| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 | /* *	linux/arch/alpha/kernel/core_tsunami.c * * Based on code written by David A. Rusling (david.rusling@reo.mts.dec.com). * * Code common to all TSUNAMI core logic chips. */#define __EXTERN_INLINE inline#include <asm/io.h>#include <asm/core_tsunami.h>#undef __EXTERN_INLINE#include <linux/module.h>#include <linux/types.h>#include <linux/pci.h>#include <linux/sched.h>#include <linux/init.h>#include <linux/bootmem.h>#include <asm/ptrace.h>#include <asm/smp.h>#include <asm/vga.h>#include "proto.h"#include "pci_impl.h"/* Save Tsunami configuration data as the console had it set up.  */struct {	unsigned long wsba[4];	unsigned long wsm[4];	unsigned long tba[4];} saved_config[2] __attribute__((common));/* * NOTE: Herein lie back-to-back mb instructions.  They are magic.  * One plausible explanation is that the I/O controller does not properly * handle the system transaction.  Another involves timing.  Ho hum. *//* * BIOS32-style PCI interface: */#define DEBUG_CONFIG 0#if DEBUG_CONFIG# define DBG_CFG(args)	printk args#else# define DBG_CFG(args)#endif/* * Given a bus, device, and function number, compute resulting * configuration space address * accordingly.  It is therefore not safe to have concurrent * invocations to configuration space access routines, but there * really shouldn't be any need for this. * * Note that all config space accesses use Type 1 address format. * * Note also that type 1 is determined by non-zero bus number. * * Type 1: * *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1  *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * *	31:24	reserved *	23:16	bus number (8 bits = 128 possible buses) *	15:11	Device number (5 bits) *	10:8	function number *	 7:2	register number *   * Notes: *	The function number selects which function of a multi-function device  *	(e.g., SCSI and Ethernet). *  *	The register selects a DWORD (32 bit) register offset.  Hence it *	doesn't get shifted by 2 bits as we want to "drop" the bottom two *	bits. */static intmk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,	     unsigned long *pci_addr, unsigned char *type1){	struct pci_controller *hose = pbus->sysdata;	unsigned long addr;	u8 bus = pbus->number;	DBG_CFG(("mk_conf_addr(bus=%d ,device_fn=0x%x, where=0x%x, "		 "pci_addr=0x%p, type1=0x%p)\n",		 bus, device_fn, where, pci_addr, type1));		if (!pbus->parent) /* No parent means peer PCI bus. */		bus = 0;	*type1 = (bus != 0);	addr = (bus << 16) | (device_fn << 8) | where;	addr |= hose->config_space_base;			*pci_addr = addr;	DBG_CFG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));	return 0;}static int tsunami_read_config(struct pci_bus *bus, unsigned int devfn, int where,		    int size, u32 *value){	unsigned long addr;	unsigned char type1;	if (mk_conf_addr(bus, devfn, where, &addr, &type1))		return PCIBIOS_DEVICE_NOT_FOUND;	switch (size) {	case 1:		*value = __kernel_ldbu(*(vucp)addr);		break;	case 2:		*value = __kernel_ldwu(*(vusp)addr);		break;	case 4:		*value = *(vuip)addr;		break;	}	return PCIBIOS_SUCCESSFUL;}static int tsunami_write_config(struct pci_bus *bus, unsigned int devfn, int where,		     int size, u32 value){	unsigned long addr;	unsigned char type1;	if (mk_conf_addr(bus, devfn, where, &addr, &type1))		return PCIBIOS_DEVICE_NOT_FOUND;	switch (size) {	case 1:		__kernel_stb(value, *(vucp)addr);		mb();		__kernel_ldbu(*(vucp)addr);		break;	case 2:		__kernel_stw(value, *(vusp)addr);		mb();		__kernel_ldwu(*(vusp)addr);		break;	case 4:		*(vuip)addr = value;		mb();		*(vuip)addr;		break;	}	return PCIBIOS_SUCCESSFUL;}struct pci_ops tsunami_pci_ops = {	.read =		tsunami_read_config,	.write = 	tsunami_write_config,};voidtsunami_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end){	tsunami_pchip *pchip = hose->index ? TSUNAMI_pchip1 : TSUNAMI_pchip0;	volatile unsigned long *csr;	unsigned long value;	/* We can invalidate up to 8 tlb entries in a go.  The flush	   matches against <31:16> in the pci address.  */	csr = &pchip->tlbia.csr;	if (((start ^ end) & 0xffff0000) == 0)		csr = &pchip->tlbiv.csr;	/* For TBIA, it doesn't matter what value we write.  For TBI, 	   it's the shifted tag bits.  */	value = (start & 0xffff0000) >> 12;	*csr = value;	mb();	*csr;}#ifdef NXM_MACHINE_CHECKS_ON_TSUNAMIstatic long __inittsunami_probe_read(volatile unsigned long *vaddr){	long dont_care, probe_result;	int cpu = smp_processor_id();	int s = swpipl(IPL_MCHECK - 1);	mcheck_taken(cpu) = 0;	mcheck_expected(cpu) = 1;	mb();	dont_care = *vaddr;	draina();	mcheck_expected(cpu) = 0;	probe_result = !mcheck_taken(cpu);	mcheck_taken(cpu) = 0;	setipl(s);	printk("dont_care == 0x%lx\n", dont_care);	return probe_result;}static long __inittsunami_probe_write(volatile unsigned long *vaddr){	long true_contents, probe_result = 1;	TSUNAMI_cchip->misc.csr |= (1L << 28); /* clear NXM... */	true_contents = *vaddr;	*vaddr = 0;	draina();	if (TSUNAMI_cchip->misc.csr & (1L << 28)) {		int source = (TSUNAMI_cchip->misc.csr >> 29) & 7;		TSUNAMI_cchip->misc.csr |= (1L << 28); /* ...and unlock NXS. */		probe_result = 0;		printk("tsunami_probe_write: unit %d at 0x%016lx\n", source,		       (unsigned long)vaddr);	}	if (probe_result)		*vaddr = true_contents;	return probe_result;}#else#define tsunami_probe_read(ADDR) 1#endif /* NXM_MACHINE_CHECKS_ON_TSUNAMI */static void __inittsunami_init_one_pchip(tsunami_pchip *pchip, int index){	struct pci_controller *hose;	if (tsunami_probe_read(&pchip->pctl.csr) == 0)		return;	hose = alloc_pci_controller();	if (index == 0)		pci_isa_hose = hose;	hose->io_space = alloc_resource();	hose->mem_space = alloc_resource();	/* This is for userland consumption.  For some reason, the 40-bit	   PIO bias that we use in the kernel through KSEG didn't work for	   the page table based user mappings.  So make sure we get the	   43-bit PIO bias.  */	hose->sparse_mem_base = 0;	hose->sparse_io_base = 0;	hose->dense_mem_base	  = (TSUNAMI_MEM(index) & 0xffffffffffL) | 0x80000000000L;	hose->dense_io_base	  = (TSUNAMI_IO(index) & 0xffffffffffL) | 0x80000000000L;	hose->config_space_base = TSUNAMI_CONF(index);	hose->index = index;	hose->io_space->start = TSUNAMI_IO(index) - TSUNAMI_IO_BIAS;	hose->io_space->end = hose->io_space->start + TSUNAMI_IO_SPACE - 1;	hose->io_space->name = pci_io_names[index];	hose->io_space->flags = IORESOURCE_IO;	hose->mem_space->start = TSUNAMI_MEM(index) - TSUNAMI_MEM_BIAS;	hose->mem_space->end = hose->mem_space->start + 0xffffffff;	hose->mem_space->name = pci_mem_names[index];	hose->mem_space->flags = IORESOURCE_MEM;	if (request_resource(&ioport_resource, hose->io_space) < 0)		printk(KERN_ERR "Failed to request IO on hose %d\n", index);	if (request_resource(&iomem_resource, hose->mem_space) < 0)		printk(KERN_ERR "Failed to request MEM on hose %d\n", index);	/*	 * Save the existing PCI window translations.  SRM will 	 * need them when we go to reboot.	 */	saved_config[index].wsba[0] = pchip->wsba[0].csr;	saved_config[index].wsm[0] = pchip->wsm[0].csr;	saved_config[index].tba[0] = pchip->tba[0].csr;	saved_config[index].wsba[1] = pchip->wsba[1].csr;	saved_config[index].wsm[1] = pchip->wsm[1].csr;	saved_config[index].tba[1] = pchip->tba[1].csr;	saved_config[index].wsba[2] = pchip->wsba[2].csr;	saved_config[index].wsm[2] = pchip->wsm[2].csr;	saved_config[index].tba[2] = pchip->tba[2].csr;	saved_config[index].wsba[3] = pchip->wsba[3].csr;	saved_config[index].wsm[3] = pchip->wsm[3].csr;	saved_config[index].tba[3] = pchip->tba[3].csr;	/*	 * Set up the PCI to main memory translation windows.	 *	 * Note: Window 3 is scatter-gather only	 * 	 * Window 0 is scatter-gather 8MB at 8MB (for isa)	 * Window 1 is scatter-gather (up to) 1GB at 1GB	 * Window 2 is direct access 2GB at 2GB	 *	 * NOTE: we need the align_entry settings for Acer devices on ES40,	 * specifically floppy and IDE when memory is larger than 2GB.	 */	hose->sg_isa = iommu_arena_new(hose, 0x00800000, 0x00800000, 0);	/* Initially set for 4 PTEs, but will be overridden to 64K for ISA. */        hose->sg_isa->align_entry = 4;	hose->sg_pci = iommu_arena_new(hose, 0x40000000,				       size_for_memory(0x40000000), 0);        hose->sg_pci->align_entry = 4; /* Tsunami caches 4 PTEs at a time */	__direct_map_base = 0x80000000;	__direct_map_size = 0x80000000;	pchip->wsba[0].csr = hose->sg_isa->dma_base | 3;	pchip->wsm[0].csr  = (hose->sg_isa->size - 1) & 0xfff00000;	pchip->tba[0].csr  = virt_to_phys(hose->sg_isa->ptes);	pchip->wsba[1].csr = hose->sg_pci->dma_base | 3;	pchip->wsm[1].csr  = (hose->sg_pci->size - 1) & 0xfff00000;	pchip->tba[1].csr  = virt_to_phys(hose->sg_pci->ptes);	pchip->wsba[2].csr = 0x80000000 | 1;	pchip->wsm[2].csr  = (0x80000000 - 1) & 0xfff00000;	pchip->tba[2].csr  = 0;	pchip->wsba[3].csr = 0;	/* Enable the Monster Window to make DAC pci64 possible. */	pchip->pctl.csr |= pctl_m_mwin;	tsunami_pci_tbi(hose, 0, -1);
 |