving requests (see cfq_close_cooperator).	 */	struct rb_root prio_trees[CFQ_PRIO_LISTS];	unsigned int busy_queues;	unsigned int busy_sync_queues;	int rq_in_driver;	int rq_in_flight[2];	/*	 * queue-depth detection	 */	int rq_queued;	int hw_tag;	/*	 * hw_tag can be	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)	 *  0 => no NCQ	 */	int hw_tag_est_depth;	unsigned int hw_tag_samples;	/*	 * idle window management	 */	struct timer_list idle_slice_timer;	struct work_struct unplug_work;	struct cfq_queue *active_queue;	struct cfq_io_cq *active_cic;	/*	 * async queue for each priority case	 */	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];	struct cfq_queue *async_idle_cfqq;	sector_t last_position;	/*	 * tunables, see top of file	 */	unsigned int cfq_quantum;	unsigned int cfq_fifo_expire[2];	unsigned int cfq_back_penalty;	unsigned int cfq_back_max;	unsigned int cfq_slice[2];	unsigned int cfq_slice_async_rq;	unsigned int cfq_slice_idle;	unsigned int cfq_group_idle;	unsigned int cfq_latency;	unsigned int cfq_target_latency;	/*	 * Fallback dummy cfqq for extreme OOM conditions	 */	struct cfq_queue oom_cfqq;	unsigned long last_delayed_sync;};static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,					    enum wl_prio_t prio,					    enum wl_type_t type){	if (!cfqg)		return NULL;	if (prio == IDLE_WORKLOAD)		return &cfqg->service_tree_idle;	return &cfqg->service_trees[prio][type];}enum cfqq_state_flags {	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */};#define CFQ_CFQQ_FNS(name)						\static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\{									\	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\}									\static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\{									\	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\}									\static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\{									\	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\}CFQ_CFQQ_FNS(on_rr);CFQ_CFQQ_FNS(wait_request);CFQ_CFQQ_FNS(must_dispatch);CFQ_CFQQ_FNS(must_alloc_slice);CFQ_CFQQ_FNS(fifo_expire);CFQ_CFQQ_FNS(idle_window);CFQ_CFQQ_FNS(prio_changed);CFQ_CFQQ_FNS(slice_new);CFQ_CFQQ_FNS(sync);CFQ_CFQQ_FNS(coop);CFQ_CFQQ_FNS(split_coop);CFQ_CFQQ_FNS(deep);CFQ_CFQQ_FNS(wait_busy);#undef CFQ_CFQQ_FNSstatic inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd){	return pd ? container_of(pd, struct cfq_group, pd) : NULL;}static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg){	return pd_to_blkg(&cfqg->pd);}#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)/* cfqg stats flags */enum cfqg_stats_flags {	CFQG_stats_waiting = 0,	CFQG_stats_idling,	CFQG_stats_empty,};#define CFQG_FLAG_FNS(name)						\static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\{									\	stats->flags |= (1 << CFQG_stats_##name);			\}									\static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\{									\	stats->flags &= ~(1 << CFQG_stats_##name);			\}									\static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\{									\	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\}									\CFQG_FLAG_FNS(waiting)CFQG_FLAG_FNS(idling)CFQG_FLAG_FNS(empty)#undef CFQG_FLAG_FNS/* This should be called with the queue_lock held. */static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats){	unsigned long long now;	if (!cfqg_stats_waiting(stats))		return;	now = sched_clock();	if (time_after64(now, stats->start_group_wait_time))		blkg_stat_add(&stats->group_wait_time,			      now - stats->start_group_wait_time);	cfqg_stats_clear_waiting(stats);}/* This should be called with the queue_lock held. */static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,						 struct cfq_group *curr_cfqg){	struct cfqg_stats *stats = &cfqg->stats;	if (cfqg_stats_waiting(stats))		return;	if (cfqg == curr_cfqg)		return;	stats->start_group_wait_time = sched_clock();	cfqg_stats_mark_waiting(stats);}/* This should be called with the queue_lock held. */static void cfqg_stats_end_empty_time(struct cfqg_stats *stats){	unsigned long long now;	if (!cfqg_stats_empty(stats))		return;	now = sched_clock();	if (time_after64(now, stats->start_empty_time))		blkg_stat_add(&stats->empty_time,			      now - stats->start_empty_time);	cfqg_stats_clear_empty(stats);}static void cfqg_stats_update_dequeue(struct cfq_group *cfqg){	blkg_stat_add(&cfqg->stats.dequeue, 1);}static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	if (blkg_rwstat_sum(&stats->queued))		return;	/*	 * group is already marked empty. This can happen if cfqq got new	 * request in parent group and moved to this group while being added	 * to service tree. Just ignore the event and move on.	 */	if (cfqg_stats_empty(stats))		return;	stats->start_empty_time = sched_clock();	cfqg_stats_mark_empty(stats);}static void cfqg_stats_update_idle_time(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	if (cfqg_stats_idling(stats)) {		unsigned long long now = sched_clock();		if (time_after64(now, stats->start_idle_time))			blkg_stat_add(&stats->idle_time,				      now - stats->start_idle_time);		cfqg_stats_clear_idling(stats);	}}static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	BUG_ON(cfqg_stats_idling(stats));	stats->start_idle_time = sched_clock();	cfqg_stats_mark_idling(stats);}static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg){	struct cfqg_stats *stats = &cfqg->stats;	blkg_stat_add(&stats->avg_queue_size_sum,		      blkg_rwstat_sum(&stats->queued));	blkg_stat_add(&stats->avg_queue_size_samples, 1);	cfqg_stats_update_group_wait_time(stats);}#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */#ifdef CONFIG_CFQ_GROUP_IOSCHEDstatic struct blkcg_policy blkcg_policy_cfq;static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg){	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));}static inline void cfqg_get(struct cfq_group *cfqg){	return blkg_get(cfqg_to_blkg(cfqg));}static inline void cfqg_put(struct cfq_group *cfqg){	return blkg_put(cfqg_to_blkg(cfqg));}#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\	char __pbuf[128];						\									\	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \			  cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\			  __pbuf, ##args);				\} while (0)#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\	char __pbuf[128];						\									\	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\} while (0)static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,					    struct cfq_group *curr_cfqg, int rw){	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);	cfqg_stats_end_empty_time(&cfqg->stats);	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);}static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,			unsigned long time, unsigned long unaccounted_time){	blkg_stat_add(&cfqg->stats.time, time);#ifdef CONFIG_DEBUG_BLK_CGROUP	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);#endif}static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw){	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);}static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw){	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);}static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,					      uint64_t bytes, int rw){	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);}static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,			uint64_t start_time, uint64_t io_start_time, int rw){	struct cfqg_stats *stats = &cfqg->stats;	unsigned long long now = sched_clock();	if (time_after64(now, io_start_time))		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);	if (time_after64(io_start_time, start_time))		blkg_rwstat_add(&stats->wait_time, rw,				io_start_time - start_time);}static void cfq_pd_reset_stats(struct blkcg_gq *blkg){	struct cfq_group *cfqg = blkg_to_cfqg(blkg);	struct cfqg_stats *stats = &cfqg->stats;	/* queued stats shouldn't be cleared */	blkg_rwstat_reset(&stats->service_bytes);	blkg_rwstat_reset(&stats->serviced);	blkg_rwstat_reset(&stats->merged);	blkg_rwstat_reset(&stats->service_time);	blkg_rwstat_reset(&stats->wait_time);	blkg_stat_reset(&stats->time);#ifdef CONFIG_DEBUG_BLK_CGROUP	blkg_stat_reset(&stats->unaccounted_time);	blkg_stat_reset(&stats->avg_queue_size_sum);	blkg_stat_reset(&stats->avg_queue_size_samples);	blkg_stat_reset(&stats->dequeue);	blkg_stat_reset(&stats->group_wait_time);	blkg_stat_reset(&stats->idle_time);	blkg_stat_reset(&stats->empty_time);#endif}#else	/* CONFIG_CFQ_GROUP_IOSCHED */static inline void cfqg_get(struct cfq_group *cfqg) { }static inline void cfqg_put(struct cfq_group *cfqg) { }#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,			struct cfq_group *curr_cfqg, int rw) { }static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,			unsigned long time, unsigned long unaccounted_time) { }static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,					      uint64_t bytes, int rw) { }static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,			uint64_t start_time, uint64_t io_start_time, int rw) { }#endif	/* CONFIG_CFQ_GROUP_IOSCHED */#define cfq_log(cfqd, fmt, args...)	\	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)/* Traverses through cfq group service trees */#define for_each_cfqg_st(cfqg, i, j, st) \	for (i = 0; i <= IDLE_WORKLOAD; i++) \		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\			: &cfqg->service_tree_idle; \			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \			(i == IDLE_WORKLOAD && j == 0); \			j++, st = i < IDLE_WORKLOAD ? \			&cfqg->service_trees[i][j]: NULL) \static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,	struct cfq_ttime *ttime, bool group_idle){	unsigned long slice;	if (!sample_valid(ttime->ttime_samples))		return false;	if (group_idle)		slice = cfqd->cfq_group_idle;	else		slice = cfqd->cfq_slice_idle;	return ttime->ttime_mean > slice;}static inline bool iops_mode(struct cfq_data *cfqd){	/*	 * If we are not idling on queues and it is a NCQ drive, parallel	 * execution of requests is on and measuring time is not possible	 * in most of the cases until and unless we drive shallower queue	 * depths and that becomes a performance bottleneck. In such cases	 * switch to start providing fairness in terms of number of IOs.	 */	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)		return true;	else		return false;}static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq){	if (cfq_class_idle(cfqq))		return IDLE_WORKLOAD;	if (cfq_class_rt(cfqq))		return RT_WORKLOAD;	return BE_WORKLOAD;}static enum wl_type_t cfqq_type(struct cfq_queue *cfqq){	if (!cfq_cfqq_sync(cfqq))		return ASYNC_WORKLOAD;	if (!cfq_cfqq_idle_window(cfqq))		return SYNC_NOIDLE_WORKLOAD;	return SYNC_WORKLOAD;}static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,					struct cfq_data *cfqd,					struct cfq_group *cfqg){	if (wl == IDLE_WORKLOAD)		return cfqg->service_tree_idle.count;	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;}static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,					struct cfq_group *cfqg){	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;}static void cfq_dispatch_insert(struct request_queue *, struct request *);static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,				       struct cfq_io_cq *cic, struct bio *bio,				       gfp_t gfp_mask);static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq){	/* cic->icq is the first member, %NULL will convert to %NULL */	return container_of(icq, struct cfq_io_cq, icq);}static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,					       struct io_context *ioc){	if (ioc)		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));	return NULL;}static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync){	return cic->cfqq[is_sync];}static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,				bool is_sync){	cic->cfqq[is_sync] = cfqq;}static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic){	return cic->icq.q->elevator->elevator_data;}/* * We regard a request as SYNC, if it's either a read or has the SYNC bit * set (in which case it could also be direct WRITE). */static inline bool cfq_bio_sync(struct bio *bio){	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);}/* * scheduler run of queue, if there are requests pending and no one in the * driver that will restart queueing */static inline void cfq_schedule_dispatch(struct cfq_data *cfqd){	if (cfqd->busy_queues) {		cfq_log(cfqd, "schedule dispatch");		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);	}}/* * Scale schedule slice based on io priority. Use the sync time slice only * if a queue is marked sync and has sync io queued. A sync queue with async * io only, should not get full sync slice length. */static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,				 unsigned short prio){	const int base_slice = cfqd->cfq_slice[sync];	WARN_ON(prio >= IOPRIO_BE_NR);	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));}static inline intcfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq){	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);}static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg){	u64 d = delta << CFQ_SERVICE_SHIFT;	d = d * CFQ_WEIGHT_DEFAULT;	do_div(d, cfqg->weight);	return d;}static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime){	s64 delta = (s64)(vdisktime - min_vdisktime);	if (delta > 0)		min_vdisktime = vdisktime;	return min_vdisktime;}static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime){	s64 delta = (s64)(vdisktime - min_vdisktime);	if (delta < 0)		min_vdisktime = vdisktime;	return min_vdisktime;}static void update_min_vdisktime(struct cfq_rb_root *st){	struct cfq_group *cfqg;	if (st->left) {		cfqg = rb_entry_cfqg(st->left);		st->min_vdisktime = max_vdisktime(st->min_vdisktime,						  cfqg->vdisktime);	}}/* * get averaged number of queues of RT/BE priority. * average is updated, with a formula that gives more weight to higher numbers, * to quickly follows sudden increases and decrease slowly */static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,					struct cfq_group *cfqg, bool rt){	unsigned min_q, max_q;	unsigned mult  = cfq_hist_divisor - 1;	unsigned round = cfq_hist_divisor / 2;	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);	min_q = min(cfqg->busy_queues_avg[rt], busy);	max_q = max(cfqg->busy_queues_avg[rt], busy);	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /		cfq_hist_divisor;	return cfqg->busy_queues_avg[rt];}static inline unsignedcfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;}static inline unsignedcfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq){	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);	if (cfqd->cfq_latency) {		/*		 * interested queues (we consider only the ones with the same		 * priority class in the cfq group)		 */		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,						cfq_class_rt(cfqq));		unsigned sync_slice = cfqd->cfq_slice[1];		unsigned expect_latency = sync_slice * iq;		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);		if (expect_latency > group_slice) {			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;			/* scale low_slice according to IO priority			 * and sync vs async */			unsigned low_slice =				min(slice, base_low_slice * slice / sync_slice);			/* the adapted slice value is scaled to fit all iqs			 * into the target latency */			slice = max(slice * group_slice / expect_latency,				    low_slice);		}	}	return slice;}static inline voidcfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq){	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);	cfqq->slice_start = jiffies;	cfqq->slice_end = jiffies + slice;	cfqq->allocated_slice = slice;	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);}/* * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end * isn't valid until the first request from the dispatch is activated * and the slice time set. */static inline bool cfq_slice_used(struct cfq_queue *cfqq){	if (cfq_cfqq_slice_new(cfqq))		return false;	if (time_before(jiffies, cfqq->slice_end))		return false;	return true;}/* * Lifted from AS - choose which of rq1 and rq2 that is best served now. * We choose the request that is closest to the head right now. Distance * behind the head is penalized and only allowed to a certain extent. */static struct request *cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last){	sector_t s1, s2, d1 = 0, d2 = 0;	unsigned long back_max;#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */	unsigned wrap = 0; /* bit mask: requests behind the disk head? */	if (rq1 == NULL || rq1 == rq2)		return rq2;	if (rq2 == NULL)		return rq1;	if (rq_is_sync(rq1) != rq_is_sync(rq2))		return rq_is_sync(rq1) ? rq1 : rq2;	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;	s1 = blk_rq_pos(rq1);	s2 = blk_rq_pos(rq2);	/*	 * by definition, 1KiB is 2 sectors	 */	back_max = cfqd->cfq_back_max * 2;	/*	 * Strict one way elevator _except_ in the case where we allow	 * short backward seeks which are biased as twice the cost of a	 * similar forward seek.	 */	if (s1 >= last)		d1 = s1 - last;	else if (s1 + back_max >= last)		d1 = (last - s1) * cfqd->cfq_back_penalty;	else		wrap |= CFQ_RQ1_WRAP;	if (s2 >= last)		d2 = s2 - last;	else if (s2 + back_max >= last)		d2 = (last - s2) * cfqd->cfq_back_penalty;	else		wrap |= CFQ_RQ2_WRAP;	/* Found required data */	/*	 * By doing switch() on the bit mask "wrap" we avoid having to	 * check two variables for all permutations: --> faster!	 */	switch (wrap) {	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */		if (d1 < d2)			return rq1;		else if (d2 < d1)			return rq2;		else {			if (s1 >= s2)				return rq1;			else				return rq2;		}	case CFQ_RQ2_WRAP:		return rq1;	case CFQ_RQ1_WRAP:		return rq2;	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */	default:		/*		 * Since both rqs are wrapped,		 * start with the one that's further behind head		 * (--> only *one* back seek required),		 * since back seek takes more time than forward.		 */		if (s1 <= s2)			return rq1;		else			return rq2;	}}/* * The below is leftmost cache rbtree addon */static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root){	/* Service tree is empty */	if (!root->count)		return NULL;	if (!root->left)		root->left = rb_first(&root->rb);	if (root->left)		return rb_entry(root->left, struct cfq_queue, rb_node);	return NULL;}static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root){	if (!root->left)		root->left = rb_first(&root->rb);	if (root->left)		return rb_entry_cfqg(root->left);	return NULL;}static void rb_erase_init(struct rb_node *n, struct rb_root *root){	rb_erase(n, root);	RB_CLEAR_NODE(n);}static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root){	if (root->left == n)		root->left = NULL;	rb_erase_init(n, &root->rb);	--root->count;}/* * would be nice to take fifo expire time into account as well */static struct request *cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,		  struct request *last){	struct rb_node *rbnext = rb_next(&last->rb_node);	struct rb_node *rbprev = rb_prev(&last->rb_node);	struct request *next = NULL, *prev = NULL;	BUG_ON(RB_EMPTY_NODE(&last->rb_node));	if (rbprev)		prev = rb_entry_rq(rbprev);	if (rbnext)		next = rb_entry_rq(rbnext);	else {		rbnext = rb_first(&cfqq->sort_list);		if (rbnext && rbnext != &last->rb_node)			next = rb_entry_rq(rbnext);	}	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));}static unsigned long cfq_slice_offset(struct cfq_data *cfqd,				      struct cfq_queue *cfqq){	/*	 * just an approximation, should be ok.	 */	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));}static inline s64cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg){	return cfqg->vdisktime - st->min_vdisktime;}static void__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg){	struct rb_node **node = &st->rb.rb_node;	struct rb_node *parent = NULL;	struct cfq_group *__cfqg;	s64 key = cfqg_key(st, cfqg);	int left = 1;	while (*node != NULL) {		parent = *node;		__cfqg = rb_entry_cfqg(parent);		if (key < cfqg_key(st, __cfqg))			node = &parent->rb_left;		else {			node = &parent->rb_right;			left = 0;		}	}	if (left)		st->left = &cfqg->rb_node;	rb_link_node(&cfqg->rb_node, parent, node);	rb_insert_color(&cfqg->rb_node, &st->rb);}static voidcfq_update_group_weight(struct cfq_group *cfqg){	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));	if (cfqg->new_weight) {		cfqg->weight = cfqg->new_weight;		cfqg->new_weight = 0;	}}static voidcfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg){	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));	cfq_update_group_weight(cfqg);	__cfq_group_service_tree_add(st, cfqg);	st->total_weight += cfqg->weight;}static voidcfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	struct cfq_group *__cfqg;	struct rb_node *n;	cfqg->nr_cfqq++;	if (!RB_EMPTY_NODE(&cfqg->rb_node))		return;	/*	 * Currently put the group at the end. Later implement something	 * so that groups get lesser vtime based on their weights, so that	 * if group does not loose all if it was not continuously backlogged.	 */	n = rb_last(&st->rb);	if (n) {		__cfqg = rb_entry_cfqg(n);		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;	} else		cfqg->vdisktime = st->min_vdisktime;	cfq_group_service_tree_add(st, cfqg);}static voidcfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg){	st->total_weight -= cfqg->weight;	if (!RB_EMPTY_NODE(&cfqg->rb_node))		cfq_rb_erase(&cfqg->rb_node, st);}static voidcfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	BUG_ON(cfqg->nr_cfqq < 1);	cfqg->nr_cfqq--;	/* If there are other cfq queues under this group, don't delete it */	if (cfqg->nr_cfqq)		return;	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");	cfq_group_service_tree_del(st, cfqg);	cfqg->saved_workload_slice = 0;	cfqg_stats_update_dequeue(cfqg);}static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,						unsigned int *unaccounted_time){	unsigned int slice_used;	/*	 * Queue got expired before even a single request completed or	 * got expired immediately after first request completion.	 */	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {		/*		 * Also charge the seek time incurred to the group, otherwise		 * if there are mutiple queues in the group, each can dispatch		 * a single request on seeky media and cause lots of seek time		 * and group will never know it.		 */		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),					1);	} else {		slice_used = jiffies - cfqq->slice_start;		if (slice_used > cfqq->allocated_slice) {			*unaccounted_time = slice_used - cfqq->allocated_slice;			slice_used = cfqq->allocated_slice;		}		if (time_after(cfqq->slice_start, cfqq->dispatch_start))			*unaccounted_time += cfqq->slice_start -					cfqq->dispatch_start;	}	return slice_used;}static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,				struct cfq_queue *cfqq){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	unsigned int used_sl, charge, unaccounted_sl = 0;	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)			- cfqg->service_tree_idle.count;	BUG_ON(nr_sync < 0);	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);	if (iops_mode(cfqd))		charge = cfqq->slice_dispatch;	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)		charge = cfqq->allocated_slice;	/* Can't update vdisktime while group is on service tree */	cfq_group_service_tree_del(st, cfqg);	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);	/* If a new weight was requested, update now, off tree */	cfq_group_service_tree_add(st, cfqg);	/* This group is being expired. Save the context */	if (time_after(cfqd->workload_expires, jiffies)) {		cfqg->saved_workload_slice = cfqd->workload_expires						- jiffies;		cfqg->saved_workload = cfqd->serving_type;		cfqg->saved_serving_prio = cfqd->serving_prio;	} else		cfqg->saved_workload_slice = 0;	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,					st->min_vdisktime);	cfq_log_cfqq(cfqq->cfqd, cfqq,		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",		     used_sl, cfqq->slice_dispatch, charge,		     iops_mode(cfqd), cfqq->nr_sectors);	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);	cfqg_stats_set_start_empty_time(cfqg);}/** * cfq_init_cfqg_base - initialize base part of a cfq_group * @cfqg: cfq_group to initialize * * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED * is enabled or not. */static void cfq_init_cfqg_base(struct cfq_group *cfqg){	struct cfq_rb_root *st;	int i, j;	for_each_cfqg_st(cfqg, i, j, st)		*st = CFQ_RB_ROOT;	RB_CLEAR_NODE(&cfqg->rb_node);	cfqg->ttime.last_end_request = jiffies;}#ifdef CONFIG_CFQ_GROUP_IOSCHEDstatic void cfq_pd_init(struct blkcg_gq *blkg){	struct cfq_group *cfqg = blkg_to_cfqg(blkg);	cfq_init_cfqg_base(cfqg);	cfqg->weight = blkg->blkcg->cfq_weight;}/* * Search for the cfq group current task belongs to. request_queue lock must * be held. */static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,						struct blkcg *blkcg){	struct request_queue *q = cfqd->queue;	struct cfq_group *cfqg = NULL;	/* avoid lookup for the common case where there's no blkcg */	if (blkcg == &blkcg_root) {		cfqg = cfqd->root_group;	} else {		struct blkcg_gq *blkg;		blkg = blkg_lookup_create(blkcg, q);		if (!IS_ERR(blkg))			cfqg = blkg_to_cfqg(blkg);	}	return cfqg;}static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg){	/* Currently, all async queues are mapped to root group */	if (!cfq_cfqq_sync(cfqq))		cfqg = cfqq->cfqd->root_group;	cfqq->cfqg = cfqg;	/* cfqq reference on cfqg */	cfqg_get(cfqg);}static u64 cfqg_prfill_weight_device(struct seq_file *sf,				     struct blkg_policy_data *pd, int off){	struct cfq_group *cfqg = pd_to_cfqg(pd);	if (!cfqg->dev_weight)		return 0;	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);}static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,				    struct seq_file *sf){	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),			  cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,			  false);	return 0;}static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,			    struct seq_file *sf){	seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);	return 0;}static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,				  const char *buf){	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);	struct blkg_conf_ctx ctx;	struct cfq_group *cfqg;	int ret;	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);	if (ret)		return ret;	ret = -EINVAL;	cfqg = blkg_to_cfqg(ctx.blkg);	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {		cfqg->dev_weight = ctx.v;		cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;		ret = 0;	}	blkg_conf_finish(&ctx);	return ret;}static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val){	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);	struct blkcg_gq *blkg;	struct hlist_node *n;	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)		return -EINVAL;	spin_lock_irq(&blkcg->lock);	blkcg->cfq_weight = (unsigned int)val;	hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {		struct cfq_group *cfqg = blkg_to_cfqg(blkg);		if (cfqg && !cfqg->dev_weight)			cfqg->new_weight = blkcg->cfq_weight;	}	spin_unlock_irq(&blkcg->lock);	return 0;}static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,			   struct seq_file *sf){	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);	blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,			  cft->private, false);	return 0;}static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,			     struct seq_file *sf){	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);	blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,			  cft->private, true);	return 0;}#ifdef CONFIG_DEBUG_BLK_CGROUPstatic u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,				      struct blkg_policy_data *pd, int off){	struct cfq_group *cfqg = pd_to_cfqg(pd);	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);	u64 v = 0;	if (samples) {		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);		do_div(v, samples);	}	__blkg_prfill_u64(sf, pd, v);	return 0;}/* print avg_queue_size */static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,				     struct seq_file *sf){	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,			  &blkcg_policy_cfq, 0, false);	return 0;}#endif	/* CONFIG_DEBUG_BLK_CGROUP */static struct cftype cfq_blkcg_files[] = {	{		.name = "weight_device",		.read_seq_string = cfqg_print_weight_device,		.write_string = cfqg_set_weight_device,		.max_write_len = 256,	},	{		.name = "weight",		.read_seq_string = cfq_print_weight,		.write_u64 = cfq_set_weight,	},	{		.name = "time",		.private = offsetof(struct cfq_group, stats.time),		.read_seq_string = cfqg_print_stat,	},	{		.name = "sectors",		.private = offsetof(struct cfq_group, stats.sectors),		.read_seq_string = cfqg_print_stat,	},	{		.name = "io_service_bytes",		.private = offsetof(struct cfq_group, stats.service_bytes),		.read_seq_string = cfqg_print_rwstat,	},	{		.name = "io_serviced",		.private = offsetof(struct cfq_group, stats.serviced),		.read_seq_string = cfqg_print_rwstat,	},	{		.name = "io_service_time",		.private = offsetof(struct cfq_group, stats.service_time),		.read_seq_string = cfqg_print_rwstat,	},	{		.name = "io_wait_time",		.private = offsetof(struct cfq_group, stats.wait_time),		.read_seq_string = cfqg_print_rwstat,	},	{		.name = "io_merged",		.private = offsetof(struct cfq_group, stats.merged),		.read_seq_string = cfqg_print_rwstat,	},	{		.name = "io_queued",		.private = offsetof(struct cfq_group, stats.queued),		.read_seq_string = cfqg_print_rwstat,	},#ifdef CONFIG_DEBUG_BLK_CGROUP	{		.name = "avg_queue_size",		.read_seq_string = cfqg_print_avg_queue_size,	},	{		.name = "group_wait_time",		.private = offsetof(struct cfq_group, stats.group_wait_time),		.read_seq_string = cfqg_print_stat,	},	{		.name = "idle_time",		.private = offsetof(struct cfq_group, stats.idle_time),		.read_seq_string = cfqg_print_stat,	},	{		.name = "empty_time",		.private = offsetof(struct cfq_group, stats.empty_time),		.read_seq_string = cfqg_print_stat,	},	{		.name = "dequeue",		.private = offsetof(struct cfq_group, stats.dequeue),		.read_seq_string = cfqg_print_stat,	},	{		.name = "unaccounted_time",		.private = offsetof(struct cfq_group, stats.unaccounted_time),		.read_seq_string = cfqg_print_stat,	},#endif	/* CONFIG_DEBUG_BLK_CGROUP */	{ }	/* terminate */};#else /* GROUP_IOSCHED */static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,						struct blkcg *blkcg){	return cfqd->root_group;}static inline voidcfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {	cfqq->cfqg = cfqg;}#endif /* GROUP_IOSCHED *//* * The cfqd->service_trees holds all pending cfq_queue's that have * requests waiting to be processed. It is sorted in the order that * we will service the queues. */static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,				 bool add_front){	struct rb_node **p, *parent;	struct cfq_queue *__cfqq;	unsigned long rb_key;	struct cfq_rb_root *service_tree;	int left;	int new_cfqq = 1;	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),						cfqq_type(cfqq));	if (cfq_class_idle(cfqq)) {		rb_key = CFQ_IDLE_DELAY;		parent = rb_last(&service_tree->rb);		if (parent && parent != &cfqq->rb_node) {			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);			rb_key += __cfqq->rb_key;		} else			rb_key += jiffies;	} else if (!add_front) {		/*		 * Get our rb key offset. Subtract any residual slice		 * value carried from last service. A negative resid		 * count indicates slice overrun, and this should position		 * the next service time further away in the tree.		 */		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;		rb_key -= cfqq->slice_resid;		cfqq->slice_resid = 0;	} else {		rb_key = -HZ;		__cfqq = cfq_rb_first(service_tree);		rb_key += __cfqq ? __cfqq->rb_key : jiffies;	}	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {		new_cfqq = 0;		/*		 * same position, nothing more to do		 */		if (rb_key == cfqq->rb_key &&		    cfqq->service_tree == service_tree)			return;		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);		cfqq->service_tree = NULL;	}	left = 1;	parent = NULL;	cfqq->service_tree = service_tree;	p = &service_tree->rb.rb_node;	while (*p) {		struct rb_node **n;		parent = *p;		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);		/*		 * sort by key, that represents service time.		 */		if (time_before(rb_key, __cfqq->rb_key))			n = &(*p)->rb_left;		else {			n = &(*p)->rb_right;			left = 0;		}		p = n;	}	if (left)		service_tree->left = &cfqq->rb_node;	cfqq->rb_key = rb_key;	rb_link_node(&cfqq->rb_node, parent, p);	rb_insert_color(&cfqq->rb_node, &service_tree->rb);	service_tree->count++;	if (add_front || !new_cfqq)		return;	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);}static struct cfq_queue *cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,		     sector_t sector, struct rb_node **ret_parent,		     struct rb_node ***rb_link){	struct rb_node **p, *parent;	struct cfq_queue *cfqq = NULL;	parent = NULL;	p = &root->rb_node;	while (*p) {		struct rb_node **n;		parent = *p;		cfqq = rb_entry(parent, struct cfq_queue, p_node);		/*		 * Sort strictly based on sector.  Smallest to the left,		 * largest to the right.		 */		if (sector > blk_rq_pos(cfqq->next_rq))			n = &(*p)->rb_right;		else if (sector < blk_rq_pos(cfqq->next_rq))			n = &(*p)->rb_left;		else			break;		p = n;		cfqq = NULL;	}	*ret_parent = parent;	if (rb_link)		*rb_link = p;	return cfqq;}static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq){	struct rb_node **p, *parent;	struct cfq_queue *__cfqq;	if (cfqq->p_root) {		rb_erase(&cfqq->p_node, cfqq->p_root);		cfqq->p_root = NULL;	}	if (cfq_class_idle(cfqq))		return;	if (!cfqq->next_rq)		return;	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,				      blk_rq_pos(cfqq->next_rq), &parent, &p);	if (!__cfqq) {		rb_link_node(&cfqq->p_node, parent, p);		rb_insert_color(&cfqq->p_node, cfqq->p_root);	} else		cfqq->p_root = NULL;}/* * Update cfqq's position in the service tree. */static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq){	/*	 * Resorting requires the cfqq to be on the RR list already.	 */	if (cfq_cfqq_on_rr(cfqq)) {		cfq_service_tree_add(cfqd, cfqq, 0);		cfq_prio_tree_add(cfqd, cfqq);	}}/* * add to busy list of queues for service, trying to be fair in ordering * the pending list according to last request service */static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq){	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");	BUG_ON(cfq_cfqq_on_rr(cfqq));	cfq_mark_cfqq_on_rr(cfqq);	cfqd->busy_queues++;	if (cfq_cfqq_sync(cfqq))		cfqd->busy_sync_queues++;	cfq_resort_rr_list(cfqd, cfqq);}/* * Called when the cfqq no longer has requests pending, remove it from * the service tree. */static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq){	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");	BUG_ON(!cfq_cfqq_on_rr(cfqq));	cfq_clear_cfqq_on_rr(cfqq);	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);		cfqq->service_tree = NULL;	}	if (cfqq->p_root) {		rb_erase(&cfqq->p_node, cfqq->p_root);		cfqq->p_root = NULL;	}	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);	BUG_ON(!cfqd->busy_queues);	cfqd->busy_queues--;	if (cfq_cfqq_sync(cfqq))		cfqd->busy_sync_queues--;}/* * rb tree support functions */static void cfq_del_rq_rb(struct request *rq){	struct cfq_queue *cfqq = RQ_CFQQ(rq);	const int sync = rq_is_sync(rq);	BUG_ON(!cfqq->queued[sync]);	cfqq->queued[sync]--;	elv_rb_del(&cfqq->sort_list, rq);	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {		/*		 * Queue will be deleted from service tree when we actually		 * expire it later. Right now just remove it from prio tree		 * as it is empty.		 */		if (cfqq->p_root) {			rb_erase(&cfqq->p_node, cfqq->p_root);			cfqq->p_root = NULL;		}	}}static void cfq_add_rq_rb(struct request *rq){	struct cfq_queue *cfqq = RQ_CFQQ(rq);	struct cfq_data *cfqd = cfqq->cfqd;	struct request *prev;	cfqq->queued[rq_is_sync(rq)]++;	elv_rb_add(&cfqq->sort_list, rq);	if (!cfq_cfqq_on_rr(cfqq))		cfq_add_cfqq_rr(cfqd, cfqq);	/*	 * check if this request is a better next-serve candidate	 */	prev = cfqq->next_rq;	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);	/*	 * adjust priority tree position, if ->next_rq changes	 */	if (prev != cfqq->next_rq)		cfq_prio_tree_add(cfqd, cfqq);	BUG_ON(!cfqq->next_rq);}static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq){	elv_rb_del(&cfqq->sort_list, rq);	cfqq->queued[rq_is_sync(rq)]--;	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);	cfq_add_rq_rb(rq);	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,				 rq->cmd_flags);}static struct request *cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio){	struct task_struct *tsk = current;	struct cfq_io_cq *cic;	struct cfq_queue *cfqq;	cic = cfq_cic_lookup(cfqd, tsk->io_context);	if (!cic)		return NULL;	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));	if (cfqq) {		sector_t sector = bio->bi_sector + bio_sectors(bio);		return elv_rb_find(&cfqq->sort_list, sector);	}	return NULL;}static void cfq_activate_request(struct request_queue *q, struct request *rq){	struct cfq_data *cfqd = q->elevator->elevator_data;	cfqd->rq_in_driver++;	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",						cfqd->rq_in_driver);	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);}static void cfq_deactivate_request(struct request_queue *q, struct request *rq){	struct cfq_data *cfqd = q->elevator->elevator_data;	WARN_ON(!cfqd->rq_in_driver);	cfqd->rq_in_driver--;	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",						cfqd->rq_in_driver);}static void cfq_remove_request(struct request *rq){	struct cfq_queue *cfqq = RQ_CFQQ(rq);	if (cfqq->next_rq == rq)		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);	list_del_init(&rq->queuelist);	cfq_del_rq_rb(rq);	cfqq->cfqd->rq_queued--;	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);	if (rq->cmd_flags & REQ_PRIO) {		WARN_ON(!cfqq->prio_pending);		cfqq->prio_pending--;	}}static int cfq_merge(struct request_queue *q, struct request **req,		     struct bio *bio){	struct cfq_data *cfqd = q->elevator->elevator_data;	struct request *__rq;	__rq = cfq_find_rq_fmerge(cfqd, bio);	if (__rq && elv_rq_merge_ok(__rq, bio)) {		*req = __rq;		return ELEVATOR_FRONT_MERGE;	}	return ELEVATOR_NO_MERGE;}static void cfq_merged_request(struct request_queue *q, struct request *req,			       int type){	if (type == ELEVATOR_FRONT_MERGE) {		struct cfq_queue *cfqq = RQ_CFQQ(req);		cfq_reposition_rq_rb(cfqq, req);	}}static void cfq_bio_merged(struct request_queue *q, struct request *req,				struct bio *bio){	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);}static voidcfq_merged_requests(struct request_queue *q, struct request *rq,		    struct request *next){	struct cfq_queue *cfqq = RQ_CFQQ(rq);	struct cfq_data *cfqd = q->elevator->elevator_data;	/*	 * reposition in fifo if next is older than rq	 */	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&	    time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&	    cfqq == RQ_CFQQ(next)) {		list_move(&rq->queuelist, &next->queuelist);		rq_set_fifo_time(rq, rq_fifo_time(next));	}	if (cfqq->next_rq == next)		cfqq->next_rq = rq;	cfq_remove_request(next);	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);	cfqq = RQ_CFQQ(next);	/*	 * all requests of this queue are merged to other queues, delete it	 * from the service tree. If it's the active_queue,	 * cfq_dispatch_requests() will choose to expire it or do idle	 */	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&	    cfqq != cfqd->active_queue)		cfq_del_cfqq_rr(cfqd, cfqq);}static int cfq_allow_merge(struct request_queue *q, struct request *rq,			   struct bio *bio){	struct cfq_data *cfqd = q->elevator->elevator_data;	struct cfq_io_cq *cic;	struct cfq_queue *cfqq;	/*	 * Disallow merge of a sync bio into an async request.	 */	if (cfq_bio_sync(bio) && !rq_is_sync(rq))		return false;	/*	 * Lookup the cfqq that this bio will be queued with and allow	 * merge only if rq is queued there.	 */	cic = cfq_cic_lookup(cfqd, current->io_context);	if (!cic)		return false;	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));	return cfqq == RQ_CFQQ(rq);}static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq){	del_timer(&cfqd->idle_slice_timer);	cfqg_stats_update_idle_time(cfqq->cfqg);}static void __cfq_set_active_queue(struct cfq_data *cfqd,				   struct cfq_queue *cfqq){	if (cfqq) {		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",				cfqd->serving_prio, cfqd->serving_type);		cfqg_stats_update_avg_queue_size(cfqq->cfqg);		cfqq->slice_start = 0;		cfqq->dispatch_start = jiffies;		cfqq->allocated_slice = 0;		cfqq->slice_end = 0;		cfqq->slice_dispatch = 0;		cfqq->nr_sectors = 0;		cfq_clear_cfqq_wait_request(cfqq);		cfq_clear_cfqq_must_dispatch(cfqq);		cfq_clear_cfqq_must_alloc_slice(cfqq);		cfq_clear_cfqq_fifo_expire(cfqq);		cfq_mark_cfqq_slice_new(cfqq);		cfq_del_timer(cfqd, cfqq);	}	cfqd->active_queue = cfqq;}/* * current cfqq expired its slice (or was too idle), select new one */static void__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,		    bool timed_out){	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);	if (cfq_cfqq_wait_request(cfqq))		cfq_del_timer(cfqd, cfqq);	cfq_clear_cfqq_wait_request(cfqq);	cfq_clear_cfqq_wait_busy(cfqq);	/*	 * If this cfqq is shared between multiple processes, check to	 * make sure that those processes are still issuing I/Os within	 * the mean seek distance.  If not, it may be time to break the	 * queues apart again.	 */	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))		cfq_mark_cfqq_split_coop(cfqq);	/*	 * store what was left of this slice, if the queue idled/timed out	 */	if (timed_out) {		if (cfq_cfqq_slice_new(cfqq))			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);		else			cfqq->slice_resid = cfqq->slice_end - jiffies;		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);	}	cfq_group_served(cfqd, cfqq->cfqg, cfqq);	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))		cfq_del_cfqq_rr(cfqd, cfqq);	cfq_resort_rr_list(cfqd, cfqq);	if (cfqq == cfqd->active_queue)		cfqd->active_queue = NULL;	if (cfqd->active_cic) {		put_io_context(cfqd->active_cic->icq.ioc);		cfqd->active_cic = NULL;	}}static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out){	struct cfq_queue *cfqq = cfqd->active_queue;	if (cfqq)		__cfq_slice_expired(cfqd, cfqq, timed_out);}/* * Get next queue for service. Unless we have a queue preemption, * we'll simply select the first cfqq in the service tree. */static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd){	struct cfq_rb_root *service_tree =		service_tree_for(cfqd->serving_group, cfqd->serving_prio,					cfqd->serving_type);	if (!cfqd->rq_queued)		return NULL;	/* There is nothing to dispatch */	if (!service_tree)		return NULL;	if (RB_EMPTY_ROOT(&service_tree->rb))		return NULL;	return cfq_rb_first(service_tree);}static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd){	struct cfq_group *cfqg;	struct cfq_queue *cfqq;	int i, j;	struct cfq_rb_root *st;	if (!cfqd->rq_queued)		return NULL;	cfqg = cfq_get_next_cfqg(cfqd);	if (!cfqg)		return NULL;	for_each_cfqg_st(cfqg, i, j, st)		if ((cfqq = cfq_rb_first(st)) != NULL)			return cfqq;	return NULL;}/* * Get and set a new active queue for service. */static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,					      struct cfq_queue *cfqq){	if (!cfqq)		cfqq = cfq_get_next_queue(cfqd);	__cfq_set_active_queue(cfqd, cfqq);	return cfqq;}static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,					  struct request *rq){	if (blk_rq_pos(rq) >= cfqd->last_position)		return blk_rq_pos(rq) - cfqd->last_position;	else		return cfqd->last_position - blk_rq_pos(rq);}static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,			       struct request *rq){	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;}static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,				    struct cfq_queue *cur_cfqq){	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];	struct rb_node *parent, *node;	struct cfq_queue *__cfqq;	sector_t sector = cfqd->last_position;	if (RB_EMPTY_ROOT(root))		return NULL;	/*	 * First, if we find a request starting at the end of the last	 * request, choose it.	 */	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);	if (__cfqq)		return __cfqq;	/*	 * If the exact sector wasn't found, the parent of the NULL leaf	 * will contain the closest sector.	 */	__cfqq = rb_entry(parent, struct cfq_queue, p_node);	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))		return __cfqq;	if (blk_rq_pos(__cfqq->next_rq) < sector)		node = rb_next(&__cfqq->p_node);	else		node = rb_prev(&__cfqq->p_node);	if (!node)		return NULL;	__cfqq = rb_entry(node, struct cfq_queue, p_node);	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))		return __cfqq;	return NULL;}/* * cfqd - obvious * cur_cfqq - passed in so that we don't decide that the current queue is * 	      closely cooperating with itself. * * So, basically we're assuming that that cur_cfqq has dispatched at least * one request, and that cfqd->last_position reflects a position on the disk * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid * assumption. */static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,					      struct cfq_queue *cur_cfqq){	struct cfq_queue *cfqq;	if (cfq_class_idle(cur_cfqq))		return NULL;	if (!cfq_cfqq_sync(cur_cfqq))		return NULL;	if (CFQQ_SEEKY(cur_cfqq))		return NULL;	/*	 * Don't search priority tree if it's the only queue in the group.	 */	if (cur_cfqq->cfqg->nr_cfqq == 1)		return NULL;	/*	 * We should notice if some of the queues are cooperating, eg	 * working closely on the same area of the disk. In that case,	 * we can group them together and don't waste time idling.	 */	cfqq = cfqq_close(cfqd, cur_cfqq);	if (!cfqq)		return NULL;	/* If new queue belongs to different cfq_group, don't choose it */	if (cur_cfqq->cfqg != cfqq->cfqg)		return NULL;	/*	 * It only makes sense to merge sync queues.	 */	if (!cfq_cfqq_sync(cfqq))		return NULL;	if (CFQQ_SEEKY(cfqq))		return NULL;	/*	 * Do not merge queues of different priority classes	 */	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))		return NULL;	return cfqq;}/* * Determine whether we should enforce idle window for this queue. */static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq){	enum wl_prio_t prio = cfqq_prio(cfqq);	struct cfq_rb_root *service_tree = cfqq->service_tree;	BUG_ON(!service_tree);	BUG_ON(!service_tree->count);	if (!cfqd->cfq_slice_idle)		return false;	/* We never do for idle class queues. */	if (prio == IDLE_WORKLOAD)		return false;	/* We do for queues that were marked with idle window flag. */	if (cfq_cfqq_idle_window(cfqq) &&	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))		return true;	/*	 * Otherwise, we do only if they are the last ones	 * in their service tree.	 */	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))		return true;	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",			service_tree->count);	return false;}static void cfq_arm_slice_timer(struct cfq_data *cfqd){	struct cfq_queue *cfqq = cfqd->active_queue;	struct cfq_io_cq *cic;	unsigned long sl, group_idle = 0;	/*	 * SSD device without seek penalty, disable idling. But only do so	 * for devices that support queuing, otherwise we still have a problem	 * with sync vs async workloads.	 */	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)		return;	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));	WARN_ON(cfq_cfqq_slice_new(cfqq));	/*	 * idle is disabled, either manually or by past process history	 */	if (!cfq_should_idle(cfqd, cfqq)) {		/* no queue idling. Check for group idling */		if (cfqd->cfq_group_idle)			group_idle = cfqd->cfq_group_idle;		else			return;	}	/*	 * still active requests from this queue, don't idle	 */	if (cfqq->dispatched)		return;	/*	 * task has exited, don't wait	 */	cic = cfqd->active_cic;	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))		return;	/*	 * If our average think time is larger than the remaining time	 * slice, then don't idle. This avoids overrunning the allotted	 * time slice.	 */	if (sample_valid(cic->ttime.ttime_samples) &&	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",			     cic->ttime.ttime_mean);		return;	}	/* There are other queues in the group, don't do group idle */	if (group_idle && cfqq->cfqg->nr_cfqq > 1)		return;	cfq_mark_cfqq_wait_request(cfqq);	if (group_idle)		sl = cfqd->cfq_group_idle;	else		sl = cfqd->cfq_slice_idle;	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);	cfqg_stats_set_start_idle_time(cfqq->cfqg);	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,			group_idle ? 1 : 0);}/* * Move request from internal lists to the request queue dispatch list. */static void cfq_dispatch_insert(struct request_queue *q, struct request *rq){	struct cfq_data *cfqd = q->elevator->elevator_data;	struct cfq_queue *cfqq = RQ_CFQQ(rq);	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);	cfq_remove_request(rq);	cfqq->dispatched++;	(RQ_CFQG(rq))->dispatched++;	elv_dispatch_sort(q, rq);	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;	cfqq->nr_sectors += blk_rq_sectors(rq);	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);}/* * return expired entry, or NULL to just start from scratch in rbtree */static struct request *cfq_check_fifo(struct cfq_queue *cfqq){	struct request *rq = NULL;	if (cfq_cfqq_fifo_expire(cfqq))		return NULL;	cfq_mark_cfqq_fifo_expire(cfqq);	if (list_empty(&cfqq->fifo))		return NULL;	rq = rq_entry_fifo(cfqq->fifo.next);	if (time_before(jiffies, rq_fifo_time(rq)))		rq = NULL;	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);	return rq;}static inline intcfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq){	const int base_rq = cfqd->cfq_slice_async_rq;	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);}/* * Must be called with the queue_lock held. */static int cfqq_process_refs(struct cfq_queue *cfqq){	int process_refs, io_refs;	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];	process_refs = cfqq->ref - io_refs;	BUG_ON(process_refs < 0);	return process_refs;}static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq){	int process_refs, new_process_refs;	struct cfq_queue *__cfqq;	/*	 * If there are no process references on the new_cfqq, then it is	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the	 * chain may have dropped their last reference (not just their	 * last process reference).	 */	if (!cfqq_process_refs(new_cfqq))		return;	/* Avoid a circular list and skip interim queue merges */	while ((__cfqq = new_cfqq->new_cfqq)) {		if (__cfqq == cfqq)			return;		new_cfqq = __cfqq;	}	process_refs = cfqq_process_refs(cfqq);	new_process_refs = cfqq_process_refs(new_cfqq);	/*	 * If the process for the cfqq has gone away, there is no	 * sense in merging the queues.	 */	if (process_refs == 0 || new_process_refs == 0)		return;	/*	 * Merge in the direction of the lesser amount of work.	 */	if (new_process_refs >= process_refs) {		cfqq->new_cfqq = new_cfqq;		new_cfqq->ref += process_refs;	} else {		new_cfqq->new_cfqq = cfqq;		cfqq->ref += new_process_refs;	}}static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,				struct cfq_group *cfqg, enum wl_prio_t prio){	struct cfq_queue *queue;	int i;	bool key_valid = false;	unsigned long lowest_key = 0;	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;	for (i = 0; i <= SYNC_WORKLOAD; ++i) {		/* select the one with lowest rb_key */		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));		if (queue &&		    (!key_valid || time_before(queue->rb_key, lowest_key))) {			lowest_key = queue->rb_key;			cur_best = i;			key_valid = true;		}	}	return cur_best;}static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg){	unsigned slice;	unsigned count;	struct cfq_rb_root *st;	unsigned group_slice;	enum wl_prio_t original_prio = cfqd->serving_prio;	/* Choose next priority. RT > BE > IDLE */	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))		cfqd->serving_prio = RT_WORKLOAD;	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))		cfqd->serving_prio = BE_WORKLOAD;	else {		cfqd->serving_prio = IDLE_WORKLOAD;		cfqd->workload_expires = jiffies + 1;		return;	}	if (original_prio != cfqd->serving_prio)		goto new_workload;	/*	 * For RT and BE, we have to choose also the type	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload	 * expiration time	 */	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);	count = st->count;	/*	 * check workload expiration, and that we still have other queues ready	 */	if (count && !time_after(jiffies, cfqd->workload_expires))		return;new_workload:	/* otherwise select new workload type */	cfqd->serving_type =		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);	count = st->count;	/*	 * the workload slice is computed as a fraction of target latency	 * proportional to the number of queues in that workload, over	 * all the queues in the same priority class	 */	group_slice = cfq_group_slice(cfqd, cfqg);	slice = group_slice * count /		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));	if (cfqd->serving_type == ASYNC_WORKLOAD) {		unsigned int tmp;		/*		 * Async queues are currently system wide. Just taking		 * proportion of queues with-in same group will lead to higher		 * async ratio system wide as generally root group is going		 * to have higher weight. A more accurate thing would be to		 * calculate system wide asnc/sync ratio.		 */		tmp = cfqd->cfq_target_latency *			cfqg_busy_async_queues(cfqd, cfqg);		tmp = tmp/cfqd->busy_queues;		slice = min_t(unsigned, slice, tmp);		/* async workload slice is scaled down according to		 * the sync/async slice ratio. */		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];	} else		/* sync workload slice is at least 2 * cfq_slice_idle */		slice = max(slice, 2 * cfqd->cfq_slice_idle);	slice = max_t(unsigned, slice, CFQ_MIN_TT);	cfq_log(cfqd, "workload slice:%d", slice);	cfqd->workload_expires = jiffies + slice;}static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd){	struct cfq_rb_root *st = &cfqd->grp_service_tree;	struct cfq_group *cfqg;	if (RB_EMPTY_ROOT(&st->rb))		return NULL;	cfqg = cfq_rb_first_group(st);	update_min_vdisktime(st);	return cfqg;}static void cfq_choose_cfqg(struct cfq_data *cfqd){	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);	cfqd->serving_group = cfqg;	/* Restore the workload type data */	if (cfqg->saved_workload_slice) {		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;		cfqd->serving_type = cfqg->saved_workload;		cfqd->serving_prio = cfqg->saved_serving_prio;	} else		cfqd->workload_expires = jiffies - 1;	choose_service_tree(cfqd, cfqg);}/* * Select a queue for service. If we have a current active queue, * check whether to continue servicing it, or retrieve and set a new one. */static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd){	struct cfq_queue *cfqq, *new_cfqq = NULL;	cfqq = cfqd->active_queue;	if (!cfqq)		goto new_queue;	if (!cfqd->rq_queued)		return NULL;	/*	 * We were waiting for group to get backlogged. Expire the queue	 */	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))		goto expire;	/*	 * The active queue has run out of time, expire it and select new.	 */	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {		/*		 * If slice had not expired at the completion of last request		 * we might not have turned on wait_busy flag. Don't expire		 * the queue yet. Allow the group to get backlogged.		 *		 * The very fact that we have used the slice, that means we		 * have been idling all along on this queue and it should be		 * ok to wait for this request to complete.		 */		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {			cfqq = NULL;			goto keep_queue;		} else			goto check_group_idle;	}	/*	 * The active queue has requests and isn't expired, allow it to	 * dispatch.	 */	if (!RB_EMPTY_ROOT(&cfqq->sort_list))		goto keep_queue;	/*	 * If another queue has a request waiting within our mean seek	 * distance, let it run.  The expire code will check for close	 * cooperators and put the close queue at the front of the service	 * tree.  If possible, merge the expiring queue with the new cfqq.	 */	new_cfqq = cfq_close_cooperator(cfqd, cfqq);	if (new_cfqq) {		if (!cfqq->new_cfqq)			cfq_setup_merge(cfqq, new_cfqq);		goto expire;	}	/*	 * No requests pending. If the active queue still has requests in	 * flight or is idling for a new request, allow either of these	 * conditions to happen (or time out) before selecting a new queue.	 */	if (timer_pending(&cfqd->idle_slice_timer)) {		cfqq = NULL;		goto keep_queue;	}	/*	 * This is a deep seek queue, but the device is much faster than	 * the queue can deliver, don't idle	 **/	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&	    (cfq_cfqq_slice_new(cfqq) ||	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {		cfq_clear_cfqq_deep(cfqq);		cfq_clear_cfqq_idle_window(cfqq);	}	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {		cfqq = NULL;		goto keep_queue;	}	/*	 * If group idle is enabled and there are requests dispatched from	 * this group, wait for requests to complete.	 */check_group_idle:	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&	    cfqq->cfqg->dispatched &&	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {		cfqq = NULL;		goto keep_queue;	}expire:	cfq_slice_expired(cfqd, 0);new_queue:	/*	 * Current queue expired. Check if we have to switch to a new	 * service tree	 */	if (!new_cfqq)		cfq_choose_cfqg(cfqd);	cfqq = cfq_set_active_queue(cfqd, new_cfqq);keep_queue:	return cfqq;}static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq){	int dispatched = 0;	while (cfqq->next_rq) {		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);		dispatched++;	}	BUG_ON(!list_empty(&cfqq->fifo));	/* By default cfqq is not expired if it is empty. Do it explicitly */	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);	return dispatched;}/* * Drain our current requests. Used for barriers and when switching * io schedulers on-the-fly. */static int cfq_forced_dispatch(struct cfq_data *cfqd){	struct cfq_queue *cfqq;	int dispatched = 0;	/* Expire the timeslice of the current active queue first */	cfq_slice_expired(cfqd, 0);	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {		__cfq_set_active_queue(cfqd, cfqq);		dispatched += __cfq_forced_dispatch_cfqq(cfqq);	}	BUG_ON(cfqd->busy_queues);	cfq_log(cfqd, "forced_dispatch=%d", dispatched);	return dispatched;}static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,	struct cfq_queue *cfqq){	/* the queue hasn't finished any request, can't estimate */	if (cfq_cfqq_slice_new(cfqq))		return true;	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,		cfqq->slice_end))		return true;	return false;}static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq){	unsigned int max_dispatch;	/*	 * Drain async requests before we start sync IO	 */	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])		return false;	/*	 * If this is an async queue and we have sync IO in flight, let it wait	 */	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))		return false;	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);	if (cfq_class_idle(cfqq))		max_dispatch = 1;	/*	 * Does this cfqq already have too much IO in flight?	 */	if (cfqq->dispatched >= max_dispatch) {		bool promote_sync = false;		/*		 * idle queue must always only have a single IO in flight		 */		if (cfq_class_idle(cfqq))			return false;		/*		 * If there is only one sync queue		 * we can ignore async queue here and give the sync		 * queue no dispatch limit. The reason is a sync queue can		 * preempt async queue, limiting the sync queue doesn't make		 * sense. This is useful for aiostress test.		 */		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)			promote_sync = true;		/*		 * We have other queues, don't allow more IO from this one		 */		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&				!promote_sync)			return false;		/*		 * Sole queue user, no limit		 */		if (cfqd->busy_queues == 1 || promote_sync)			max_dispatch = -1;		else			/*			 * Normally we start throttling cfqq when cfq_quantum/2			 * requests have been dispatched. But we can drive			 * deeper queue depths at the beginning of slice			 * subjected to upper limit of cfq_quantum.			 * */			max_dispatch = cfqd->cfq_quantum;	}	/*	 * Async queues must wait a bit before being allowed dispatch.	 * We also ramp up the dispatch depth gradually for async IO,	 * based on the last sync IO we serviced	 */	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;		unsigned int depth;		depth = last_sync / cfqd->cfq_slice[1];		if (!depth && !cfqq->dispatched)			depth = 1;		if (depth < max_dispatch)			max_dispatch = depth;	}	/*	 * If we're below the current max, allow a dispatch	 */	return cfqq->dispatched < max_dispatch;}/* * Dispatch a request from cfqq, moving them to the request queue * dispatch list. */static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq){	struct request *rq;	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));	if (!cfq_may_dispatch(cfqd, cfqq))		return false;	/*	 * follow expired path, else get first next available	 */	rq = cfq_check_fifo(cfqq);	if (!rq)		rq = cfqq->next_rq;	/*	 * insert request into driver dispatch list	 */	cfq_dispatch_insert(cfqd->queue, rq);	if (!cfqd->active_cic) {		struct cfq_io_cq *cic = RQ_CIC(rq);		atomic_long_inc(&cic->icq.ioc->refcount);		cfqd->active_cic = cic;	}	return true;}/* * Find the cfqq that we need to service and move a request from that to the * dispatch list */static int cfq_dispatch_requests(struct request_queue *q, int force){	struct cfq_data *cfqd = q->elevator->elevator_data;	struct cfq_queue *cfqq;	if (!cfqd->busy_queues)		return 0;	if (unlikely(force))		return cfq_forced_dispatch(cfqd);	cfqq = cfq_select_queue(cfqd);	if (!cfqq)		return 0;	/*	 * Dispatch a request from this cfqq, if it is allowed	 */	if (!cfq_dispatch_request(cfqd, cfqq))		return 0;	cfqq->slice_dispatch++;	cfq_clear_cfqq_must_dispatch(cfqq);	/*	 * expire an async queue immediately if it has used up its slice. idle	 * queue always expire after 1 dispatch round.	 */	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||	    cfq_class_idle(cfqq))) {		cfqq->slice_end = jiffies + 1;		cfq_slice_expired(cfqd, 0);	}	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");	return 1;}/* * task holds one reference to the queue, dropped when task exits. each rq * in-flight on this queue also holds a reference, dropped when rq is freed. * * Each cfq queue took a reference on the parent group. Drop it now. * queue lock must be held here. */static void cfq_put_queue(struct cfq_queue *cfqq){	struct cfq_data *cfqd = cfqq->cfqd;	struct cfq_group *cfqg;	BUG_ON(cfqq->ref <= 0);	cfqq->ref--;	if (cfqq->ref)		return;	cfq_log_cfqq(cfqd, cfqq, "put_queue");	BUG_ON(rb_first(&cfqq->sort_list));	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);	cfqg = cfqq->cfqg;	if (unlikely(cfqd->active_queue == cfqq)) {		__cfq_slice_expired(cfqd, cfqq, 0);		cfq_schedule_dispatch(cfqd);	}	BUG_ON(cfq_cfqq_on_rr(cfqq));	kmem_cache_free(cfq_pool, cfqq);	cfqg_put(cfqg);}static void cfq_put_cooperator(struct cfq_queue *cfqq){	struct cfq_queue *__cfqq, *next;	/*	 * If this queue was scheduled to merge with another queue, be	 * sure to drop the reference taken on that queue (and others in	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.	 */	__cfqq = cfqq->new_cfqq;	while (__cfqq) {		if (__cfqq == cfqq) {			WARN(1, "cfqq->new_cfqq loop detected\n");			break;		}		next = __cfqq->new_cfqq;		cfq_put_queue(__cfqq);		__cfqq = next;	}}static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq){	if (unlikely(cfqq == cfqd->active_queue)) {		__cfq_slice_expired(cfqd, cfqq, 0);		cfq_schedule_dispatch(cfqd);	}	cfq_put_cooperator(cfqq);	cfq_put_queue(cfqq);}static void cfq_init_icq(struct io_cq *icq){	struct cfq_io_cq *cic = icq_to_cic(icq);	cic->ttime.last_end_request = jiffies;}static void cfq_exit_icq(struct io_cq *icq){	struct cfq_io_cq *cic = icq_to_cic(icq);	struct cfq_data *cfqd = cic_to_cfqd(cic);	if (cic->cfqq[BLK_RW_ASYNC]) {		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);		cic->cfqq[BLK_RW_ASYNC] = NULL;	}	if (cic->cfqq[BLK_RW_SYNC]) {		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);		cic->cfqq[BLK_RW_SYNC] = NULL;	}}static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic){	struct task_struct *tsk = current;	int ioprio_class;	if (!cfq_cfqq_prio_changed(cfqq))		return;	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);	switch (ioprio_class) {	default:		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);	case IOPRIO_CLASS_NONE:		/*		 * no prio set, inherit CPU scheduling settings		 */		cfqq->ioprio = task_nice_ioprio(tsk);		cfqq->ioprio_class = task_nice_ioclass(tsk);		break;	case IOPRIO_CLASS_RT:		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);		cfqq->ioprio_class = IOPRIO_CLASS_RT;		break;	case IOPRIO_CLASS_BE:		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);		cfqq->ioprio_class = IOPRIO_CLASS_BE;		break;	case IOPRIO_CLASS_IDLE:		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;		cfqq->ioprio = 7;		cfq_clear_cfqq_idle_window(cfqq);		break;	}	/*	 * keep track of original prio settings in case we have to temporarily	 * elevate the priority of this queue	 */	cfqq->org_ioprio = cfqq->ioprio;	cfq_clear_cfqq_prio_changed(cfqq);}static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio){	int ioprio = cic->icq.ioc->ioprio;	struct cfq_data *cfqd = cic_to_cfqd(cic);	struct cfq_queue *cfqq;	/*	 * Check whether ioprio has changed.  The condition may trigger	 * spuriously on a newly created cic but there's no harm.	 */	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))		return;	cfqq = cic->cfqq[BLK_RW_ASYNC];	if (cfqq) {		struct cfq_queue *new_cfqq;		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,					 GFP_ATOMIC);		if (new_cfqq) {			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;			cfq_put_queue(cfqq);		}	}	cfqq = cic->cfqq[BLK_RW_SYNC];	if (cfqq)		cfq_mark_cfqq_prio_changed(cfqq);	cic->ioprio = ioprio;}static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,			  pid_t pid, bool is_sync){	RB_CLEAR_NODE(&cfqq->rb_node);	RB_CLEAR_NODE(&cfqq->p_node);	INIT_LIST_HEAD(&cfqq->fifo);	cfqq->ref = 0;	cfqq->cfqd = cfqd;	cfq_mark_cfqq_prio_changed(cfqq);	if (is_sync) {		if (!cfq_class_idle(cfqq))			cfq_mark_cfqq_idle_window(cfqq);		cfq_mark_cfqq_sync(cfqq);	}	cfqq->pid = pid;}#ifdef CONFIG_CFQ_GROUP_IOSCHEDstatic void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio){	struct cfq_data *cfqd = cic_to_cfqd(cic);	struct cfq_queue *sync_cfqq;	uint64_t id;	rcu_read_lock();	id = bio_blkcg(bio)->id;	rcu_read_unlock();	/*	 * Check whether blkcg has changed.  The condition may trigger	 * spuriously on a newly created cic but there's no harm.	 */	if (unlikely(!cfqd) || likely(cic->blkcg_id == id))		return;	sync_cfqq = cic_to_cfqq(cic, 1);	if (sync_cfqq) {		/*		 * Drop reference to sync queue. A new sync queue will be		 * assigned in new group upon arrival of a fresh request.		 */		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");		cic_set_cfqq(cic, NULL, 1);		cfq_put_queue(sync_cfqq);	}	cic->blkcg_id = id;}#elsestatic inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }#endif  /* CONFIG_CFQ_GROUP_IOSCHED */static struct cfq_queue *cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,		     struct bio *bio, gfp_t gfp_mask){	struct blkcg *blkcg;	struct cfq_queue *cfqq, *new_cfqq = NULL;	struct cfq_group *cfqg;retry:	rcu_read_lock();	blkcg = bio_blkcg(bio);	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);	cfqq = cic_to_cfqq(cic, is_sync);	/*	 * Always try a new alloc if we fell back to the OOM cfqq	 * originally, since it should just be a temporary situation.	 */	if (!cfqq || cfqq == &cfqd->oom_cfqq) {		cfqq = NULL;		if (new_cfqq) {			cfqq = new_cfqq;			new_cfqq = NULL;		} else if (gfp_mask & __GFP_WAIT) {			rcu_read_unlock();			spin_unlock_irq(cfqd->queue->queue_lock);			new_cfqq = kmem_cache_alloc_node(cfq_pool,					gfp_mask | __GFP_ZERO,					cfqd->queue->node);			spin_lock_irq(cfqd->queue->queue_lock);			if (new_cfqq)				goto retry;		} else {			cfqq = kmem_cache_alloc_node(cfq_pool,					gfp_mask | __GFP_ZERO,					cfqd->queue->node);		}		if (cfqq) {			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);			cfq_init_prio_data(cfqq, cic);			cfq_link_cfqq_cfqg(cfqq, cfqg);			cfq_log_cfqq(cfqd, cfqq, "alloced");		} else			cfqq = &cfqd->oom_cfqq;	}	if (new_cfqq)		kmem_cache_free(cfq_pool, new_cfqq);	rcu_read_unlock();	return cfqq;}static struct cfq_queue **cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio){	switch (ioprio_class) {	case IOPRIO_CLASS_RT:		return &cfqd->async_cfqq[0][ioprio];	case IOPRIO_CLASS_NONE:		ioprio = IOPRIO_NORM;		/* fall through */	case IOPRIO_CLASS_BE:		return &cfqd->async_cfqq[1][ioprio];	case IOPRIO_CLASS_IDLE:		return &cfqd->async_idle_cfqq;	default:		BUG();	}}static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,	      struct bio *bio, gfp_t gfp_mask){	const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);	const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);	struct cfq_queue **async_cfqq = NULL;	struct cfq_queue *cfqq = NULL;	if (!is_sync) {		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);		cfqq = *async_cfqq;	}	if (!cfqq)		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);	/*	 * pin the queue now that it's allocated, scheduler exit will prune it	 */	if (!is_sync && !(*async_cfqq)) {		cfqq->ref++;		*async_cfqq = cfqq;	}	cfqq->ref++;	return cfqq;}static void__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle){	unsigned long elapsed = jiffies - ttime->last_end_request;	elapsed = min(elapsed, 2UL * slice_idle);	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;}static voidcfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,			struct cfq_io_cq *cic){	if (cfq_cfqq_sync(cfqq)) {		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,			cfqd->cfq_slice_idle);	}#ifdef CONFIG_CFQ_GROUP_IOSCHED	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);#endif}static voidcfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,		       struct request *rq){	sector_t sdist = 0;	sector_t n_sec = blk_rq_sectors(rq);	if (cfqq->last_request_pos) {		if (cfqq->last_request_pos < blk_rq_pos(rq))			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;		else			sdist = cfqq->last_request_pos - blk_rq_pos(rq);	}	cfqq->seek_history <<= 1;	if (blk_queue_nonrot(cfqd->queue))		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);	else		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);}/* * Disable idle window if the process thinks too long or seeks so much that * it doesn't matter */static voidcfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,		       struct cfq_io_cq *cic){	int old_idle, enable_idle;	/*	 * Don't idle for async or idle io prio class	 */	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))		return;	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);	if (cfqq->queued[0] + cfqq->queued[1] >= 4)		cfq_mark_cfqq_deep(cfqq);	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))		enable_idle = 0;	else if (!atomic_read(&cic->icq.ioc->active_ref) ||		 !cfqd->cfq_slice_idle ||		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))		enable_idle = 0;	else if (sample_valid(cic->ttime.ttime_samples)) {		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)			enable_idle = 0;		else			enable_idle = 1;	}	if (old_idle != enable_idle) {		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);		if (enable_idle)			cfq_mark_cfqq_idle_window(cfqq);		else			cfq_clear_cfqq_idle_window(cfqq);	}}/* * Check if new_cfqq should preempt the currently active queue. Return 0 for * no or if we aren't sure, a 1 will cause a preempt. */static boolcfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,		   struct request *rq){	struct cfq_queue *cfqq;	cfqq = cfqd->active_queue;	if (!cfqq)		return false;	if (cfq_class_idle(new_cfqq))		return false;	if (cfq_class_idle(cfqq))		return true;	/*	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.	 */	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))		return false;	/*	 * if the new request is sync, but the currently running queue is	 * not, let the sync request have priority.	 */	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))		return true;	if (new_cfqq->cfqg != cfqq->cfqg)		return false;	if (cfq_slice_used(cfqq))		return true;	/* Allow preemption only if we are idling on sync-noidle tree */	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&	    new_cfqq->service_tree->count == 2 &&	    RB_EMPTY_ROOT(&cfqq->sort_list))		return true;	/*	 * So both queues are sync. Let the new request get disk time if	 * it's a metadata request and the current queue is doing regular IO.	 */	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)		return true;	/*	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.	 */	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))		return true;	/* An idle queue should not be idle now for some reason */	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))		return true;	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))		return false;	/*	 * if this request is as-good as one we would expect from the	 * current cfqq, let it preempt	 */	if (cfq_rq_close(cfqd, cfqq, rq))		return true;	return false;}/* * cfqq preempts the active queue. if we allowed preempt with no slice left, * let it have half of its nominal slice. */static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq){	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);	cfq_log_cfqq(cfqd, cfqq, "preempt");	cfq_slice_expired(cfqd, 1);	/*	 * workload type is changed, don't save slice, otherwise preempt	 * doesn't happen	 */	if (old_type != cfqq_type(cfqq))		cfqq->cfqg->saved_workload_slice = 0;	/*	 * Put the new queue at the front of the of the current list,	 * so we know that it will be selected next.	 */	BUG_ON(!cfq_cfqq_on_rr(cfqq));	cfq_service_tree_add(cfqd, cfqq, 1);	cfqq->slice_end = 0;	cfq_mark_cfqq_slice_new(cfqq);}/* * Called when a new fs request (rq) is added (to cfqq). Check if there's * something we should do about it */static voidcfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,		struct request *rq){	struct cfq_io_cq *cic = RQ_CIC(rq);	cfqd->rq_queued++;	if (rq->cmd_flags & REQ_PRIO)		cfqq->prio_pending++;	cfq_update_io_thinktime(cfqd, cfqq, cic);	cfq_update_io_seektime(cfqd, cfqq, rq);	cfq_update_idle_window(cfqd, cfqq, cic);	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);	if (cfqq == cfqd->active_queue) {		/*		 * Remember that we saw a request from this process, but		 * don't start queuing just yet. Otherwise we risk seeing lots		 * of tiny requests, because we disrupt the normal plugging		 * and merging. If the request is already larger than a single		 * page, let it rip immediately. For that case we assume that		 * merging is already done. Ditto for a busy system that		 * has other work pending, don't risk delaying until the		 * idle timer unplug to continue working.		 */		if (cfq_cfqq_wait_request(cfqq)) {			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||			    cfqd->busy_queues > 1) {				cfq_del_timer(cfqd, cfqq);				cfq_clear_cfqq_wait_request(cfqq);				__blk_run_queue(cfqd->queue);			} else {				cfqg_stats_update_idle_time(cfqq->cfqg);				cfq_mark_cfqq_must_dispatch(cfqq);			}		}	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {		/*		 * not the active queue - expire current slice if it is		 * idle and has expired it's mean thinktime or this new queue		 * has some old slice time left and is of higher priority or		 * this new queue is RT and the current one is BE		 */		cfq_preempt_queue(cfqd, cfqq);		__blk_run_queue(cfqd->queue);	}}static void cfq_insert_request(struct request_queue *q, struct request *rq){	struct cfq_data *cfqd = q->elevator->elevator_data;	struct cfq_queue *cfqq = RQ_CFQQ(rq);	cfq_log_cfqq(cfqd, cfqq, "insert_request");	cfq_init_prio_data(cfqq, RQ_CIC(rq));	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);	list_add_tail(&rq->queuelist, &cfqq->fifo);	cfq_add_rq_rb(rq);	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,				 rq->cmd_flags);	cfq_rq_enqueued(cfqd, cfqq, rq);}/* * Update hw_tag based on peak queue depth over 50 samples under * sufficient load. */static void cfq_update_hw_tag(struct cfq_data *cfqd){	struct cfq_queue *cfqq = cfqd->active_queue;	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;	if (cfqd->hw_tag == 1)		return;	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)		return;	/*	 * If active queue hasn't enough requests and can idle, cfq might not	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this	 * case	 */	if (cfqq && cfq_cfqq_idle_window(cfqq) &&	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)		return;	if (cfqd->hw_tag_samples++ < 50)		return;	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)		cfqd->hw_tag = 1;	else		cfqd->hw_tag = 0;}static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq){	struct cfq_io_cq *cic = cfqd->active_cic;	/* If the queue already has requests, don't wait */	if (!RB_EMPTY_ROOT(&cfqq->sort_list))		return false;	/* If there are other queues in the group, don't wait */	if (cfqq->cfqg->nr_cfqq > 1)		return false;	/* the only queue in the group, but think time is big */	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))		return false;	if (cfq_slice_used(cfqq))		return true;	/* if slice left is less than think time, wait busy */	if (cic && sample_valid(cic->ttime.ttime_samples)	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))		return true;	/*	 * If think times is less than a jiffy than ttime_mean=0 and above	 * will not be true. It might happen that slice has not expired yet	 * but will expire soon (4-5 ns) during select_queue(). To cover the	 * case where think time is less than a jiffy, mark the queue wait	 * busy if only 1 jiffy is left in the slice.	 */	if (cfqq->slice_end - jiffies == 1)		return true;	return false;}static void cfq_completed_request(struct request_queue *q, struct request *rq){	struct cfq_queue *cfqq = RQ_CFQQ(rq);	struct cfq_data *cfqd = cfqq->cfqd;	const int sync = rq_is_sync(rq);	unsigned long now;	now = jiffies;	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",		     !!(rq->cmd_flags & REQ_NOIDLE));	cfq_update_hw_tag(cfqd);	WARN_ON(!cfqd->rq_in_driver);	WARN_ON(!cfqq->dispatched);	cfqd->rq_in_driver--;	cfqq->dispatched--;	(RQ_CFQG(rq))->dispatched--;	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),				     rq_io_start_time_ns(rq), rq->cmd_flags);	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;	if (sync) {		struct cfq_rb_root *service_tree;		RQ_CIC(rq)->ttime.last_end_request = now;		if (cfq_cfqq_on_rr(cfqq))			service_tree = cfqq->service_tree;		else			service_tree = service_tree_for(cfqq->cfqg,				cfqq_prio(cfqq), cfqq_type(cfqq));		service_tree->ttime.last_end_request = now;		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))			cfqd->last_delayed_sync = now;	}#ifdef CONFIG_CFQ_GROUP_IOSCHED	cfqq->cfqg->ttime.last_end_request = now;#endif	/*	 * If this is the active queue, check if it needs to be expired,	 * or if we want to idle in case it has no pending requests.	 */	if (cfqd->active_queue == cfqq) {		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);		if (cfq_cfqq_slice_new(cfqq)) {			cfq_set_prio_slice(cfqd, cfqq);			cfq_clear_cfqq_slice_new(cfqq);		}		/*		 * Should we wait for next request to come in before we expire		 * the queue.		 */		if (cfq_should_wait_busy(cfqd, cfqq)) {			unsigned long extend_sl = cfqd->cfq_slice_idle;			if (!cfqd->cfq_slice_idle)				extend_sl = cfqd->cfq_group_idle;			cfqq->slice_end = jiffies + extend_sl;			cfq_mark_cfqq_wait_busy(cfqq);			cfq_log_cfqq(cfqd, cfqq, "will busy wait");		}		/*		 * Idling is not enabled on:		 * - expired queues		 * - idle-priority queues		 * - async queues		 * - queues with still some requests queued		 * - when there is a close cooperator		 */		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))			cfq_slice_expired(cfqd, 1);		else if (sync && cfqq_empty &&			 !cfq_close_cooperator(cfqd, cfqq)) {			cfq_arm_slice_timer(cfqd);		}	}	if (!cfqd->rq_in_driver)		cfq_schedule_dispatch(cfqd);}static inline int __cfq_may_queue(struct cfq_queue *cfqq){	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {		cfq_mark_cfqq_must_alloc_slice(cfqq);		return ELV_MQUEUE_MUST;	}	return ELV_MQUEUE_MAY;}static int cfq_may_queue(struct request_queue *q, int rw){	struct cfq_data *cfqd = q->elevator->elevator_data;	struct task_struct *tsk = current;	struct cfq_io_cq *cic;	struct cfq_queue *cfqq;	/*	 * don't force setup of a queue from here, as a call to may_queue	 * does not necessarily imply that a request actually will be queued.	 * so just lookup a possibly existing queue, or return 'may queue'	 * if that fails	 */	cic = cfq_cic_lookup(cfqd, tsk->io_context);	if (!cic)		return ELV_MQUEUE_MAY;	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));	if (cfqq) {		cfq_init_prio_data(cfqq, cic);		return __cfq_may_queue(cfqq);	}	return ELV_MQUEUE_MAY;}/* * queue lock held here */static void cfq_put_request(struct request *rq){	struct cfq_queue *cfqq = RQ_CFQQ(rq);	if (cfqq) {		const int rw = rq_data_dir(rq);
 |