/* * linux/arch/arm/vfp/vfpsingle.c * * This code is derived in part from John R. Housers softfloat library, which * carries the following notice: * * =========================================================================== * This C source file is part of the SoftFloat IEC/IEEE Floating-point * Arithmetic Package, Release 2. * * Written by John R. Hauser. This work was made possible in part by the * International Computer Science Institute, located at Suite 600, 1947 Center * Street, Berkeley, California 94704. Funding was partially provided by the * National Science Foundation under grant MIP-9311980. The original version * of this code was written as part of a project to build a fixed-point vector * processor in collaboration with the University of California at Berkeley, * overseen by Profs. Nelson Morgan and John Wawrzynek. More information * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ * arithmetic/softfloat.html'. * * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. * * Derivative works are acceptable, even for commercial purposes, so long as * (1) they include prominent notice that the work is derivative, and (2) they * include prominent notice akin to these three paragraphs for those parts of * this code that are retained. * =========================================================================== */ #include #include #include #include #include "vfpinstr.h" #include "vfp.h" static struct vfp_single vfp_single_default_qnan = { .exponent = 255, .sign = 0, .significand = VFP_SINGLE_SIGNIFICAND_QNAN, }; static void vfp_single_dump(const char *str, struct vfp_single *s) { pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n", str, s->sign != 0, s->exponent, s->significand); } static void vfp_single_normalise_denormal(struct vfp_single *vs) { int bits = 31 - fls(vs->significand); vfp_single_dump("normalise_denormal: in", vs); if (bits) { vs->exponent -= bits - 1; vs->significand <<= bits; } vfp_single_dump("normalise_denormal: out", vs); } #ifndef DEBUG #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions) #else u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func) #endif { u32 significand, incr, rmode; int exponent, shift, underflow; vfp_single_dump("pack: in", vs); /* * Infinities and NaNs are a special case. */ if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) goto pack; /* * Special-case zero. */ if (vs->significand == 0) { vs->exponent = 0; goto pack; } exponent = vs->exponent; significand = vs->significand; /* * Normalise first. Note that we shift the significand up to * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least * significant bit. */ shift = 32 - fls(significand); if (shift < 32 && shift) { exponent -= shift; significand <<= shift; } #ifdef DEBUG vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: normalised", vs); #endif /* * Tiny number? */ underflow = exponent < 0; if (underflow) { significand = vfp_shiftright32jamming(significand, -exponent); exponent = 0; #ifdef DEBUG vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: tiny number", vs); #endif if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) underflow = 0; } /* * Select rounding increment. */ incr = 0; rmode = fpscr & FPSCR_RMODE_MASK; if (rmode == FPSCR_ROUND_NEAREST) { incr = 1 << VFP_SINGLE_LOW_BITS; if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; pr_debug("VFP: rounding increment = 0x%08x\n", incr); /* * Is our rounding going to overflow? */ if ((significand + incr) < significand) { exponent += 1; significand = (significand >> 1) | (significand & 1); incr >>= 1; #ifdef DEBUG vs->exponent = exponent; vs->significand = significand; vfp_single_dump("pack: overflow", vs); #endif } /* * If any of the low bits (which will be shifted out of the * number) are non-zero, the result is inexact. */ if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) exceptions |= FPSCR_IXC; /* * Do our rounding. */ significand += incr; /* * Infinity? */ if (exponent >= 254) { exceptions |= FPSCR_OFC | FPSCR_IXC; if (incr == 0) { vs->exponent = 253; vs->significand = 0x7fffffff; } else { vs->exponent = 255; /* infinity */ vs->significand = 0; } } else { if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) exponent = 0; if (exponent || significand > 0x80000000) underflow = 0; if (underflow) exceptions |= FPSCR_UFC; vs->exponent = exponent; vs->significand = significand >> 1; } pack: vfp_single_dump("pack: final", vs); { s32 d = vfp_single_pack(vs); #ifdef DEBUG pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func, sd, d, exceptions); #endif vfp_put_float(d, sd); } return exceptions; } /* * Propagate the NaN, setting exceptions if it is signalling. * 'n' is always a NaN. 'm' may be a number, NaN or infinity. */ static u32 vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) { struct vfp_single *nan; int tn, tm = 0; tn = vfp_single_type(vsn); if (vsm) tm = vfp_single_type(vsm); if (fpscr & FPSCR_DEFAULT_NAN) /* * Default NaN mode - always returns a quiet NaN */ nan = &vfp_single_default_qnan; else { /* * Contemporary mode - select the first signalling * NAN, or if neither are signalling, the first * quiet NAN. */ if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) nan = vsn; else nan = vsm; /* * Make the NaN quiet. */ nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; } *vsd = *nan; /* * If one was a signalling NAN, raise invalid operation. */ return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; } /* * Extended operations */ static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(vfp_single_packed_abs(m), sd); return 0; } static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(m, sd); return 0; } static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr) { vfp_put_float(vfp_single_packed_negate(m), sd); return 0; } static const u16 sqrt_oddadjust[] = { 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67 }; static const u16 sqrt_evenadjust[] = { 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002 }; u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) { int index; u32 z, a; if ((significand & 0xc0000000) != 0x40000000) { printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n"); } a = significand << 1; index = (a >> 27) & 15; if (exponent & 1) { z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; z = ((a / z) << 14) + (z << 15); a >>= 1; } else { z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; z = a / z + z; z = (z >= 0x20000) ? 0xffff8000 : (z << 15); if (z <= a) return (s32)a >> 1; } { u64 v = (u64)a << 31; do_div(v, z); return v + (z >> 1); } } static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr) { struct vfp_single vsm, vsd; int ret, tm; vfp_single_unpack(&vsm, m); tm = vfp_single_type(&vsm); if (tm & (VFP_NAN|VFP_INFINITY)) { struct vfp_single *vsp = &vsd; if (tm & VFP_NAN) ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr); else if (vsm.sign == 0) { sqrt_copy: vsp = &vsm; ret = 0; } else { sqrt_invalid: