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Abstract

Theoretical results suggest that in order to learn the kind of com-
plicated functions that can represent high-level abstractions (e.g., in
vision, language, and other Al-level tasks), one may need deep architec-
tures. Deep architectures are composed of multiple levels of non-linear
operations, such as in neural nets with many hidden layers or in com-
plicated propositional formulae re-using many sub-formulae. Searching
the parameter space of deep architectures is a difficult task, but learning
algorithms such as those for Deep Belief Networks have recently been
proposed to tackle this problem with notable success, beating the state-
of-the-art in certain areas. This monograph discusses the motivations
and principles regarding learning algorithms for deep architectures, in
particular those exploiting as building blocks unsupervised learning of
single-layer models such as Restricted Boltzmann Machines, used to
construct deeper models such as Deep Belief Networks.
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Introduction

Allowing computers to model our world well enough to exhibit what
we call intelligence has been the focus of more than half a century of
research. To achieve this, it is clear that a large quantity of informa-
tion about our world should somehow be stored, explicitly or implicitly,
in the computer. Because it seems daunting to formalize manually all
that information in a form that computers can use to answer ques-
tions and generalize to new contexts, many researchers have turned
to learning algorithms to capture a large fraction of that information.
Much progress has been made to understand and improve learning
algorithms, but the challenge of artificial intelligence (AI) remains. Do
we have algorithms that can understand scenes and describe them in
natural language? Not really, except in very limited settings. Do we
have algorithms that can infer enough semantic concepts to be able to
interact with most humans using these concepts? No. If we consider
image understanding, one of the best specified of the Al tasks, we real-
ize that we do not yet have learning algorithms that can discover the
many visual and semantic concepts that would seem to be necessary to
interpret most images on the web. The situation is similar for other Al
tasks.
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Fig. 1.1 We would like the raw input image to be transformed into gradually higher levels of
representation, representing more and more abstract functions of the raw input, e.g., edges,
local shapes, object parts, etc. In practice, we do not know in advance what the “right”
representation should be for all these levels of abstractions, although linguistic concepts
might help guessing what the higher levels should implicitly represent.

Consider for example the task of interpreting an input image such as
the one in Figure 1.1. When humans try to solve a particular AT task
(such as machine vision or natural language processing), they often
exploit their intuition about how to decompose the problem into sub-
problems and multiple levels of representation, e.g., in object parts
and constellation models [138, 179, 197] where models for parts can be
re-used in different object instances. For example, the current state-
of-the-art in machine vision involves a sequence of modules starting
from pixels and ending in a linear or kernel classifier [134, 145], with
intermediate modules mixing engineered transformations and learning,
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e.g., first extracting low-level features that are invariant to small geo-
metric variations (such as edge detectors from Gabor filters), transform-
ing them gradually (e.g., to make them invariant to contrast changes
and contrast inversion, sometimes by pooling and sub-sampling), and
then detecting the most frequent patterns. A plausible and common
way to extract useful information from a natural image involves trans-
forming the raw pixel representation into gradually more abstract rep-
resentations, e.g., starting from the presence of edges, the detection of
more complex but local shapes, up to the identification of abstract cat-
egories associated with sub-objects and objects which are parts of the
image, and putting all these together to capture enough understanding
of the scene to answer questions about it.

