| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524 | 
							- /*
 
- ===============================================================================
 
- This C source file is part of the SoftFloat IEC/IEEE Floating-point
 
- Arithmetic Package, Release 2.
 
- Written by John R. Hauser.  This work was made possible in part by the
 
- International Computer Science Institute, located at Suite 600, 1947 Center
 
- Street, Berkeley, California 94704.  Funding was partially provided by the
 
- National Science Foundation under grant MIP-9311980.  The original version
 
- of this code was written as part of a project to build a fixed-point vector
 
- processor in collaboration with the University of California at Berkeley,
 
- overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 
- is available through the web page
 
- http://www.jhauser.us/arithmetic/SoftFloat-2b/SoftFloat-source.txt
 
- THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 
- has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 
- TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 
- PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 
- AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 
- Derivative works are acceptable, even for commercial purposes, so long as
 
- (1) they include prominent notice that the work is derivative, and (2) they
 
- include prominent notice akin to these three paragraphs for those parts of
 
- this code that are retained.
 
- ===============================================================================
 
- */
 
- #include <asm/div64.h>
 
- #include "fpa11.h"
 
- //#include "milieu.h"
 
- //#include "softfloat.h"
 
- /*
 
- -------------------------------------------------------------------------------
 
- Primitive arithmetic functions, including multi-word arithmetic, and
 
- division and square root approximations.  (Can be specialized to target if
 
- desired.)
 
- -------------------------------------------------------------------------------
 
- */
 
- #include "softfloat-macros"
 
- /*
 
- -------------------------------------------------------------------------------
 
- Functions and definitions to determine:  (1) whether tininess for underflow
 
- is detected before or after rounding by default, (2) what (if anything)
 
- happens when exceptions are raised, (3) how signaling NaNs are distinguished
 
- from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 
- are propagated from function inputs to output.  These details are target-
 
- specific.
 
- -------------------------------------------------------------------------------
 
- */
 
- #include "softfloat-specialize"
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 
- and 7, and returns the properly rounded 32-bit integer corresponding to the
 
- input.  If `zSign' is nonzero, the input is negated before being converted
 
- to an integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point
 
- input is simply rounded to an integer, with the inexact exception raised if
 
- the input cannot be represented exactly as an integer.  If the fixed-point
 
- input is too large, however, the invalid exception is raised and the largest
 
- positive or negative integer is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- static int32 roundAndPackInt32( struct roundingData *roundData, flag zSign, bits64 absZ )
 
- {
 
-     int8 roundingMode;
 
-     flag roundNearestEven;
 
-     int8 roundIncrement, roundBits;
 
-     int32 z;
 
-     roundingMode = roundData->mode;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     roundIncrement = 0x40;
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = 0x7F;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = absZ & 0x7F;
 
-     absZ = ( absZ + roundIncrement )>>7;
 
-     absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 
-     z = absZ;
 
-     if ( zSign ) z = - z;
 
-     if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 
-         roundData->exception |= float_flag_invalid;
 
-         return zSign ? 0x80000000 : 0x7FFFFFFF;
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the fraction bits of the single-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE bits32 extractFloat32Frac( float32 a )
 
- {
 
-     return a & 0x007FFFFF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the exponent bits of the single-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE int16 extractFloat32Exp( float32 a )
 
- {
 
-     return ( a>>23 ) & 0xFF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the sign bit of the single-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- #if 0	/* in softfloat.h */
 
- INLINE flag extractFloat32Sign( float32 a )
 
- {
 
-     return a>>31;
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Normalizes the subnormal single-precision floating-point value represented
 
- by the denormalized significand `aSig'.  The normalized exponent and
 
- significand are stored at the locations pointed to by `zExpPtr' and
 
- `zSigPtr', respectively.
 
- -------------------------------------------------------------------------------
 
- */
 
- static void
 
-  normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros32( aSig ) - 8;
 
-     *zSigPtr = aSig<<shiftCount;
 
-     *zExpPtr = 1 - shiftCount;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 
- single-precision floating-point value, returning the result.  After being
 
- shifted into the proper positions, the three fields are simply added
 
- together to form the result.  This means that any integer portion of `zSig'
 
- will be added into the exponent.  Since a properly normalized significand
 
- will have an integer portion equal to 1, the `zExp' input should be 1 less
 
- than the desired result exponent whenever `zSig' is a complete, normalized
 
- significand.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
 
- {
 
- #if 0
 
-    float32 f;
 
-    __asm__("@ packFloat32				\n\
 
-    	    mov %0, %1, asl #31				\n\
 
-    	    orr %0, %2, asl #23				\n\
 
-    	    orr %0, %3"
 
-    	    : /* no outputs */
 
-    	    : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig)
 
-    	    : "cc");
 
-    return f;
 
- #else
 
-     return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
 
- #endif 
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper single-precision floating-
 
- point value corresponding to the abstract input.  Ordinarily, the abstract
 
- value is simply rounded and packed into the single-precision format, with
 
- the inexact exception raised if the abstract input cannot be represented
 
- exactly.  If the abstract value is too large, however, the overflow and
 
- inexact exceptions are raised and an infinity or maximal finite value is
 
- returned.  If the abstract value is too small, the input value is rounded to
 
- a subnormal number, and the underflow and inexact exceptions are raised if
 
- the abstract input cannot be represented exactly as a subnormal single-
 
- precision floating-point number.
 
