/* linux/arch/arm/plat-s3c24xx/s3c2410-iotiming.c * * Copyright (c) 2006-2009 Simtec Electronics * http://armlinux.simtec.co.uk/ * Ben Dooks * * S3C24XX CPU Frequency scaling - IO timing for S3C2410/S3C2440/S3C2442 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #define print_ns(x) ((x) / 10), ((x) % 10) /** * s3c2410_print_timing - print bank timing data for debug purposes * @pfx: The prefix to put on the output * @timings: The timing inforamtion to print. */ static void s3c2410_print_timing(const char *pfx, struct s3c_iotimings *timings) { struct s3c2410_iobank_timing *bt; int bank; for (bank = 0; bank < MAX_BANKS; bank++) { bt = timings->bank[bank].io_2410; if (!bt) continue; printk(KERN_DEBUG "%s %d: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, " "Tcoh=%d.%d, Tcah=%d.%d\n", pfx, bank, print_ns(bt->tacs), print_ns(bt->tcos), print_ns(bt->tacc), print_ns(bt->tcoh), print_ns(bt->tcah)); } } /** * bank_reg - convert bank number to pointer to the control register. * @bank: The IO bank number. */ static inline void __iomem *bank_reg(unsigned int bank) { return S3C2410_BANKCON0 + (bank << 2); } /** * bank_is_io - test whether bank is used for IO * @bankcon: The bank control register. * * This is a simplistic test to see if any BANKCON[x] is not an IO * bank. It currently does not take into account whether BWSCON has * an illegal width-setting in it, or if the pin connected to nCS[x] * is actually being handled as a chip-select. */ static inline int bank_is_io(unsigned long bankcon) { return !(bankcon & S3C2410_BANKCON_SDRAM); } /** * to_div - convert cycle time to divisor * @cyc: The cycle time, in 10ths of nanoseconds. * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * * Convert the given cycle time into the divisor to use to obtain it from * HCLK. */ static inline unsigned int to_div(unsigned int cyc, unsigned int hclk_tns) { if (cyc == 0) return 0; return DIV_ROUND_UP(cyc, hclk_tns); } /** * calc_0124 - calculate divisor control for divisors that do /0, /1. /2 and /4 * @cyc: The cycle time, in 10ths of nanoseconds. * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * @v: Pointer to register to alter. * @shift: The shift to get to the control bits. * * Calculate the divisor, and turn it into the correct control bits to * set in the result, @v. */ static unsigned int calc_0124(unsigned int cyc, unsigned long hclk_tns, unsigned long *v, int shift) { unsigned int div = to_div(cyc, hclk_tns); unsigned long val; s3c_freq_iodbg("%s: cyc=%d, hclk=%lu, shift=%d => div %d\n", __func__, cyc, hclk_tns, shift, div); switch (div) { case 0: val = 0; break; case 1: val = 1; break; case 2: val = 2; break; case 3: case 4: val = 3; break; default: return -1; } *v |= val << shift; return 0; } int calc_tacp(unsigned int cyc, unsigned long hclk, unsigned long *v) { /* Currently no support for Tacp calculations. */ return 0; } /** * calc_tacc - calculate divisor control for tacc. * @cyc: The cycle time, in 10ths of nanoseconds. * @nwait_en: IS nWAIT enabled for this bank. * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds. * @v: Pointer to register to alter. * * Calculate the divisor control for tACC, taking into account whether * the bank has nWAIT enabled. The result is used to modify the value * pointed to by @v. */ static int calc_tacc(unsigned int cyc, int nwait_en, unsigned long hclk_tns, unsigned long *v) { unsigned int div = to_div(cyc, hclk_tns); unsigned long val; s3c_freq_iodbg("%s: cyc=%u, nwait=%d, hclk=%lu => div=%u\n", __func__, cyc, nwait_en, hclk_tns, div); /* if nWait enabled on an bank, Tacc must be at-least 4 cycles. */ if (nwait_en && div < 4) div = 4; switch (div) { case 0: val = 0; break; case 1: case 2: case 3: case 4: val = div - 1; break; case 5: case 6: val = 4; break; case 7: case 8: val = 5; break; case 9: case 10: val = 6; break; case 11: case 12: case 13: case 14: val = 7; break; default: return -1; } *v |= val << 8; return 0; } /** * s3c2410_calc_bank - calculate bank timing infromation * @cfg: The configuration we need to calculate for. * @bt: The bank timing information. * * Given the cycle timine for a bank @bt, calculate the new BANKCON * setting for the @cfg timing. This updates the timing information * ready for the cpu frequency change. */ static int s3c2410_calc_bank(struct s3c_cpufreq_config *cfg, struct s3c2410_iobank_timing *bt)