Here, we assume that the computational machinery necessary
to express complex behaviors (which one might label “intelligent”)
requires highly varying mathematical functions, i.e., mathematical func-
tions that are highly non-linear in terms of raw sensory inputs, and
display a very large number of variations (ups and downs) across the
domain of interest. We view the raw input to the learning system as
a high dimensional entity, made of many observed variables, which
are related by unknown intricate statistical relationships. For example,
using knowledge of the 3D geometry of solid objects and lighting, we
can relate small variations in underlying physical and geometric fac-
tors (such as position, orientation, lighting of an object) with changes
in pixel intensities for all the pixels in an image. We call these factors
of variation because they are different aspects of the data that can vary
separately and often independently. In this case, explicit knowledge of
the physical factors involved allows one to get a picture of the math-
ematical form of these dependencies, and of the shape of the set of
images (as points in a high-dimensional space of pixel intensities) asso-
ciated with the same 3D object. If a machine captured the factors that
explain the statistical variations in the data, and how they interact to
generate the kind of data we observe, we would be able to say that the
machine understands those aspects of the world covered by these factors
of variation. Unfortunately, in general and for most factors of variation
underlying natural images, we do not have an analytical understand-
ing of these factors of variation. We do not have enough formalized
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prior knowledge about the world to explain the observed variety of
images, even for such an apparently simple abstraction as MAN, illus-
trated in Figure 1.1. A high-level abstraction such as MAN has the
property that it corresponds to a very large set of possible images,
which might be very different from each other from the point of view
of simple Euclidean distance in the space of pixel intensities. The set
of images for which that label could be appropriate forms a highly con-
voluted region in pixel space that is not even necessarily a connected
region. The MAN category can be seen as a high-level abstraction
with respect to the space of images. What we call abstraction here can
be a category (such as the MAN category) or a feature, a function of
sensory data, which can be discrete (e.g., the input sentence is at the
past tense) or continuous (e.g., the input video shows an object moving
at 2 meter/second). Many lower-level and intermediate-level concepts
(which we also call abstractions here) would be useful to construct
a MAN-detector. Lower level abstractions are more directly tied to
particular percepts, whereas higher level ones are what we call “more
abstract” because their connection to actual percepts is more remote,
and through other, intermediate-level abstractions.

In addition to the difficulty of coming up with the appropriate inter-
mediate abstractions, the number of visual and semantic categories
(such as MAN) that we would like an “intelligent” machine to cap-
ture is rather large. The focus of deep architecture learning is to auto-
matically discover such abstractions, from the lowest level features to
the highest level concepts. Ideally, we would like learning algorithms
that enable this discovery with as little human effort as possible, i.e.,
without having to manually define all necessary abstractions or hav-
ing to provide a huge set of relevant hand-labeled examples. If these
algorithms could tap into the huge resource of text and images on the
web, it would certainly help to transfer much of human knowledge into
machine-interpretable form.

1.1 How do We Train Deep Architectures?

Deep learning methods aim at learning feature hierarchies with fea-
tures from higher levels of the hierarchy formed by the composition of
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lower level features. Automatically learning features at multiple levels
of abstraction allow a system to learn complex functions mapping the
input to the output directly from data, without depending completely
on human-crafted features. This is especially important for higher-level
abstractions, which humans often do not know how to specify explic-
itly in terms of raw sensory input. The ability to automatically learn
powerful features will become increasingly important as the amount of
data and range of applications to machine learning methods continues
to grow.

Depth of architecture refers to the number of levels of composition
of non-linear operations in the function learned. Whereas most cur-
rent learning algorithms correspond to shallow architectures (1, 2 or
3 levels), the mammal brain is organized in a deep architecture [173]
with a given input percept represented at multiple levels of abstrac-
tion, each level corresponding to a different area of cortex. Humans
often describe such concepts in hierarchical ways, with multiple levels
of abstraction. The brain also appears to process information through
multiple stages of transformation and representation. This is partic-
ularly clear in the primate visual system [173], with its sequence of
processing stages: detection of edges, primitive shapes, and moving up
to gradually more complex visual shapes.

Inspired by the architectural depth of the brain, neural network
researchers had wanted for decades to train deep multi-layer neural
networks [19, 191], but no successful attempts were reported before
2006': researchers reported positive experimental results with typically
two or three levels (i.e., one or two hidden layers), but training deeper
networks consistently yielded poorer results. Something that can be
considered a breakthrough happened in 2006: Hinton et al. at Univer-
sity of Toronto introduced Deep Belief Networks (DBNs) [73], with a
learning algorithm that greedily trains one layer at a time, exploiting
an unsupervised learning algorithm for each layer, a Restricted Boltz-
mann Machine (RBM) [51]. Shortly after, related algorithms based
on auto-encoders were proposed [17, 153], apparently exploiting the

I Except for neural networks with a special structure called convolutional networks, dis-
cussed in Section 4.5.
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same principle: guiding the training of intermediate levels of represen-
tation using unsupervised learning, which can be performed locally at
each level. Other algorithms for deep architectures were proposed more
recently that exploit neither RBMs nor auto-encoders and that exploit
the same principle [131, 202] (see Section 4).

