/* * linux/arch/arm/vfp/vfpmodule.c * * Copyright (C) 2004 ARM Limited. * Written by Deep Blue Solutions Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vfpinstr.h" #include "vfp.h" /* * Our undef handlers (in entry.S) */ void vfp_testing_entry(void); void vfp_support_entry(void); void vfp_null_entry(void); void (*vfp_vector)(void) = vfp_null_entry; /* * Dual-use variable. * Used in startup: set to non-zero if VFP checks fail * After startup, holds VFP architecture */ unsigned int VFP_arch; /* * The pointer to the vfpstate structure of the thread which currently * owns the context held in the VFP hardware, or NULL if the hardware * context is invalid. * * For UP, this is sufficient to tell which thread owns the VFP context. * However, for SMP, we also need to check the CPU number stored in the * saved state too to catch migrations. */ union vfp_state *vfp_current_hw_state[NR_CPUS]; /* * Is 'thread's most up to date state stored in this CPUs hardware? * Must be called from non-preemptible context. */ static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread) { #ifdef CONFIG_SMP if (thread->vfpstate.hard.cpu != cpu) return false; #endif return vfp_current_hw_state[cpu] == &thread->vfpstate; } /* * Force a reload of the VFP context from the thread structure. We do * this by ensuring that access to the VFP hardware is disabled, and * clear vfp_current_hw_state. Must be called from non-preemptible context. */ static void vfp_force_reload(unsigned int cpu, struct thread_info *thread) { if (vfp_state_in_hw(cpu, thread)) { fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); vfp_current_hw_state[cpu] = NULL; } #ifdef CONFIG_SMP thread->vfpstate.hard.cpu = NR_CPUS; #endif } /* * Per-thread VFP initialization. */ static void vfp_thread_flush(struct thread_info *thread) { union vfp_state *vfp = &thread->vfpstate; unsigned int cpu; /* * Disable VFP to ensure we initialize it first. We must ensure * that the modification of vfp_current_hw_state[] and hardware * disable are done for the same CPU and without preemption. * * Do this first to ensure that preemption won't overwrite our * state saving should access to the VFP be enabled at this point. */ cpu = get_cpu(); if (vfp_current_hw_state[cpu] == vfp) vfp_current_hw_state[cpu] = NULL; fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); put_cpu(); memset(vfp, 0, sizeof(union vfp_state)); vfp->hard.fpexc = FPEXC_EN; vfp->hard.fpscr = FPSCR_ROUND_NEAREST; #ifdef CONFIG_SMP vfp->hard.cpu = NR_CPUS; #endif } static void vfp_thread_exit(struct thread_info *thread) { /* release case: Per-thread VFP cleanup. */ union vfp_state *vfp = &thread->vfpstate; unsigned int cpu = get_cpu(); if (vfp_current_hw_state[cpu] == vfp) vfp_current_hw_state[cpu] = NULL; put_cpu(); } static void vfp_thread_copy(struct thread_info *thread) { struct thread_info *parent = current_thread_info(); vfp_sync_hwstate(parent); thread->vfpstate = parent->vfpstate; #ifdef CONFIG_SMP thread->vfpstate.hard.cpu = NR_CPUS; #endif } /* * When this function is called with the following 'cmd's, the following * is true while this function is being run: * THREAD_NOFTIFY_SWTICH: * - the previously running thread will not be scheduled onto another CPU. * - the next thread to be run (v) will not be running on another CPU. * - thread->cpu is the local CPU number * - not preemptible as we're called in the middle of a thread switch * THREAD_NOTIFY_FLUSH: * - the thread (v) will be running on the local CPU, so * v === current_thread_info() * - thread->cpu is the local CPU number at the time it is accessed, * but may change at any time. * - we could be preempted if tree preempt rcu is enabled, so * it is unsafe to use thread->cpu. * THREAD_NOTIFY_EXIT * - the thread (v) will be running on the local CPU, so * v === current_thread_info() * - thread->cpu is the local CPU number at the time it is accessed, * but may change at any time. * - we could be preempted if tree preempt rcu is enabled, so * it is unsafe to use thread->cpu. */ static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) { struct thread_info *thread = v; u32 fpexc; #ifdef CONFIG_SMP unsigned int cpu;