/* * arch/alpha/boot/bootpz.c * * Copyright (C) 1997 Jay Estabrook * * This file is used for creating a compressed BOOTP file for the * Linux/AXP kernel * * based significantly on the arch/alpha/boot/main.c of Linus Torvalds * and the decompression code from MILO. */ #include #include #include #include #include #include #include #include #include #include #include "kzsize.h" /* FIXME FIXME FIXME */ #define MALLOC_AREA_SIZE 0x200000 /* 2MB for now */ /* FIXME FIXME FIXME */ /* WARNING NOTE It is very possible that turning on additional messages may cause kernel image corruption due to stack usage to do the printing. */ #undef DEBUG_CHECK_RANGE #undef DEBUG_ADDRESSES #undef DEBUG_LAST_STEPS extern unsigned long switch_to_osf_pal(unsigned long nr, struct pcb_struct * pcb_va, struct pcb_struct * pcb_pa, unsigned long *vptb); extern int decompress_kernel(void* destination, void *source, size_t ksize, size_t kzsize); extern void move_stack(unsigned long new_stack); struct hwrpb_struct *hwrpb = INIT_HWRPB; static struct pcb_struct pcb_va[1]; /* * Find a physical address of a virtual object.. * * This is easy using the virtual page table address. */ #define VPTB ((unsigned long *) 0x200000000) static inline unsigned long find_pa(unsigned long address) { unsigned long result; result = VPTB[address >> 13]; result >>= 32; result <<= 13; result |= address & 0x1fff; return result; } int check_range(unsigned long vstart, unsigned long vend, unsigned long kstart, unsigned long kend) { unsigned long vaddr, kaddr; #ifdef DEBUG_CHECK_RANGE srm_printk("check_range: V[0x%lx:0x%lx] K[0x%lx:0x%lx]\n", vstart, vend, kstart, kend); #endif /* do some range checking for detecting an overlap... */ for (vaddr = vstart; vaddr <= vend; vaddr += PAGE_SIZE) { kaddr = (find_pa(vaddr) | PAGE_OFFSET); if (kaddr >= kstart && kaddr <= kend) { #ifdef DEBUG_CHECK_RANGE srm_printk("OVERLAP: vaddr 0x%lx kaddr 0x%lx" " [0x%lx:0x%lx]\n", vaddr, kaddr, kstart, kend); #endif return 1; } } return 0; } /* * This function moves into OSF/1 pal-code, and has a temporary * PCB for that. The kernel proper should replace this PCB with * the real one as soon as possible. * * The page table muckery in here depends on the fact that the boot * code has the L1 page table identity-map itself in the second PTE * in the L1 page table. Thus the L1-page is virtually addressable * itself (through three levels) at virtual address 0x200802000. */ #define L1 ((unsigned long *) 0x200802000) void pal_init(void) { unsigned long i, rev; struct percpu_struct * percpu; struct pcb_struct * pcb_pa; /* Create the dummy PCB. */ pcb_va->ksp = 0; pcb_va->usp = 0; pcb_va->ptbr = L1[1] >> 32; pcb_va->asn = 0; pcb_va->pcc = 0; pcb_va->unique = 0; pcb_va->flags = 1; pcb_va->res1 = 0; pcb_va->res2 = 0; pcb_pa = (struct pcb_struct *)find_pa((unsigned long)pcb_va); /* * a0 = 2 (OSF) * a1 = return address, but we give the asm the vaddr of the PCB * a2 = physical addr of PCB * a3 = new virtual page table pointer * a4 = KSP (but the asm sets it) */ srm_printk("Switching to OSF PAL-code... "); i = switch_to_osf_pal(2, pcb_va, pcb_pa, VPTB); if (i) { srm_printk("failed, code %ld\n", i); __halt(); } percpu = (struct percpu_struct *) (INIT_HWRPB->processor_offset + (unsigned long) INIT_HWRPB); rev = percpu->pal_revision = percpu->palcode_avail[2]; srm_printk("OK (rev %lx)\n", rev); tbia(); /* do it directly in case we are SMP */ } /* * Start the kernel. */ static inline void runkernel(void) { __asm__ __volatile__( "bis %0,%0,$27\n\t" "jmp ($27)" : /* no outputs: it doesn't even return */ : "r" (START_ADDR)); } /* Must record the SP (it is virtual) on entry, so we can make sure not to overwrite it during movement or decompression. */ unsigned long SP_on_entry; /* Calculate the kernel image address based on the end of the BOOTP bootstrapper (ie this program). */ extern char _end; #define KERNEL_ORIGIN \ ((((unsigned long)&_end) + 511) & ~511) /* Round address to next higher page boundary. */ #define NEXT_PAGE(a) (((a) | (PAGE_SIZE - 1)) + 1) #ifdef INITRD_IMAGE_SIZE # define REAL_INITRD_SIZE INITRD_IMAGE_SIZE #else # define REAL_INITRD_SIZE 0 #endif /* Defines from include/asm-alpha/system.h BOOT_ADDR Virtual address at which the consoles loads the BOOTP image. KERNEL_START KSEG address at which the kernel is built to run, which includes some initial data pages before the code. START_ADDR KSEG address of the entry point of kernel code. ZERO_PGE KSEG address of page full of zeroes, but upon entry to kerne cvan be expected to hold the parameter list and possible INTRD information. These are used in the local defines below. */ /* Virtual addresses for the BOOTP image. Note that this includes the bootstrapper code as well as the compressed kernel image, and possibly the INITRD image. Oh, and do NOT forget the STACK, which appears to be placed virtually beyond the end of the loaded image. */ #define V_BOOT_IMAGE_START BOOT_ADDR #define V_BOOT_IMAGE_END SP_on_entry /* Virtual addresses for just the bootstrapper part of the BOOTP image. */ #define V_BOOTSTRAPPER_START BOOT_ADDR #define V_BOOTSTRAPPER_END KERNEL_ORIGIN /* Virtual addresses for just the data part of the BOOTP image. This may also include the INITRD image, but always includes the STACK. */ #define V_DATA_START KERNEL_ORIGIN #define V_INITRD_START (KERNEL_ORIGIN + KERNEL_Z_SIZE) #define V_INTRD_END (V_INITRD_START + REAL_INITRD_SIZE) #define V_DATA_END V_BOOT_IMAGE_END /* KSEG addresses for the uncompressed kernel. Note that the end address includes workspace for the decompression. Note also that the DATA_START address is ZERO_PGE, to which we write just before jumping to the kernel image at START_ADDR. */ #define K_KERNEL_DATA_START ZERO_PGE #define K_KERNEL_IMAGE_START START_ADDR #define K_KERNEL_IMAGE_END (START_ADDR + KERNEL_SIZE) /* Define to where we may have to decompress the kernel image, before