Since 2006, deep networks have been applied with success not
only in classification tasks [2, 17, 99, 111, 150, 153, 195], but also
in regression [160], dimensionality reduction [74, 158], modeling tex-
tures [141], modeling motion [182, 183], object segmentation [114],
information retrieval [154, 159, 190], robotics [60], natural language
processing [37, 130, 202], and collaborative filtering [162]. Although
auto-encoders, RBMs and DBNs can be trained with unlabeled data,
in many of the above applications, they have been successfully used
to initialize deep supervised feedforward neural networks applied to a
specific task.

1.2 Intermediate Representations: Sharing Features and
Abstractions Across Tasks

Since a deep architecture can be seen as the composition of a series of
processing stages, the immediate question that deep architectures raise
is: what kind of representation of the data should be found as the output
of each stage (i.e., the input of another)? What kind of interface should
there be between these stages? A hallmark of recent research on deep
architectures is the focus on these intermediate representations: the
success of deep architectures belongs to the representations learned in
an unsupervised way by RBMs [73], ordinary auto-encoders [17], sparse
auto-encoders [150, 153], or denoising auto-encoders [195]. These algo-
rithms (described in more detail in Section 7.2) can be seen as learn-
ing to transform one representation (the output of the previous stage)
into another, at each step maybe disentangling better the factors of
variations underlying the data. As we discuss at length in Section 4,
it has been observed again and again that once a good representa-
tion has been found at each level, it can be used to initialize and
successfully train a deep neural network by supervised gradient-based
optimization.
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Each level of abstraction found in the brain consists of the “activa-
tion” (neural excitation) of a small subset of a large number of features
that are, in general, not mutually exclusive. Because these features are
not mutually exclusive, they form what is called a distributed represen-
tation [68, 156]: the information is not localized in a particular neuron
but distributed across many. In addition to being distributed, it appears
that the brain uses a representation that is sparse: only a around 1-
4% of the neurons are active together at a given time [5, 113]. Sec-
tion 3.2 introduces the notion of sparse distributed representation and
Section 7.1 describes in more detail the machine learning approaches,
some inspired by the observations of the sparse representations in the
brain, that have been used to build deep architectures with sparse rep-
resentations.

Whereas dense distributed representations are one extreme of a
spectrum, and sparse representations are in the middle of that spec-
trum, purely local representations are the other extreme. Locality of
representation is intimately connected with the notion of local gener-
alization. Many existing machine learning methods are local in input
space: to obtain a learned function that behaves differently in different
regions of data-space, they require different tunable parameters for each
of these regions (see more in Section 3.1). Even though statistical effi-
ciency is not necessarily poor when the number of tunable parameters is
large, good generalization can be obtained only when adding some form
of prior (e.g., that smaller values of the parameters are preferred). When
that prior is not task-specific, it is often one that forces the solution
to be very smooth, as discussed at the end of Section 3.1. In contrast
to learning methods based on local generalization, the total number of
patterns that can be distinguished using a distributed representation
scales possibly exponentially with the dimension of the representation
(i.e., the number of learned features).