-     The input significand `zSig' has its binary point between bits 30
 
- and 29, which is 7 bits to the left of the usual location.  This shifted
 
- significand must be normalized or smaller.  If `zSig' is not normalized,
 
- `zExp' must be 0; in that case, the result returned is a subnormal number,
 
- and it must not require rounding.  In the usual case that `zSig' is
 
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 
- The handling of underflow and overflow follows the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32 roundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
 
- {
 
-     int8 roundingMode;
 
-     flag roundNearestEven;
 
-     int8 roundIncrement, roundBits;
 
-     flag isTiny;
 
-     roundingMode = roundData->mode;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     roundIncrement = 0x40;
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = 0x7F;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = zSig & 0x7F;
 
-     if ( 0xFD <= (bits16) zExp ) {
 
-         if (    ( 0xFD < zExp )
 
-              || (    ( zExp == 0xFD )
 
-                   && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
 
-            ) {
 
-             roundData->exception |= float_flag_overflow | float_flag_inexact;
 
-             return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
 
-         }
 
-         if ( zExp < 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < -1 )
 
-                 || ( zSig + roundIncrement < 0x80000000 );
 
-             shift32RightJamming( zSig, - zExp, &zSig );
 
-             zExp = 0;
 
-             roundBits = zSig & 0x7F;
 
-             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 
-         }
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     zSig = ( zSig + roundIncrement )>>7;
 
-     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 
-     if ( zSig == 0 ) zExp = 0;
 
-     return packFloat32( zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper single-precision floating-
 
- point value corresponding to the abstract input.  This routine is just like
 
- `roundAndPackFloat32' except that `zSig' does not have to be normalized in
 
- any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 
- point exponent.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32
 
-  normalizeRoundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros32( zSig ) - 1;
 
-     return roundAndPackFloat32( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the fraction bits of the double-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE bits64 extractFloat64Frac( float64 a )
 
- {
 
-     return a & LIT64( 0x000FFFFFFFFFFFFF );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the exponent bits of the double-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE int16 extractFloat64Exp( float64 a )
 
- {
 
-     return ( a>>52 ) & 0x7FF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the sign bit of the double-precision floating-point value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- #if 0	/* in softfloat.h */
 
- INLINE flag extractFloat64Sign( float64 a )
 
- {
 
-     return a>>63;
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Normalizes the subnormal double-precision floating-point value represented
 
- by the denormalized significand `aSig'.  The normalized exponent and
 
- significand are stored at the locations pointed to by `zExpPtr' and
 
- `zSigPtr', respectively.
 
- -------------------------------------------------------------------------------
 
- */
 
- static void
 
-  normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros64( aSig ) - 11;
 
-     *zSigPtr = aSig<<shiftCount;
 
-     *zExpPtr = 1 - shiftCount;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 
- double-precision floating-point value, returning the result.  After being
 
- shifted into the proper positions, the three fields are simply added
 
- together to form the result.  This means that any integer portion of `zSig'
 
- will be added into the exponent.  Since a properly normalized significand
 
- will have an integer portion equal to 1, the `zExp' input should be 1 less
 
- than the desired result exponent whenever `zSig' is a complete, normalized
 
- significand.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
 
- {
 
-     return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper double-precision floating-
 
- point value corresponding to the abstract input.  Ordinarily, the abstract
 
- value is simply rounded and packed into the double-precision format, with
 
- the inexact exception raised if the abstract input cannot be represented
 
- exactly.  If the abstract value is too large, however, the overflow and
 
- inexact exceptions are raised and an infinity or maximal finite value is
 
- returned.  If the abstract value is too small, the input value is rounded to
 
- a subnormal number, and the underflow and inexact exceptions are raised if
 
- the abstract input cannot be represented exactly as a subnormal double-
 
- precision floating-point number.
 
