/* * omap_hwmod implementation for OMAP2/3/4 * * Copyright (C) 2009-2011 Nokia Corporation * Copyright (C) 2011-2012 Texas Instruments, Inc. * * Paul Walmsley, BenoƮt Cousson, Kevin Hilman * * Created in collaboration with (alphabetical order): Thara Gopinath, * Tony Lindgren, Rajendra Nayak, Vikram Pandita, Sakari Poussa, Anand * Sawant, Santosh Shilimkar, Richard Woodruff * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Introduction * ------------ * One way to view an OMAP SoC is as a collection of largely unrelated * IP blocks connected by interconnects. The IP blocks include * devices such as ARM processors, audio serial interfaces, UARTs, * etc. Some of these devices, like the DSP, are created by TI; * others, like the SGX, largely originate from external vendors. In * TI's documentation, on-chip devices are referred to as "OMAP * modules." Some of these IP blocks are identical across several * OMAP versions. Others are revised frequently. * * These OMAP modules are tied together by various interconnects. * Most of the address and data flow between modules is via OCP-based * interconnects such as the L3 and L4 buses; but there are other * interconnects that distribute the hardware clock tree, handle idle * and reset signaling, supply power, and connect the modules to * various pads or balls on the OMAP package. * * OMAP hwmod provides a consistent way to describe the on-chip * hardware blocks and their integration into the rest of the chip. * This description can be automatically generated from the TI * hardware database. OMAP hwmod provides a standard, consistent API * to reset, enable, idle, and disable these hardware blocks. And * hwmod provides a way for other core code, such as the Linux device * code or the OMAP power management and address space mapping code, * to query the hardware database. * * Using hwmod * ----------- * Drivers won't call hwmod functions directly. That is done by the * omap_device code, and in rare occasions, by custom integration code * in arch/arm/ *omap*. The omap_device code includes functions to * build a struct platform_device using omap_hwmod data, and that is * currently how hwmod data is communicated to drivers and to the * Linux driver model. Most drivers will call omap_hwmod functions only * indirectly, via pm_runtime*() functions. * * From a layering perspective, here is where the OMAP hwmod code * fits into the kernel software stack: * * +-------------------------------+ * | Device driver code | * | (e.g., drivers/) | * +-------------------------------+ * | Linux driver model | * | (platform_device / | * | platform_driver data/code) | * +-------------------------------+ * | OMAP core-driver integration | * |(arch/arm/mach-omap2/devices.c)| * +-------------------------------+ * | omap_device code | * | (../plat-omap/omap_device.c) | * +-------------------------------+ * ----> | omap_hwmod code/data | <----- * | (../mach-omap2/omap_hwmod*) | * +-------------------------------+ * | OMAP clock/PRCM/register fns | * | (__raw_{read,write}l, clk*) | * +-------------------------------+ * * Device drivers should not contain any OMAP-specific code or data in * them. They should only contain code to operate the IP block that * the driver is responsible for. This is because these IP blocks can * also appear in other SoCs, either from TI (such as DaVinci) or from * other manufacturers; and drivers should be reusable across other * platforms. * * The OMAP hwmod code also will attempt to reset and idle all on-chip * devices upon boot. The goal here is for the kernel to be * completely self-reliant and independent from bootloaders. This is * to ensure a repeatable configuration, both to ensure consistent * runtime behavior, and to make it easier for others to reproduce * bugs. * * OMAP module activity states * --------------------------- * The hwmod code considers modules to be in one of several activity * states. IP blocks start out in an UNKNOWN state, then once they * are registered via the hwmod code, proceed to the REGISTERED state. * Once their clock names are resolved to clock pointers, the module * enters the CLKS_INITED state; and finally, once the module has been * reset and the integration registers programmed, the INITIALIZED state * is entered. The hwmod code will then place the module into either * the IDLE state to save power, or in the case of a critical system * module, the ENABLED state. * * OMAP core integration code can then call omap_hwmod*() functions * directly to move the module between the IDLE, ENABLED, and DISABLED * states, as needed. This is done during both the PM idle loop, and * in the OMAP core integration code's implementation of the PM runtime * functions. * * References * ---------- * This is a partial list. * - OMAP2420 Multimedia Processor Silicon Revision 2.1.1, 2.2 (SWPU064) * - OMAP2430 Multimedia Device POP Silicon Revision 2.1 (SWPU090) * - OMAP34xx Multimedia Device Silicon Revision 3.1 (SWPU108) * - OMAP4430 Multimedia Device Silicon Revision 1.0 (SWPU140) * - Open Core Protocol Specification 2.2 * * To do: * - handle IO mapping * - bus throughput & module latency measurement code * * XXX add tests at the beginning of each function to ensure the hwmod is * in the appropriate state * XXX error return values should be checked to ensure that they are * appropriate */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include "clock.h" #include "omap_hwmod.h" #include "soc.h" #include "common.h" #include "clockdomain.h" #include "powerdomain.h" #include "cm2xxx.h" #include "cm3xxx.h" #include "cminst44xx.h" #include "cm33xx.h" #include "prm.h" #include "prm3xxx.h" #include "prm44xx.h" #include "prm33xx.h" #include "prminst44xx.h" #include "mux.h" #include "pm.h" /* Name of the OMAP hwmod for the MPU */ #define MPU_INITIATOR_NAME "mpu" /* * Number of struct omap_hwmod_link records per struct * omap_hwmod_ocp_if record (master->slave and slave->master) */ #define LINKS_PER_OCP_IF 2 /** * struct omap_hwmod_soc_ops - fn ptrs for some SoC-specific operations * @enable_module: function to enable a module (via MODULEMODE) * @disable_module: function to disable a module (via MODULEMODE) * * XXX Eventually this functionality will be hidden inside the PRM/CM * device drivers. Until then, this should avoid huge blocks of cpu_is_*() * conditionals in this code. */ struct omap_hwmod_soc_ops { void (*enable_module)(struct omap_hwmod *oh); int (*disable_module)(struct omap_hwmod *oh); int (*wait_target_ready)(struct omap_hwmod *oh); int (*assert_hardreset)(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri); int (*deassert_hardreset)(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri); int (*is_hardreset_asserted)(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri); int (*init_clkdm)(struct omap_hwmod *oh); void (*update_context_lost)(struct omap_hwmod *oh); int (*get_context_lost)(struct omap_hwmod *oh); }; /* soc_ops: adapts the omap_hwmod code to the currently-booted SoC */ static struct omap_hwmod_soc_ops soc_ops; /* omap_hwmod_list contains all registered struct omap_hwmods */ static LIST_HEAD(omap_hwmod_list); /* mpu_oh: used to add/remove MPU initiator from sleepdep list */ static struct omap_hwmod *mpu_oh; /* io_chain_lock: used to serialize reconfigurations of the I/O chain */ static DEFINE_SPINLOCK(io_chain_lock); /* * linkspace: ptr to a buffer that struct omap_hwmod_link records are * allocated from - used to reduce the number of small memory * allocations, which has a significant impact on performance */ static struct omap_hwmod_link *linkspace; /* * free_ls, max_ls: array indexes into linkspace; representing the * next free struct omap_hwmod_link index, and the maximum number of * struct omap_hwmod_link records allocated (respectively) */ static unsigned short free_ls, max_ls, ls_supp; /* inited: set to true once the hwmod code is initialized */ static bool inited; /* Private functions */