In many machine vision systems, learning algorithms have been lim-
ited to specific parts of such a processing chain. The rest of the design
remains labor-intensive, which might limit the scale of such systems.
On the other hand, a hallmark of what we would consider intelligent
machines includes a large enough repertoire of concepts. Recognizing
MAN is not enough. We need algorithms that can tackle a very large
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set of such tasks and concepts. It seems daunting to manually define
that many tasks, and learning becomes essential in this context. Fur-
thermore, it would seem foolish not to exploit the underlying common-
alities between these tasks and between the concepts they require. This
has been the focus of research on multi-task learning [7, 8, 32, 88, 186].
Architectures with multiple levels naturally provide such sharing and
re-use of components: the low-level visual features (like edge detec-
tors) and intermediate-level visual features (like object parts) that are
useful to detect M AN are also useful for a large group of other visual
tasks. Deep learning algorithms are based on learning intermediate rep-
resentations which can be shared across tasks. Hence they can leverage
unsupervised data and data from similar tasks [148] to boost perfor-
mance on large and challenging problems that routinely suffer from
a poverty of labelled data, as has been shown by [37], beating the
state-of-the-art in several natural language processing tasks. A simi-
lar multi-task approach for deep architectures was applied in vision
tasks by [2]. Consider a multi-task setting in which there are different
outputs for different tasks, all obtained from a shared pool of high-
level features. The fact that many of these learned features are shared
among m tasks provides sharing of statistical strength in proportion
to m. Now consider that these learned high-level features can them-
selves be represented by combining lower-level intermediate features
from a common pool. Again statistical strength can be gained in a sim-
ilar way, and this strategy can be exploited for every level of a deep
architecture.

In addition, learning about a large set of interrelated concepts might
provide a key to the kind of broad generalizations that humans appear
able to do, which we would not expect from separately trained object
detectors, with one detector per visual category. If each high-level cate-
gory is itself represented through a particular distributed configuration
of abstract features from a common pool, generalization to unseen cate-
gories could follow naturally from new configurations of these features.
Even though only some configurations of these features would present
in the training examples, if they represent different aspects of the data,
new examples could meaningfully be represented by new configurations
of these features.



10 Introduction

1.3 Desiderata for Learning Al

Summarizing some of the above issues, and trying to put them in the
broader perspective of Al, we put forward a number of requirements we
believe to be important for learning algorithms to approach AI, many
of which motivate the research are described here:

e Ability to learn complex, highly-varying functions, i.e., with
a number of variations much greater than the number of
training examples.

e Ability to learn with little human input the low-level,
intermediate, and high-level abstractions that would be use-
ful to represent the kind of complex functions needed for Al
tasks.

e Ability to learn from a very large set of examples: computa-
tion time for training should scale well with the number of
examples, i.e., close to linearly.

e Ability to learn from mostly unlabeled data, i.e., to work in
the semi-supervised setting, where not all the examples come
with complete and correct semantic labels.

e Ability to exploit the synergies present across a large num-
ber of tasks, i.e., multi-task learning. These synergies exist
because all the Al tasks provide different views on the same
underlying reality.

e Strong unsupervised learning (i.e., capturing most of the sta-
tistical structure in the observed data), which seems essential
in the limit of a large number of tasks and when future tasks
are not known ahead of time.

Other elements are equally important but are not directly connected
to the material in this monograph. They include the ability to learn to
represent context of varying length and structure [146], so as to allow
machines to operate in a context-dependent stream of observations and
produce a stream of actions, the ability to make decisions when actions
influence the future observations and future rewards [181], and the
ability to influence future observations so as to collect more relevant
information about the world, i.e., a form of active learning [34].
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1.4 Outline of the Paper

Section 2 reviews theoretical results (which can be skipped without
hurting the understanding of the remainder) showing that an archi-
tecture with insufficient depth can require many more computational
elements, potentially exponentially more (with respect to input size),
than architectures whose depth is matched to the task. We claim that
insufficient depth can be detrimental for learning. Indeed, if a solution
to the task is represented with a very large but shallow architecture
(with many computational elements), a lot of training examples might
be needed to tune each of these elements and capture a highly varying
function. Section 3.1 is also meant to motivate the reader, this time to
highlight the limitations of local generalization and local estimation,
which we expect to avoid using deep architectures with a distributed
representation (Section 3.2).

In later sections, the monograph describes and analyzes some of the
algorithms that have been proposed to train deep architectures. Sec-
tion 4 introduces concepts from the neural networks literature relevant
to the task of training deep architectures. We first consider the previous
difficulties in training neural networks with many layers, and then intro-
duce unsupervised learning algorithms that could be exploited to ini-
tialize deep neural networks. Many of these algorithms (including those
for the RBM) are related to the auto-encoder: a simple unsupervised
algorithm for learning a one-layer model that computes a distributed
representation for its input [25, 79, 156]. To fully understand RBMs and
many related unsupervised learning algorithms, Section 5 introduces
the class of energy-based models, including those used to build gen-
erative models with hidden variables such as the Boltzmann Machine.
Section 6 focuses on the greedy layer-wise training algorithms for Deep
Belief Networks (DBNs) [73] and Stacked Auto-Encoders [17, 153, 195].
Section 7 discusses variants of RBMs and auto-encoders that have been
recently proposed to extend and improve them, including the use of
sparsity, and the modeling of temporal dependencies. Section 8 dis-
cusses algorithms for jointly training all the layers of a Deep Belief
Network using variational bounds. Finally, we consider in Section 9 for-
ward looking questions such as the hypothesized difficult optimization
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problem involved in training deep architectures. In particular, we fol-
low up on the hypothesis that part of the success of current learning
strategies for deep architectures is connected to the optimization of
lower layers. We discuss the principle of continuation methods, which
minimize gradually less smooth versions of the desired cost function,
to make a dent in the optimization of deep architectures.



2

Theoretical Advantages of Deep Architectures

In this section, we present a motivating argument for the study of
learning algorithms for deep architectures, by way of theoretical results
revealing potential limitations of architectures with insufficient depth.
This part of the monograph (this section and the next) motivates the
algorithms described in the later sections, and can be skipped without
making the remainder difficult to follow.

The main point of this section is that some functions cannot be effi-
ciently represented (in terms of number of tunable elements) by archi-
tectures that are too shallow. These results suggest that it would be
worthwhile to explore learning algorithms for deep architectures, which
might be able to represent some functions otherwise not efficiently rep-
resentable. Where simpler and shallower architectures fail to efficiently
represent (and hence to learn) a task of interest, we can hope for learn-
ing algorithms that could set the parameters of a deep architecture for
this task.

We say that the expression of a function is compact when it has
few computational elements, i.e., few degrees of freedom that need to
be tuned by learning. So for a fixed number of training examples, and
short of other sources of knowledge injected in the learning algorithm,

13
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we would expect that compact representations of the target function!
would yield better generalization.

More precisely, functions that can be compactly represented by a
depth k architecture might require an exponential number of computa-
tional elements to be represented by a depth k — 1 architecture. Since
the number of computational elements one can afford depends on the
number of training examples available to tune or select them, the con-
sequences are not only computational but also statistical: poor general-
ization may be expected when using an insufficiently deep architecture
for representing some functions.

We consider the case of fixed-dimension inputs, where the computa-
tion performed by the machine can be represented by a directed acyclic
graph where each node performs a computation that is the application
of a function on its inputs, each of which is the output of another node
in the graph or one of the external inputs to the graph. The whole
graph can be viewed as a circuit that computes a function applied to
the external inputs. When the set of functions allowed for the compu-
tation nodes is limited to logic gates, such as {AND, OR, NOT}, this
is a Boolean circuit, or logic circuit.

To formalize the notion of depth of architecture, one must introduce
the notion of a set of computational elements. An example of such a set
is the set of computations that can be performed logic gates. Another
is the set of computations that can be performed by an artificial neuron
(depending on the values of its synaptic weights). A function can be
expressed by the composition of computational elements from a given
set. It is defined by a graph which formalizes this composition, with
one node per computational element. Depth of architecture refers to
the depth of that graph, i.e., the longest path from an input node to
an output node. When the set of computational elements is the set of
computations an artificial neuron can perform, depth corresponds to
the number of layers in a neural network. Let us explore the notion of
depth with examples of architectures of different depths. Consider the
function f(x) = x * sin(a * = + b). It can be expressed as the composi-
tion of simple operations such as addition, subtraction, multiplication,

I The target function is the function that we would like the learner to discover.
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Fig. 2.1 Examples of functions represented by a graph of computations, where each node is
taken in some “element set” of allowed computations. Left, the elements are {*,+,—,sin} U
R. The architecture computes z * sin(a *  + b) and has depth 4. Right, the elements are
artificial neurons computing f(x) = tanh(b + w’x); each element in the set has a different
(w,b) parameter. The architecture is a multi-layer neural network of depth 3.