-     The input significand `zSig' has its binary point between bits 62
 
- and 61, which is 10 bits to the left of the usual location.  This shifted
 
- significand must be normalized or smaller.  If `zSig' is not normalized,
 
- `zExp' must be 0; in that case, the result returned is a subnormal number,
 
- and it must not require rounding.  In the usual case that `zSig' is
 
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 
- The handling of underflow and overflow follows the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float64 roundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
 
- {
 
-     int8 roundingMode;
 
-     flag roundNearestEven;
 
-     int16 roundIncrement, roundBits;
 
-     flag isTiny;
 
-     roundingMode = roundData->mode;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     roundIncrement = 0x200;
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = 0x3FF;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = zSig & 0x3FF;
 
-     if ( 0x7FD <= (bits16) zExp ) {
 
-         if (    ( 0x7FD < zExp )
 
-              || (    ( zExp == 0x7FD )
 
-                   && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
 
-            ) {
 
-             //register int lr = __builtin_return_address(0);
 
-             //printk("roundAndPackFloat64 called from 0x%08x\n",lr);
 
-             roundData->exception |= float_flag_overflow | float_flag_inexact;
 
-             return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
 
-         }
 
-         if ( zExp < 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < -1 )
 
-                 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
 
-             shift64RightJamming( zSig, - zExp, &zSig );
 
-             zExp = 0;
 
-             roundBits = zSig & 0x3FF;
 
-             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 
-         }
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     zSig = ( zSig + roundIncrement )>>10;
 
-     zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
 
-     if ( zSig == 0 ) zExp = 0;
 
-     return packFloat64( zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and significand `zSig', and returns the proper double-precision floating-
 
- point value corresponding to the abstract input.  This routine is just like
 
- `roundAndPackFloat64' except that `zSig' does not have to be normalized in
 
- any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 
- point exponent.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float64
 
-  normalizeRoundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros64( zSig ) - 1;
 
-     return roundAndPackFloat64( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the fraction bits of the extended double-precision floating-point
 
- value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE bits64 extractFloatx80Frac( floatx80 a )
 
- {
 
-     return a.low;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the exponent bits of the extended double-precision floating-point
 
- value `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE int32 extractFloatx80Exp( floatx80 a )
 
- {
 
-     return a.high & 0x7FFF;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the sign bit of the extended double-precision floating-point value
 
- `a'.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE flag extractFloatx80Sign( floatx80 a )
 
- {
 
-     return a.high>>15;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Normalizes the subnormal extended double-precision floating-point value
 
- represented by the denormalized significand `aSig'.  The normalized exponent
 
- and significand are stored at the locations pointed to by `zExpPtr' and
 
- `zSigPtr', respectively.
 
- -------------------------------------------------------------------------------
 
- */
 
- static void
 
-  normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
 
- {
 
-     int8 shiftCount;
 
-     shiftCount = countLeadingZeros64( aSig );
 
-     *zSigPtr = aSig<<shiftCount;
 
-     *zExpPtr = 1 - shiftCount;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
 
- extended double-precision floating-point value, returning the result.
 
- -------------------------------------------------------------------------------
 
- */
 
- INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
 
- {
 
-     floatx80 z;
 
-     z.low = zSig;
 
-     z.high = ( ( (bits16) zSign )<<15 ) + zExp;
 
-     z.__padding = 0;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 
- and extended significand formed by the concatenation of `zSig0' and `zSig1',
 
- and returns the proper extended double-precision floating-point value
 
- corresponding to the abstract input.  Ordinarily, the abstract value is
 
- rounded and packed into the extended double-precision format, with the
 
- inexact exception raised if the abstract input cannot be represented
 
- exactly.  If the abstract value is too large, however, the overflow and
 
- inexact exceptions are raised and an infinity or maximal finite value is
 
- returned.  If the abstract value is too small, the input value is rounded to
 
- a subnormal number, and the underflow and inexact exceptions are raised if
 
- the abstract input cannot be represented exactly as a subnormal extended
 
- double-precision floating-point number.
 
-     If `roundingPrecision' is 32 or 64, the result is rounded to the same
 
- number of bits as single or double precision, respectively.  Otherwise, the
 
- result is rounded to the full precision of the extended double-precision
 
- format.
 
-     The input significand must be normalized or smaller.  If the input
 
- significand is not normalized, `zExp' must be 0; in that case, the result
 
- returned is a subnormal number, and it must not require rounding.  The
 
- handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static floatx80
 
-  roundAndPackFloatx80(
 
-      struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 
-  )
 
- {
 
-     int8 roundingMode, roundingPrecision;
 
-     flag roundNearestEven, increment, isTiny;
 
-     int64 roundIncrement, roundMask, roundBits;
 
-     roundingMode = roundData->mode;
 
-     roundingPrecision = roundData->precision;
 
-     roundNearestEven = ( roundingMode == float_round_nearest_even );
 
-     if ( roundingPrecision == 80 ) goto precision80;
 
-     if ( roundingPrecision == 64 ) {
 
-         roundIncrement = LIT64( 0x0000000000000400 );
 
-         roundMask = LIT64( 0x00000000000007FF );
 
-     }
 
-     else if ( roundingPrecision == 32 ) {
 
-         roundIncrement = LIT64( 0x0000008000000000 );
 
