浏览代码

waterDataFluctuationCorrelation dataFluctuationAnalysisSprayTerminal.c 韩正义 commit at 2020-09-18

韩正义 4 年之前
父节点
当前提交
157bad8d79

+ 97 - 0
waterDataFluctuationCorrelation/fluctuationCorrelationOfSprayEnd/dataFluctuationAnalysisSprayTerminal.c

@@ -128,3 +128,100 @@ void blk_set_default_limits(struct queue_limits *lim)
 }
 }
 EXPORT_SYMBOL(blk_set_default_limits);
 EXPORT_SYMBOL(blk_set_default_limits);
 
 
+/**
+ * blk_set_stacking_limits - set default limits for stacking devices
+ * @lim:  the queue_limits structure to reset
+ *
+ * Description:
+ *   Returns a queue_limit struct to its default state. Should be used
+ *   by stacking drivers like DM that have no internal limits.
+ */
+void blk_set_stacking_limits(struct queue_limits *lim)
+{
+	blk_set_default_limits(lim);
+
+	/* Inherit limits from component devices */
+	lim->discard_zeroes_data = 1;
+	lim->max_segments = USHRT_MAX;
+	lim->max_hw_sectors = UINT_MAX;
+	lim->max_sectors = UINT_MAX;
+	lim->max_write_same_sectors = UINT_MAX;
+}
+EXPORT_SYMBOL(blk_set_stacking_limits);
+
+/**
+ * blk_queue_make_request - define an alternate make_request function for a device
+ * @q:  the request queue for the device to be affected
+ * @mfn: the alternate make_request function
+ *
+ * Description:
+ *    The normal way for &struct bios to be passed to a device
+ *    driver is for them to be collected into requests on a request
+ *    queue, and then to allow the device driver to select requests
+ *    off that queue when it is ready.  This works well for many block
+ *    devices. However some block devices (typically virtual devices
+ *    such as md or lvm) do not benefit from the processing on the
+ *    request queue, and are served best by having the requests passed
+ *    directly to them.  This can be achieved by providing a function
+ *    to blk_queue_make_request().
+ *
+ * Caveat:
+ *    The driver that does this *must* be able to deal appropriately
+ *    with buffers in "highmemory". This can be accomplished by either calling
+ *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
+ *    blk_queue_bounce() to create a buffer in normal memory.
+ **/
+void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
+{
+	/*
+	 * set defaults
+	 */
+	q->nr_requests = BLKDEV_MAX_RQ;
+
+	q->make_request_fn = mfn;
+	blk_queue_dma_alignment(q, 511);
+	blk_queue_congestion_threshold(q);
+	q->nr_batching = BLK_BATCH_REQ;
+
+	blk_set_default_limits(&q->limits);
+
+	/*
+	 * by default assume old behaviour and bounce for any highmem page
+	 */
+	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
+}
+EXPORT_SYMBOL(blk_queue_make_request);
+
+/**
+ * blk_queue_bounce_limit - set bounce buffer limit for queue
+ * @q: the request queue for the device
+ * @dma_mask: the maximum address the device can handle
+ *
+ * Description:
+ *    Different hardware can have different requirements as to what pages
+ *    it can do I/O directly to. A low level driver can call
+ *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
+ *    buffers for doing I/O to pages residing above @dma_mask.
+ **/
+void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
+{
+	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
+	int dma = 0;
+
+	q->bounce_gfp = GFP_NOIO;
+#if BITS_PER_LONG == 64
+	/*
+	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
+	 * some IOMMUs can handle everything, but I don't know of a
+	 * way to test this here.
+	 */
+	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
+		dma = 1;
+	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
+#else
+	if (b_pfn < blk_max_low_pfn)
+		dma = 1;
+	q->limits.bounce_pfn = b_pfn;
+#endif
+	if (dma) {
+		init_emergency_isa_pool();