| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 | /* *  linux/arch/arm/mach-sa1100/cpu-sa1110.c * *  Copyright (C) 2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Note: there are two erratas that apply to the SA1110 here: *  7 - SDRAM auto-power-up failure (rev A0) * 13 - Corruption of internal register reads/writes following *      SDRAM reads (rev A0, B0, B1) * * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. * * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type */#include <linux/cpufreq.h>#include <linux/delay.h>#include <linux/init.h>#include <linux/io.h>#include <linux/kernel.h>#include <linux/moduleparam.h>#include <linux/types.h>#include <asm/cputype.h>#include <asm/mach-types.h>#include <mach/hardware.h>#include "generic.h"#undef DEBUGstruct sdram_params {	const char name[20];	u_char  rows;		/* bits				 */	u_char  cas_latency;	/* cycles			 */	u_char  tck;		/* clock cycle time (ns)	 */	u_char  trcd;		/* activate to r/w (ns)		 */	u_char  trp;		/* precharge to activate (ns)	 */	u_char  twr;		/* write recovery time (ns)	 */	u_short refresh;	/* refresh time for array (us)	 */};struct sdram_info {	u_int	mdcnfg;	u_int	mdrefr;	u_int	mdcas[3];};static struct sdram_params sdram_tbl[] __initdata = {	{	/* Toshiba TC59SM716 CL2 */		.name		= "TC59SM716-CL2",		.rows		= 12,		.tck		= 10,		.trcd		= 20,		.trp		= 20,		.twr		= 10,		.refresh	= 64000,		.cas_latency	= 2,	}, {	/* Toshiba TC59SM716 CL3 */		.name		= "TC59SM716-CL3",		.rows		= 12,		.tck		= 8,		.trcd		= 20,		.trp		= 20,		.twr		= 8,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Samsung K4S641632D TC75 */		.name		= "K4S641632D",		.rows		= 14,		.tck		= 9,		.trcd		= 27,		.trp		= 20,		.twr		= 9,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Samsung K4S281632B-1H */		.name           = "K4S281632B-1H",		.rows		= 12,		.tck		= 10,		.trp		= 20,		.twr		= 10,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Samsung KM416S4030CT */		.name		= "KM416S4030CT",		.rows		= 13,		.tck		= 8,		.trcd		= 24,	/* 3 CLKs */		.trp		= 24,	/* 3 CLKs */		.twr		= 16,	/* Trdl: 2 CLKs */		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Winbond W982516AH75L CL3 */		.name		= "W982516AH75L",		.rows		= 16,		.tck		= 8,		.trcd		= 20,		.trp		= 20,		.twr		= 8,		.refresh	= 64000,		.cas_latency	= 3,	}, {	/* Micron MT48LC8M16A2TG-75 */		.name		= "MT48LC8M16A2TG-75",		.rows		= 12,		.tck		= 8,		.trcd		= 20,		.trp		= 20,		.twr		= 8,		.refresh	= 64000,		.cas_latency	= 3,	},};static struct sdram_params sdram_params;/* * Given a period in ns and frequency in khz, calculate the number of * cycles of frequency in period.  Note that we round up to the next * cycle, even if we are only slightly over. */static inline u_int ns_to_cycles(u_int ns, u_int khz){	return (ns * khz + 999999) / 1000000;}/* * Create the MDCAS register bit pattern. */static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd){	u_int shift;	rcd = 2 * rcd - 1;	shift = delayed + 1 + rcd;	mdcas[0]  = (1 << rcd) - 1;	mdcas[0] |= 0x55555555 << shift;	mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);}static voidsdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,		       struct sdram_params *sdram){	u_int mem_khz, sd_khz, trp, twr;	mem_khz = cpu_khz / 2;	sd_khz = mem_khz;	/*	 * If SDCLK would invalidate the SDRAM timings,	 * run SDCLK at half speed.	 *	 * CPU steppings prior to B2 must either run the memory at	 * half speed or use delayed read latching (errata 13).	 */	if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||	    (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))		sd_khz /= 2;	sd->mdcnfg = MDCNFG & 0x007f007f;	twr = ns_to_cycles(sdram->twr, mem_khz);	/* trp should always be >1 */	trp = ns_to_cycles(sdram->trp, mem_khz) - 1;	if (trp < 1)		trp = 1;	sd->mdcnfg |= trp << 8;	sd->mdcnfg |= trp << 24;	sd->mdcnfg |= sdram->cas_latency << 12;	sd->mdcnfg |= sdram->cas_latency << 28;	sd->mdcnfg |= twr << 14;	sd->mdcnfg |= twr << 30;	sd->mdrefr = MDREFR & 0xffbffff0;	sd->mdrefr |= 7;	if (sd_khz != mem_khz)		sd->mdrefr |= MDREFR_K1DB2;	/* initial number of '1's in MDCAS + 1 */	set_mdcas(sd->mdcas, sd_khz >= 62000,		ns_to_cycles(sdram->trcd, mem_khz));#ifdef DEBUG	printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",		sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],		sd->mdcas[2]);#endif}/* * Set the SDRAM refresh rate. */static inline void sdram_set_refresh(u_int dri){	MDREFR = (MDREFR & 0xffff000f) | (dri << 4);	(void) MDREFR;}/* * Update the refresh period.  We do this such that we always refresh * the SDRAMs within their permissible period.  The refresh period is * always a multiple of the memory clock (fixed at cpu_clock / 2). * * FIXME: we don't currently take account of burst accesses here, * but neither do Intels DM nor Angel. */static voidsdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram){	u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;	u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;#ifdef DEBUG	mdelay(250);	printk(KERN_DEBUG "new dri value = %d\n", dri);#endif	sdram_set_refresh(dri);}/* * Ok, set the CPU frequency. */static int sa1110_target(struct cpufreq_policy *policy,			 unsigned int target_freq,			 unsigned int relation){	struct sdram_params *sdram = &sdram_params;	struct cpufreq_freqs freqs;	struct sdram_info sd;	unsigned long flags;	unsigned int ppcr, unused;	switch (relation) {	case CPUFREQ_RELATION_L:		ppcr = sa11x0_freq_to_ppcr(target_freq);		if (sa11x0_ppcr_to_freq(ppcr) > policy->max)			ppcr--;		break;	case CPUFREQ_RELATION_H:		ppcr = sa11x0_freq_to_ppcr(target_freq);		if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&		    (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))			ppcr--;		break;	default:		return -EINVAL;	}	freqs.old = sa11x0_getspeed(0);	freqs.new = sa11x0_ppcr_to_freq(ppcr);	freqs.cpu = 0;	sdram_calculate_timing(&sd, freqs.new, sdram);#if 0	/*	 * These values are wrong according to the SA1110 documentation	 * and errata, but they seem to work.  Need to get a storage	 * scope on to the SDRAM signals to work out why.	 */	if (policy->max < 147500) {		sd.mdrefr |= MDREFR_K1DB2;		sd.mdcas[0] = 0xaaaaaa7f;	} else {		sd.mdrefr &= ~MDREFR_K1DB2;		sd.mdcas[0] = 0xaaaaaa9f;	}	sd.mdcas[1] = 0xaaaaaaaa;	sd.mdcas[2] = 0xaaaaaaaa;#endif	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);	/*	 * The clock could be going away for some time.  Set the SDRAMs	 * to refresh rapidly (every 64 memory clock cycles).  To get	 * through the whole array, we need to wait 262144 mclk cycles.	 * We wait 20ms to be safe.	 */	sdram_set_refresh(2);	if (!irqs_disabled())		msleep(20);	else		mdelay(20);	/*	 * Reprogram the DRAM timings with interrupts disabled, and
 |