-         roundMask = LIT64( 0x000000FFFFFFFFFF );
 
-     }
 
-     else {
 
-         goto precision80;
 
-     }
 
-     zSig0 |= ( zSig1 != 0 );
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             roundIncrement = 0;
 
-         }
 
-         else {
 
-             roundIncrement = roundMask;
 
-             if ( zSign ) {
 
-                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 
-             }
 
-             else {
 
-                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 
-             }
 
-         }
 
-     }
 
-     roundBits = zSig0 & roundMask;
 
-     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 
-         if (    ( 0x7FFE < zExp )
 
-              || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 
-            ) {
 
-             goto overflow;
 
-         }
 
-         if ( zExp <= 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < 0 )
 
-                 || ( zSig0 <= zSig0 + roundIncrement );
 
-             shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 
-             zExp = 0;
 
-             roundBits = zSig0 & roundMask;
 
-             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 
-             if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-             zSig0 += roundIncrement;
 
-             if ( (sbits64) zSig0 < 0 ) zExp = 1;
 
-             roundIncrement = roundMask + 1;
 
-             if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 
-                 roundMask |= roundIncrement;
 
-             }
 
-             zSig0 &= ~ roundMask;
 
-             return packFloatx80( zSign, zExp, zSig0 );
 
-         }
 
-     }
 
-     if ( roundBits ) roundData->exception |= float_flag_inexact;
 
-     zSig0 += roundIncrement;
 
-     if ( zSig0 < roundIncrement ) {
 
-         ++zExp;
 
-         zSig0 = LIT64( 0x8000000000000000 );
 
-     }
 
-     roundIncrement = roundMask + 1;
 
-     if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 
-         roundMask |= roundIncrement;
 
-     }
 
-     zSig0 &= ~ roundMask;
 
-     if ( zSig0 == 0 ) zExp = 0;
 
-     return packFloatx80( zSign, zExp, zSig0 );
 
-  precision80:
 
-     increment = ( (sbits64) zSig1 < 0 );
 
-     if ( ! roundNearestEven ) {
 
-         if ( roundingMode == float_round_to_zero ) {
 
-             increment = 0;
 
-         }
 
-         else {
 
-             if ( zSign ) {
 
-                 increment = ( roundingMode == float_round_down ) && zSig1;
 
-             }
 
-             else {
 
-                 increment = ( roundingMode == float_round_up ) && zSig1;
 
-             }
 
-         }
 
-     }
 
-     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 
-         if (    ( 0x7FFE < zExp )
 
-              || (    ( zExp == 0x7FFE )
 
-                   && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
 
-                   && increment
 
-                 )
 
-            ) {
 
-             roundMask = 0;
 
-  overflow:
 
-             roundData->exception |= float_flag_overflow | float_flag_inexact;
 
-             if (    ( roundingMode == float_round_to_zero )
 
-                  || ( zSign && ( roundingMode == float_round_up ) )
 
-                  || ( ! zSign && ( roundingMode == float_round_down ) )
 
-                ) {
 
-                 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 
-             }
 
-             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
-         }
 
-         if ( zExp <= 0 ) {
 
-             isTiny =
 
-                    ( float_detect_tininess == float_tininess_before_rounding )
 
-                 || ( zExp < 0 )
 
-                 || ! increment
 
-                 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
 
-             shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 
-             zExp = 0;
 
-             if ( isTiny && zSig1 ) roundData->exception |= float_flag_underflow;
 
-             if ( zSig1 ) roundData->exception |= float_flag_inexact;
 
-             if ( roundNearestEven ) {
 
-                 increment = ( (sbits64) zSig1 < 0 );
 
-             }
 
-             else {
 
-                 if ( zSign ) {
 
-                     increment = ( roundingMode == float_round_down ) && zSig1;
 
-                 }
 
-                 else {
 
-                     increment = ( roundingMode == float_round_up ) && zSig1;
 
-                 }
 
-             }
 
-             if ( increment ) {
 
-                 ++zSig0;
 
-                 zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
 
-                 if ( (sbits64) zSig0 < 0 ) zExp = 1;
 
-             }
 
-             return packFloatx80( zSign, zExp, zSig0 );
 
-         }
 
-     }
 
-     if ( zSig1 ) roundData->exception |= float_flag_inexact;
 
-     if ( increment ) {
 
-         ++zSig0;
 
-         if ( zSig0 == 0 ) {
 
-             ++zExp;
 
-             zSig0 = LIT64( 0x8000000000000000 );
 
-         }
 
-         else {
 
-             zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
 
-         }
 
-     }
 
-     else {
 
-         if ( zSig0 == 0 ) zExp = 0;
 
-     }
 
-     
 
-     return packFloatx80( zSign, zExp, zSig0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Takes an abstract floating-point value having sign `zSign', exponent
 
- `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 
- and returns the proper extended double-precision floating-point value
 
- corresponding to the abstract input.  This routine is just like
 
- `roundAndPackFloatx80' except that the input significand does not have to be
 
- normalized.
 
