Kaynağa Gözat

efDataPreprocessing synchronousMemoryDatabase.h 韩正义 commit at 2020-12-15

韩正义 4 yıl önce
ebeveyn
işleme
edfb58ea11

+ 128 - 0
efDataPreprocessing/dataProcessing/synchronousMemoryDatabase.h

@@ -0,0 +1,128 @@
+/*
+ *  TI DAVINCI dma definitions
+ *
+ *  Copyright (C) 2006-2009 Texas Instruments.
+ *
+ *  This program is free software; you can redistribute  it and/or modify it
+ *  under  the terms of  the GNU General  Public License as published by the
+ *  Free Software Foundation;  either version 2 of the  License, or (at your
+ *  option) any later version.
+ *
+ *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
+ *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
+ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
+ *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
+ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
+ *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
+ *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *  You should have received a copy of the  GNU General Public License along
+ *  with this program; if not, write  to the Free Software Foundation, Inc.,
+ *  675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+
+/*
+ * This EDMA3 programming framework exposes two basic kinds of resource:
+ *
+ *  Channel	Triggers transfers, usually from a hardware event but
+ *		also manually or by "chaining" from DMA completions.
+ *		Each channel is coupled to a Parameter RAM (PaRAM) slot.
+ *
+ *  Slot	Each PaRAM slot holds a DMA transfer descriptor (PaRAM
+ *		"set"), source and destination addresses, a link to a
+ *		next PaRAM slot (if any), options for the transfer, and
+ *		instructions for updating those addresses.  There are
+ *		more than twice as many slots as event channels.
+ *
+ * Each PaRAM set describes a sequence of transfers, either for one large
+ * buffer or for several discontiguous smaller buffers.  An EDMA transfer
+ * is driven only from a channel, which performs the transfers specified
+ * in its PaRAM slot until there are no more transfers.  When that last
+ * transfer completes, the "link" field may be used to reload the channel's
+ * PaRAM slot with a new transfer descriptor.
+ *
+ * The EDMA Channel Controller (CC) maps requests from channels into physical
+ * Transfer Controller (TC) requests when the channel triggers (by hardware
+ * or software events, or by chaining).  The two physical DMA channels provided
+ * by the TCs are thus shared by many logical channels.
+ *
+ * DaVinci hardware also has a "QDMA" mechanism which is not currently
+ * supported through this interface.  (DSP firmware uses it though.)
+ */
+
+#ifndef EDMA_H_
+#define EDMA_H_
+
+/* PaRAM slots are laid out like this */
+struct edmacc_param {
+	unsigned int opt;
+	unsigned int src;
+	unsigned int a_b_cnt;
+	unsigned int dst;
+	unsigned int src_dst_bidx;
+	unsigned int link_bcntrld;
+	unsigned int src_dst_cidx;
+	unsigned int ccnt;
+};
+
+#define CCINT0_INTERRUPT     16
+#define CCERRINT_INTERRUPT   17
+#define TCERRINT0_INTERRUPT   18
+#define TCERRINT1_INTERRUPT   19
+
+/* fields in edmacc_param.opt */
+#define SAM		BIT(0)
+#define DAM		BIT(1)
+#define SYNCDIM		BIT(2)
+#define STATIC		BIT(3)
+#define EDMA_FWID	(0x07 << 8)
+#define TCCMODE		BIT(11)
+#define EDMA_TCC(t)	((t) << 12)
+#define TCINTEN		BIT(20)
+#define ITCINTEN	BIT(21)
+#define TCCHEN		BIT(22)
+#define ITCCHEN		BIT(23)
+
+#define TRWORD (0x7<<2)
+#define PAENTRY (0x1ff<<5)
+
+/* Drivers should avoid using these symbolic names for dm644x
+ * channels, and use platform_device IORESOURCE_DMA resources
+ * instead.  (Other DaVinci chips have different peripherals
+ * and thus have different DMA channel mappings.)
+ */
+#define DAVINCI_DMA_MCBSP_TX              2
+#define DAVINCI_DMA_MCBSP_RX              3
+#define DAVINCI_DMA_VPSS_HIST             4
+#define DAVINCI_DMA_VPSS_H3A              5
+#define DAVINCI_DMA_VPSS_PRVU             6
+#define DAVINCI_DMA_VPSS_RSZ              7
+#define DAVINCI_DMA_IMCOP_IMXINT          8
+#define DAVINCI_DMA_IMCOP_VLCDINT         9
+#define DAVINCI_DMA_IMCO_PASQINT         10
+#define DAVINCI_DMA_IMCOP_DSQINT         11
+#define DAVINCI_DMA_SPI_SPIX             16
+#define DAVINCI_DMA_SPI_SPIR             17
+#define DAVINCI_DMA_UART0_URXEVT0        18
+#define DAVINCI_DMA_UART0_UTXEVT0        19
+#define DAVINCI_DMA_UART1_URXEVT1        20
+#define DAVINCI_DMA_UART1_UTXEVT1        21
+#define DAVINCI_DMA_UART2_URXEVT2        22
+#define DAVINCI_DMA_UART2_UTXEVT2        23
+#define DAVINCI_DMA_MEMSTK_MSEVT         24
+#define DAVINCI_DMA_MMCRXEVT             26
+#define DAVINCI_DMA_MMCTXEVT             27
+#define DAVINCI_DMA_I2C_ICREVT           28
+#define DAVINCI_DMA_I2C_ICXEVT           29
+#define DAVINCI_DMA_GPIO_GPINT0          32
+#define DAVINCI_DMA_GPIO_GPINT1          33
+#define DAVINCI_DMA_GPIO_GPINT2          34
+#define DAVINCI_DMA_GPIO_GPINT3          35
+#define DAVINCI_DMA_GPIO_GPINT4          36
+#define DAVINCI_DMA_GPIO_GPINT5          37
+#define DAVINCI_DMA_GPIO_GPINT6          38
+#define DAVINCI_DMA_GPIO_GPINT7          39