and the sin operation, as illustrated in Figure 2.1. In the example, there
would be a different node for the multiplication a * x and for the final
multiplication by x. Each node in the graph is associated with an out-
put value obtained by applying some function on input values that are
the outputs of other nodes of the graph. For example, in a logic circuit
each node can compute a Boolean function taken from a small set of
Boolean functions. The graph as a whole has input nodes and output
nodes and computes a function from input to output. The depth of an
architecture is the maximum length of a path from any input of the
graph to any output of the graph, i.e., 4 in the case of z * sin(a * x + b)
in Figure 2.1.

e [f we include affine operations and their possible composition
with sigmoids in the set of computational elements, linear
regression and logistic regression have depth 1, i.e., have a
single level.

e When we put a fixed kernel computation K(u,v) in the
set of allowed operations, along with affine operations, ker-
nel machines [166] with a fixed kernel can be considered to
have two levels. The first level has one element computing
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K(x,x;) for each prototype x; (a selected representative
training example) and matches the input vector x with the
prototypes x;. The second level performs an affine combina-
tion b + >, o K(x,x;) to associate the matching prototypes
x; with the expected response.

e When we put artificial neurons (affine transformation fol-
lowed by a non-linearity) in our set of elements, we obtain
ordinary multi-layer neural networks [156]. With the most
common choice of one hidden layer, they also have depth
two (the hidden layer and the output layer).

® Decision trees can also be seen as having two levels, as dis-
cussed in Section 3.1.

e Boosting [52] usually adds one level to its base learners: that
level computes a vote or linear combination of the outputs
of the base learners.

e Stacking [205] is another meta-learning algorithm that adds
one level.

e Based on current knowledge of brain anatomy [173], it
appears that the cortex can be seen as a deep architecture,
with 5-10 levels just for the visual system.

Although depth depends on the choice of the set of allowed com-
putations for each element, graphs associated with one set can often
be converted to graphs associated with another by an graph transfor-
mation in a way that multiplies depth. Theoretical results suggest that
it is not the absolute number of levels that matters, but the number
of levels relative to how many are required to represent efficiently the
target function (with some choice of set of computational elements).

2.1 Computational Complexity

The most formal arguments about the power of deep architectures come
from investigations into computational complexity of circuits. The basic
conclusion that these results suggest is that when a function can be
compactly represented by a deep architecture, it might need a very large
architecture to be represented by an insufficiently deep one.
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A two-layer circuit of logic gates can represent any Boolean func-
tion [127]. Any Boolean function can be written as a sum of products
(disjunctive normal form: AND gates on the first layer with optional
negation of inputs, and OR gate on the second layer) or a product
of sums (conjunctive normal form: OR gates on the first layer with
optional negation of inputs, and AND gate on the second layer). To
understand the limitations of shallow architectures, the first result to
consider is that with depth-two logical circuits, most Boolean func-
tions require an exponential (with respect to input size) number of
logic gates [198] to be represented.

More interestingly, there are functions computable with a
polynomial-size logic gates circuit of depth k that require exponential
size when restricted to depth k — 1 [62]. The proof of this theorem
relies on earlier results [208] showing that d-bit parity circuits of depth
2 have exponential size. The d-bit parity function is defined as usual:

d
1, if b; 1
parity : (b1,...,bq) € {071}d sy , 1 Z; ; 1S even

0, otherwise.

One might wonder whether these computational complexity results
for Boolean circuits are relevant to machine learning. See [140] for an
early survey of theoretical results in computational complexity relevant
to learning algorithms. Interestingly, many of the results for Boolean
circuits can be generalized to architectures whose computational ele-
ments are linear threshold units (also known as artificial neurons [125]),
which compute

(%) = Lwxyb>0 (2.1)

with parameters w and b. The fan-in of a circuit is the maximum
number of inputs of a particular element. Circuits are often organized
in layers, like multi-layer neural networks, where elements in a layer
only take their input from elements in the previous layer(s), and the
first layer is the neural network input. The size of a circuit is the number
of its computational elements (excluding input elements, which do not
perform any computation).
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Of particular interest is the following theorem, which applies to
monotone weighted threshold circuits (i.e., multi-layer neural networks
with linear threshold units and positive weights) when trying to repre-
sent a function compactly representable with a depth k circuit:

Theorem 2.1. A monotone weighted threshold circuit of depth k& — 1
computing a function fj, € Fj n has size at least 2¢N for some constant
¢>0and N > Ny [63].