- -------------------------------------------------------------------------------
 
- */
 
- static floatx80
 
-  normalizeRoundAndPackFloatx80(
 
-      struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 
-  )
 
- {
 
-     int8 shiftCount;
 
-     if ( zSig0 == 0 ) {
 
-         zSig0 = zSig1;
 
-         zSig1 = 0;
 
-         zExp -= 64;
 
-     }
 
-     shiftCount = countLeadingZeros64( zSig0 );
 
-     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 
-     zExp -= shiftCount;
 
-     return
 
-         roundAndPackFloatx80( roundData, zSign, zExp, zSig0, zSig1 );
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the 32-bit two's complement integer `a' to
 
- the single-precision floating-point format.  The conversion is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 int32_to_float32(struct roundingData *roundData, int32 a)
 
- {
 
-     flag zSign;
 
-     if ( a == 0 ) return 0;
 
-     if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
 
-     zSign = ( a < 0 );
 
-     return normalizeRoundAndPackFloat32( roundData, zSign, 0x9C, zSign ? - a : a );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the 32-bit two's complement integer `a' to
 
- the double-precision floating-point format.  The conversion is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 int32_to_float64( int32 a )
 
- {
 
-     flag aSign;
 
-     uint32 absA;
 
-     int8 shiftCount;
 
-     bits64 zSig;
 
-     if ( a == 0 ) return 0;
 
-     aSign = ( a < 0 );
 
-     absA = aSign ? - a : a;
 
-     shiftCount = countLeadingZeros32( absA ) + 21;
 
-     zSig = absA;
 
-     return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the 32-bit two's complement integer `a'
 
- to the extended double-precision floating-point format.  The conversion
 
- is performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- floatx80 int32_to_floatx80( int32 a )
 
- {
 
-     flag zSign;
 
-     uint32 absA;
 
-     int8 shiftCount;
 
-     bits64 zSig;
 
-     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 
-     zSign = ( a < 0 );
 
-     absA = zSign ? - a : a;
 
-     shiftCount = countLeadingZeros32( absA ) + 32;
 
-     zSig = absA;
 
-     return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the 32-bit two's complement integer format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic---which means in particular that the conversion is rounded
 
- according to the current rounding mode.  If `a' is a NaN, the largest
 
- positive integer is returned.  Otherwise, if the conversion overflows, the
 
- largest integer with the same sign as `a' is returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float32_to_int32( struct roundingData *roundData, float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits32 aSig;
 
-     bits64 zSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 
-     if ( aExp ) aSig |= 0x00800000;
 
-     shiftCount = 0xAF - aExp;
 
-     zSig = aSig;
 
-     zSig <<= 32;
 
-     if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig );
 
-     return roundAndPackInt32( roundData, aSign, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the 32-bit two's complement integer format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic, except that the conversion is always rounded toward zero.  If
 
- `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 
- conversion overflows, the largest integer with the same sign as `a' is
 
- returned.
 
- -------------------------------------------------------------------------------
 
- */
 
- int32 float32_to_int32_round_to_zero( float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, shiftCount;
 
-     bits32 aSig;
 
-     int32 z;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     shiftCount = aExp - 0x9E;
 
-     if ( 0 <= shiftCount ) {
 
-         if ( a == 0xCF000000 ) return 0x80000000;
 
-         float_raise( float_flag_invalid );
 
-         if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
 
-         return 0x80000000;
 
-     }
 
-     else if ( aExp <= 0x7E ) {
 
-         if ( aExp | aSig ) float_raise( float_flag_inexact );
 
-         return 0;
 
-     }
 
-     aSig = ( aSig | 0x00800000 )<<8;
 
-     z = aSig>>( - shiftCount );
 
-     if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
 
-         float_raise( float_flag_inexact );
 
-     }
 
-     return aSign ? - z : z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the double-precision floating-point format.  The conversion is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float64 float32_to_float64( float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits32 aSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
 
-         return packFloat64( aSign, 0x7FF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-         --aExp;
 
-     }
 
-     return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
 
- }
 
- #ifdef FLOATX80
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of converting the single-precision floating-point value
 
- `a' to the extended double-precision floating-point format.  The conversion
 
- is performed according to the IEC/IEEE Standard for Binary Floating-point
 
- Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- floatx80 float32_to_floatx80( float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits32 aSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
 
-         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     aSig |= 0x00800000;
 
-     return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
 
- }
 
- #endif
 
- /*
 
- -------------------------------------------------------------------------------
 
- Rounds the single-precision floating-point value `a' to an integer, and
 
- returns the result as a single-precision floating-point value.  The
 
- operation is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_round_to_int( struct roundingData *roundData, float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp;
 
-     bits32 lastBitMask, roundBitsMask;
 
-     int8 roundingMode;
 
-     float32 z;
 
-     aExp = extractFloat32Exp( a );
 
-     if ( 0x96 <= aExp ) {
 
-         if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
 
-             return propagateFloat32NaN( a, a );
 
-         }
 
-         return a;
 
-     }
 
-     roundingMode = roundData->mode;
 
-     if ( aExp <= 0x7E ) {
 
-         if ( (bits32) ( a<<1 ) == 0 ) return a;
 
-         roundData->exception |= float_flag_inexact;
 
-         aSign = extractFloat32Sign( a );
 
-         switch ( roundingMode ) {
 
-          case float_round_nearest_even:
 
-             if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
 
-                 return packFloat32( aSign, 0x7F, 0 );
 
-             }
 
-             break;
 
-          case float_round_down:
 
-             return aSign ? 0xBF800000 : 0;
 
-          case float_round_up:
 
-             return aSign ? 0x80000000 : 0x3F800000;
 
-         }
 
-         return packFloat32( aSign, 0, 0 );
 
-     }
 
-     lastBitMask = 1;
 
-     lastBitMask <<= 0x96 - aExp;
 
-     roundBitsMask = lastBitMask - 1;
 
-     z = a;
 
-     if ( roundingMode == float_round_nearest_even ) {
 
-         z += lastBitMask>>1;
 
-         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 
-     }
 
-     else if ( roundingMode != float_round_to_zero ) {
 
-         if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 
-             z += roundBitsMask;
 
-         }
 
-     }
 
-     z &= ~ roundBitsMask;
 
-     if ( z != a ) roundData->exception |= float_flag_inexact;
 
-     return z;
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of adding the absolute values of the single-precision
 
- floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
 
- before being returned.  `zSign' is ignored if the result is a NaN.  The
 
- addition is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32 addFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
 
- {
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig, zSig;
 
-     int16 expDiff;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     expDiff = aExp - bExp;
 
-     aSig <<= 6;
 
-     bSig <<= 6;
 
-     if ( 0 < expDiff ) {
 
-         if ( aExp == 0xFF ) {
 
-             if ( aSig ) return propagateFloat32NaN( a, b );
 
-             return a;
 
-         }
 
-         if ( bExp == 0 ) {
 
-             --expDiff;
 
-         }
 
-         else {
 
-             bSig |= 0x20000000;
 
-         }
 
-         shift32RightJamming( bSig, expDiff, &bSig );
 
-         zExp = aExp;
 
-     }
 
-     else if ( expDiff < 0 ) {
 
-         if ( bExp == 0xFF ) {
 
-             if ( bSig ) return propagateFloat32NaN( a, b );
 
-             return packFloat32( zSign, 0xFF, 0 );
 
-         }
 
-         if ( aExp == 0 ) {
 
-             ++expDiff;
 
-         }
 
-         else {
 
-             aSig |= 0x20000000;
 
-         }
 
-         shift32RightJamming( aSig, - expDiff, &aSig );
 
-         zExp = bExp;
 
-     }
 
-     else {
 
-         if ( aExp == 0xFF ) {
 
-             if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 
-             return a;
 
-         }
 
-         if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
 
-         zSig = 0x40000000 + aSig + bSig;
 
-         zExp = aExp;
 
-         goto roundAndPack;
 
-     }
 
-     aSig |= 0x20000000;
 
-     zSig = ( aSig + bSig )<<1;
 
-     --zExp;
 
-     if ( (sbits32) zSig < 0 ) {
 
-         zSig = aSig + bSig;
 
-         ++zExp;
 
-     }
 
-  roundAndPack:
 
-     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of subtracting the absolute values of the single-
 
- precision floating-point values `a' and `b'.  If `zSign' is true, the
 
- difference is negated before being returned.  `zSign' is ignored if the
 
- result is a NaN.  The subtraction is performed according to the IEC/IEEE
 
- Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- static float32 subFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
 
- {
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig, zSig;
 
-     int16 expDiff;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     expDiff = aExp - bExp;
 
-     aSig <<= 7;
 
-     bSig <<= 7;
 
-     if ( 0 < expDiff ) goto aExpBigger;
 
-     if ( expDiff < 0 ) goto bExpBigger;
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( aExp == 0 ) {
 
-         aExp = 1;
 
-         bExp = 1;
 
-     }
 
-     if ( bSig < aSig ) goto aBigger;
 
-     if ( aSig < bSig ) goto bBigger;
 
-     return packFloat32( roundData->mode == float_round_down, 0, 0 );
 
-  bExpBigger:
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         return packFloat32( zSign ^ 1, 0xFF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         ++expDiff;
 
-     }
 
-     else {
 
-         aSig |= 0x40000000;
 
-     }
 
-     shift32RightJamming( aSig, - expDiff, &aSig );
 
