/* * arch/arm/mach-ixp4xx/include/mach/io.h * * Author: Deepak Saxena * * Copyright (C) 2002-2005 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef __ASM_ARM_ARCH_IO_H #define __ASM_ARM_ARCH_IO_H #include #include extern int (*ixp4xx_pci_read)(u32 addr, u32 cmd, u32* data); extern int ixp4xx_pci_write(u32 addr, u32 cmd, u32 data); /* * IXP4xx provides two methods of accessing PCI memory space: * * 1) A direct mapped window from 0x48000000 to 0x4BFFFFFF (64MB). * To access PCI via this space, we simply ioremap() the BAR * into the kernel and we can use the standard read[bwl]/write[bwl] * macros. This is the preffered method due to speed but it * limits the system to just 64MB of PCI memory. This can be * problematic if using video cards and other memory-heavy targets. * * 2) If > 64MB of memory space is required, the IXP4xx can use indirect * registers to access the whole 4 GB of PCI memory space (as we do below * for I/O transactions). This allows currently for up to 1 GB (0x10000000 * to 0x4FFFFFFF) of memory on the bus. The disadvantage of this is that * every PCI access requires three local register accesses plus a spinlock, * but in some cases the performance hit is acceptable. In addition, you * cannot mmap() PCI devices in this case. */ #ifdef CONFIG_IXP4XX_INDIRECT_PCI /* * In the case of using indirect PCI, we simply return the actual PCI * address and our read/write implementation use that to drive the * access registers. If something outside of PCI is ioremap'd, we * fallback to the default. */ static inline int is_pci_memory(u32 addr) { return (addr >= PCIBIOS_MIN_MEM) && (addr <= 0x4FFFFFFF); } #define writeb(v, p) __indirect_writeb(v, p) #define writew(v, p) __indirect_writew(v, p) #define writel(v, p) __indirect_writel(v, p) #define writesb(p, v, l) __indirect_writesb(p, v, l) #define writesw(p, v, l) __indirect_writesw(p, v, l) #define writesl(p, v, l) __indirect_writesl(p, v, l) #define readb(p) __indirect_readb(p) #define readw(p) __indirect_readw(p) #define readl(p) __indirect_readl(p) #define readsb(p, v, l) __indirect_readsb(p, v, l) #define readsw(p, v, l) __indirect_readsw(p, v, l) #define readsl(p, v, l) __indirect_readsl(p, v, l) static inline void __indirect_writeb(u8 value, volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) { __raw_writeb(value, addr); return; } n = addr % 4; byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL; data = value << (8*n); ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data); } static inline void __indirect_writesb(volatile void __iomem *bus_addr, const u8 *vaddr, int count) { while (count--) writeb(*vaddr++, bus_addr); } static inline void __indirect_writew(u16 value, volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) { __raw_writew(value, addr); return; } n = addr % 4; byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL; data = value << (8*n); ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data); } static inline void __indirect_writesw(volatile void __iomem *bus_addr, const u16 *vaddr, int count) { while (count--) writew(*vaddr++, bus_addr); } static inline void __indirect_writel(u32 value, volatile void __iomem *p) { u32 addr = (__force u32)p; if (!is_pci_memory(addr)) { __raw_writel(value, p); return; } ixp4xx_pci_write(addr, NP_CMD_MEMWRITE, value); } static inline void __indirect_writesl(volatile void __iomem *bus_addr, const u32 *vaddr, int count) { while (count--) writel(*vaddr++, bus_addr); } static inline unsigned char __indirect_readb(const volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) return __raw_readb(addr); n = addr % 4; byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL; if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data)) return 0xff; return data >> (8*n); } static inline void __indirect_readsb(const volatile void __iomem *bus_addr, u8 *vaddr, u32 count) { while (count--) *vaddr++ = readb(bus_addr); } static inline unsigned short __indirect_readw(const volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) return __raw_readw(addr); n = addr % 4; byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL; if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data)) return 0xffff; return data>>(8*n); } static inline void __indirect_readsw(const volatile void __iomem *bus_addr, u16 *vaddr, u32 count) { while (count--) *vaddr++ = readw(bus_addr); } static inline unsigned long __indirect_readl(const volatile void __iomem *p) { u32 addr = (__force u32)p; u32 data; if (!is_pci_memory(addr)) return __raw_readl(p); if (ixp4xx_pci_read(addr, NP_CMD_MEMREAD, &data)) return 0xffffffff; return data; } static inline void __indirect_readsl(const volatile void __iomem *bus_addr, u32 *vaddr, u32 count) { while (count--) *vaddr++ = readl(bus_addr); } /* * We can use the built-in functions b/c they end up calling writeb/readb */