The class of functions Fj, y is defined as follows. It contains functions
with N2%=2 inputs, defined by a depth k circuit that is a tree. At the
leaves of the tree there are unnegated input variables, and the function
value is at the root. The ith level from the bottom consists of AND
gates when 7 is even and OR gates when i is odd. The fan-in at the top
and bottom level is N and at all other levels it is N2.

The above results do not prove that other classes of functions (such
as those we want to learn to perform Al tasks) require deep architec-
tures, nor that these demonstrated limitations apply to other types of
circuits. However, these theoretical results beg the question: are the
depth 1, 2 and 3 architectures (typically found in most machine learn-
ing algorithms) too shallow to represent efficiently more complicated
functions of the kind needed for Al tasks? Results such as the above
theorem also suggest that there might be no universally right depth: each
function (i.e., each task) might require a particular minimum depth (for
a given set of computational elements). We should therefore strive to
develop learning algorithms that use the data to determine the depth
of the final architecture. Note also that recursive computation defines
a computation graph whose depth increases linearly with the number
of iterations.

2.2 Informal Arguments

Depth of architecture is connected to the notion of highly varying func-
tions. We argue that, in general, deep architectures can compactly rep-
resent highly varying functions which would otherwise require a very
large size to be represented with an inappropriate architecture. We say
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that a function is highly varying when a piecewise approximation (e.g.,
piecewise-constant or piecewise-linear) of that function would require
a large number of pieces. A deep architecture is a composition of many
operations, and it could in any case be represented by a possibly very
large depth-2 architecture. The composition of computational units in a
small but deep circuit can actually be seen as an efficient “factorization”
of a large but shallow circuit. Reorganizing the way in which compu-
tational units are composed can have a drastic effect on the efficiency
of representation size. For example, imagine a depth 2k representation
of polynomials where odd layers implement products and even layers
implement sums. This architecture can be seen as a particularly effi-
cient factorization, which when expanded into a depth 2 architecture
such as a sum of products, might require a huge number of terms in the
sum: consider a level 1 product (like x2x3 in Figure 2.2) from the depth
2k architecture. It could occur many times as a factor in many terms of
the depth 2 architecture. One can see in this example that deep archi-
tectures can be advantageous if some computations (e.g., at one level)
can be shared (when considering the expanded depth 2 expression): in
that case, the overall expression to be represented can be factored out,
i.e., represented more compactly with a deep architecture.

(2122)(x2X3) + (2122) (2374) + (X2X3)2 + (x2x3)(2324)

T ) X3 Ty

Fig. 2.2 Example of polynomial circuit (with products on odd layers and sums on even
ones) illustrating the factorization enjoyed by a deep architecture. For example the level-1
product x2x3 would occur many times (exponential in depth) in a depth 2 (sum of product)
expansion of the above polynomial.
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Further examples suggesting greater expressive power of deep archi-
tectures and their potential for AI and machine learning are also dis-
cussed by [19]. An earlier discussion of the expected advantages of
deeper architectures in a more cognitive perspective is found in [191].
Note that connectionist cognitive psychologists have been studying for
long time the idea of neural computation organized with a hierarchy
of levels of representation corresponding to different levels of abstrac-
tion, with a distributed representation at each level [67, 68, 123, 122,
124, 157]. The modern deep architecture approaches discussed here owe
a lot to these early developments. These concepts were introduced in
cognitive psychology (and then in computer science / Al) in order to
explain phenomena that were not as naturally captured by earlier cog-
nitive models, and also to connect the cognitive explanation with the
computational characteristics of the neural substrate.