-     bSig |= 0x40000000;
 
-  bBigger:
 
-     zSig = bSig - aSig;
 
-     zExp = bExp;
 
-     zSign ^= 1;
 
-     goto normalizeRoundAndPack;
 
-  aExpBigger:
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return propagateFloat32NaN( a, b );
 
-         return a;
 
-     }
 
-     if ( bExp == 0 ) {
 
-         --expDiff;
 
-     }
 
-     else {
 
-         bSig |= 0x40000000;
 
-     }
 
-     shift32RightJamming( bSig, expDiff, &bSig );
 
-     aSig |= 0x40000000;
 
-  aBigger:
 
-     zSig = aSig - bSig;
 
-     zExp = aExp;
 
-  normalizeRoundAndPack:
 
-     --zExp;
 
-     return normalizeRoundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of adding the single-precision floating-point values `a'
 
- and `b'.  The operation is performed according to the IEC/IEEE Standard for
 
- Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_add( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign == bSign ) {
 
-         return addFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
-     else {
 
-         return subFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of subtracting the single-precision floating-point values
 
- `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 
- for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_sub( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign;
 
-     aSign = extractFloat32Sign( a );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aSign == bSign ) {
 
-         return subFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
-     else {
 
-         return addFloat32Sigs( roundData, a, b, aSign );
 
-     }
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of multiplying the single-precision floating-point values
 
- `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 
- for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_mul( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig;
 
-     bits64 zSig64;
 
-     bits32 zSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     bSign = extractFloat32Sign( b );
 
-     zSign = aSign ^ bSign;
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 
-             return propagateFloat32NaN( a, b );
 
-         }
 
-         if ( ( bExp | bSig ) == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         return packFloat32( zSign, 0xFF, 0 );
 
-     }
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         if ( ( aExp | aSig ) == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         return packFloat32( zSign, 0xFF, 0 );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 
-         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     zExp = aExp + bExp - 0x7F;
 
-     aSig = ( aSig | 0x00800000 )<<7;
 
-     bSig = ( bSig | 0x00800000 )<<8;
 
-     shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
 
-     zSig = zSig64;
 
-     if ( 0 <= (sbits32) ( zSig<<1 ) ) {
 
-         zSig <<= 1;
 
-         --zExp;
 
-     }
 
-     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the result of dividing the single-precision floating-point value `a'
 
- by the corresponding value `b'.  The operation is performed according to the
 
- IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_div( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, zExp;
 
-     bits32 aSig, bSig, zSig;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     bSign = extractFloat32Sign( b );
 
-     zSign = aSign ^ bSign;
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return propagateFloat32NaN( a, b );
 
-         if ( bExp == 0xFF ) {
 
-             if ( bSig ) return propagateFloat32NaN( a, b );
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         return packFloat32( zSign, 0xFF, 0 );
 
-     }
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         return packFloat32( zSign, 0, 0 );
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) {
 
-             if ( ( aExp | aSig ) == 0 ) {
 
-                 roundData->exception |= float_flag_invalid;
 
-                 return float32_default_nan;
 
-             }
 
-             roundData->exception |= float_flag_divbyzero;
 
-             return packFloat32( zSign, 0xFF, 0 );
 
-         }
 
-         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     zExp = aExp - bExp + 0x7D;
 
-     aSig = ( aSig | 0x00800000 )<<7;
 
-     bSig = ( bSig | 0x00800000 )<<8;
 
-     if ( bSig <= ( aSig + aSig ) ) {
 
-         aSig >>= 1;
 
-         ++zExp;
 
-     }
 
-     {
 
-         bits64 tmp = ( (bits64) aSig )<<32;
 
-         do_div( tmp, bSig );
 
-         zSig = tmp;
 
-     }
 
-     if ( ( zSig & 0x3F ) == 0 ) {
 
-         zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 );
 
-     }
 
-     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the remainder of the single-precision floating-point value `a'
 
- with respect to the corresponding value `b'.  The operation is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_rem( struct roundingData *roundData, float32 a, float32 b )
 
- {
 
-     flag aSign, bSign, zSign;
 
-     int16 aExp, bExp, expDiff;
 
-     bits32 aSig, bSig;
 
-     bits32 q;
 
-     bits64 aSig64, bSig64, q64;
 
-     bits32 alternateASig;
 
-     sbits32 sigMean;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     bSig = extractFloat32Frac( b );
 
-     bExp = extractFloat32Exp( b );
 
-     bSign = extractFloat32Sign( b );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 
-             return propagateFloat32NaN( a, b );
 
-         }
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( bExp == 0xFF ) {
 
-         if ( bSig ) return propagateFloat32NaN( a, b );
 
-         return a;
 
-     }
 
-     if ( bExp == 0 ) {
 
-         if ( bSig == 0 ) {
 
-             roundData->exception |= float_flag_invalid;
 
