/* * linux/arch/arm/vfp/vfpdouble.c * * This code is derived in part from John R. Housers softfloat library, which * carries the following notice: * * =========================================================================== * This C source file is part of the SoftFloat IEC/IEEE Floating-point * Arithmetic Package, Release 2. * * Written by John R. Hauser. This work was made possible in part by the * International Computer Science Institute, located at Suite 600, 1947 Center * Street, Berkeley, California 94704. Funding was partially provided by the * National Science Foundation under grant MIP-9311980. The original version * of this code was written as part of a project to build a fixed-point vector * processor in collaboration with the University of California at Berkeley, * overseen by Profs. Nelson Morgan and John Wawrzynek. More information * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ * arithmetic/softfloat.html'. * * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. * * Derivative works are acceptable, even for commercial purposes, so long as * (1) they include prominent notice that the work is derivative, and (2) they * include prominent notice akin to these three paragraphs for those parts of * this code that are retained. * =========================================================================== */ #include #include #include #include #include "vfpinstr.h" #include "vfp.h" static struct vfp_double vfp_double_default_qnan = { .exponent = 2047, .sign = 0, .significand = VFP_DOUBLE_SIGNIFICAND_QNAN, }; static void vfp_double_dump(const char *str, struct vfp_double *d) { pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n", str, d->sign != 0, d->exponent, d->significand); } static void vfp_double_normalise_denormal(struct vfp_double *vd) { int bits = 31 - fls(vd->significand >> 32); if (bits == 31) bits = 63 - fls(vd->significand); vfp_double_dump("normalise_denormal: in", vd); if (bits) { vd->exponent -= bits - 1; vd->significand <<= bits; } vfp_double_dump("normalise_denormal: out", vd); } u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) { u64 significand, incr; int exponent, shift, underflow; u32 rmode; vfp_double_dump("pack: in", vd); /* * Infinities and NaNs are a special case. */ if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) goto pack; /* * Special-case zero. */ if (vd->significand == 0) { vd->exponent = 0; goto pack; } exponent = vd->exponent; significand = vd->significand;