-             return float32_default_nan;
 
-         }
 
-         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return a;
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     expDiff = aExp - bExp;
 
-     aSig |= 0x00800000;
 
-     bSig |= 0x00800000;
 
-     if ( expDiff < 32 ) {
 
-         aSig <<= 8;
 
-         bSig <<= 8;
 
-         if ( expDiff < 0 ) {
 
-             if ( expDiff < -1 ) return a;
 
-             aSig >>= 1;
 
-         }
 
-         q = ( bSig <= aSig );
 
-         if ( q ) aSig -= bSig;
 
-         if ( 0 < expDiff ) {
 
-             bits64 tmp = ( (bits64) aSig )<<32;
 
-             do_div( tmp, bSig );
 
-             q = tmp;
 
-             q >>= 32 - expDiff;
 
-             bSig >>= 2;
 
-             aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 
-         }
 
-         else {
 
-             aSig >>= 2;
 
-             bSig >>= 2;
 
-         }
 
-     }
 
-     else {
 
-         if ( bSig <= aSig ) aSig -= bSig;
 
-         aSig64 = ( (bits64) aSig )<<40;
 
-         bSig64 = ( (bits64) bSig )<<40;
 
-         expDiff -= 64;
 
-         while ( 0 < expDiff ) {
 
-             q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 
-             q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 
-             aSig64 = - ( ( bSig * q64 )<<38 );
 
-             expDiff -= 62;
 
-         }
 
-         expDiff += 64;
 
-         q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 
-         q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 
-         q = q64>>( 64 - expDiff );
 
-         bSig <<= 6;
 
-         aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 
-     }
 
-     do {
 
-         alternateASig = aSig;
 
-         ++q;
 
-         aSig -= bSig;
 
-     } while ( 0 <= (sbits32) aSig );
 
-     sigMean = aSig + alternateASig;
 
-     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 
-         aSig = alternateASig;
 
-     }
 
-     zSign = ( (sbits32) aSig < 0 );
 
-     if ( zSign ) aSig = - aSig;
 
-     return normalizeRoundAndPackFloat32( roundData, aSign ^ zSign, bExp, aSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns the square root of the single-precision floating-point value `a'.
 
- The operation is performed according to the IEC/IEEE Standard for Binary
 
- Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- float32 float32_sqrt( struct roundingData *roundData, float32 a )
 
- {
 
-     flag aSign;
 
-     int16 aExp, zExp;
 
-     bits32 aSig, zSig;
 
-     bits64 rem, term;
 
-     aSig = extractFloat32Frac( a );
 
-     aExp = extractFloat32Exp( a );
 
-     aSign = extractFloat32Sign( a );
 
-     if ( aExp == 0xFF ) {
 
-         if ( aSig ) return propagateFloat32NaN( a, 0 );
 
-         if ( ! aSign ) return a;
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( aSign ) {
 
-         if ( ( aExp | aSig ) == 0 ) return a;
 
-         roundData->exception |= float_flag_invalid;
 
-         return float32_default_nan;
 
-     }
 
-     if ( aExp == 0 ) {
 
-         if ( aSig == 0 ) return 0;
 
-         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 
-     }
 
-     zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 
-     aSig = ( aSig | 0x00800000 )<<8;
 
-     zSig = estimateSqrt32( aExp, aSig ) + 2;
 
-     if ( ( zSig & 0x7F ) <= 5 ) {
 
-         if ( zSig < 2 ) {
 
-             zSig = 0xFFFFFFFF;
 
-         }
 
-         else {
 
-             aSig >>= aExp & 1;
 
-             term = ( (bits64) zSig ) * zSig;
 
-             rem = ( ( (bits64) aSig )<<32 ) - term;
 
-             while ( (sbits64) rem < 0 ) {
 
-                 --zSig;
 
-                 rem += ( ( (bits64) zSig )<<1 ) | 1;
 
-             }
 
-             zSig |= ( rem != 0 );
 
-         }
 
-     }
 
-     shift32RightJamming( zSig, 1, &zSig );
 
-     return roundAndPackFloat32( roundData, 0, zExp, zSig );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is equal to the
 
- corresponding value `b', and 0 otherwise.  The comparison is performed
 
- according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 
- -------------------------------------------------------------------------------
 
- */
 
- flag float32_eq( float32 a, float32 b )
 
- {
 
-     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 
-          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 
-        ) {
 
-         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 
-             float_raise( float_flag_invalid );
 
-         }
 
-         return 0;
 
-     }
 
-     return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 
- }
 
- /*
 
- -------------------------------------------------------------------------------
 
- Returns 1 if the single-precision floating-point value `a' is less than or
 
- equal to the corresponding value `b', and 0 otherwise.  The comparison is
 
- performed according to the IEC/IEEE Standard for Binary Floating-point
 
 
  |