To conclude, a number of computational complexity results strongly
suggest that functions that can be compactly represented with a
depth k architecture could require a very large number of elements
in order to be represented by a shallower architecture. Since each ele-
ment of the architecture might have to be selected, i.e., learned, using
examples, these results suggest that depth of architecture can be very
important from the point of view of statistical efficiency. This notion
is developed further in the next section, discussing a related weakness
of many shallow architectures associated with non-parametric learning
algorithms: locality in input space of the estimator.



3

Local vs Non-Local Generalization

3.1 The Limits of Matching Local Templates

How can a learning algorithm compactly represent a “complicated”
function of the input, i.e., one that has many more variations than
the number of available training examples? This question is both con-
nected to the depth question and to the question of locality of estima-
tors. We argue that local estimators are inappropriate to learn highly
varying functions, even though they can potentially be represented effi-
ciently with deep architectures. An estimator that is local in input space
obtains good generalization for a new input x by mostly exploiting
training examples in the neighborhood of x. For example, the k near-
est neighbors of the test point x, among the training examples, vote for
the prediction at x. Local estimators implicitly or explicitly partition
the input space in regions (possibly in a soft rather than hard way)
and require different parameters or degrees of freedom to account for
the possible shape of the target function in each of the regions. When
many regions are necessary because the function is highly varying, the
number of required parameters will also be large, and thus the number
of examples needed to achieve good generalization.

21
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The local generalization issue is directly connected to the literature
on the curse of dimensionality, but the results we cite show that what
matters for generalization is not dimensionality, but instead the number
of “variations” of the function we wish to obtain after learning. For
example, if the function represented by the model is piecewise-constant
(e.g., decision trees), then the question that matters is the number of
pieces required to approximate properly the target function. There are
connections between the number of variations and the input dimension:
one can readily design families of target functions for which the number
of variations is exponential in the input dimension, such as the parity
function with d inputs.

Architectures based on matching local templates can be thought
of as having two levels. The first level is made of a set of templates
which can be matched to the input. A template unit will output a
value that indicates the degree of matching. The second level combines
these values, typically with a simple linear combination (an OR-like
operation), in order to estimate the desired output. One can think of
this linear combination as performing a kind of interpolation in order
to produce an answer in the region of input space that is between the
templates.

The prototypical example of architectures based on matching local
templates is the kernel machine [166]

f(x) :b+ZaiK(x,xi), (3.1)

where b and «; form the second level, while on the first level, the kernel
function K (x,%;) matches the input x to the training example x; (the
sum runs over some or all of the input patterns in the training set).
In the above equation, f(x) could be for example, the discriminant
function of a classifier, or the output of a regression predictor.

A kernel is local when K (x,x;) > p is true only for x in some con-
nected region around x; (for some threshold p). The size of that region
can usually be controlled by a hyper-parameter of the kernel func-
tion. An example of local kernel is the Gaussian kernel K(x,x;) =
e~ I—xill*/o 2, where o controls the size of the region around x;. We
can see the Gaussian kernel as computing a soft conjunction, because
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it can be written as a product of one-dimensional conditions: K (u,v) =
I1; e~ (w—vy)?/o* [f |u; — vj|/o is small for all dimensions j, then the
pattern matches and K(u,v) is large. If |u; — v;|/o is large for a
single j, then there is no match and K(u,v) is small.

Well-known examples of kernel machines include not only Support
Vector Machines (SVMs) [24, 39] and Gaussian processes [203] ! for
classification and regression, but also classical non-parametric learning
algorithms for classification, regression and density estimation, such as
the k-nearest neighbor algorithm, Nadaraya-Watson or Parzen windows
density, regression estimators, etc. Below, we discuss manifold learning
algorithms such as Isomap and LLE that can also be seen as local kernel
machines, as well as related semi-supervised learning algorithms also
based on the construction of a neighborhood graph (with one node per
example and arcs between neighboring examples).

Kernel machines with a local kernel yield generalization by exploit-
ing what could be called the smoothness prior: the assumption that the
target function is smooth or can be well approximated with a smooth
function. For example, in supervised learning, if we have the train-
ing example (x;,y;), then it makes sense to construct a predictor f(x)
which will output something close to y; when x is close to x;. Note
how this prior requires defining a notion of proximity in input space.
This is a useful prior, but one of the claims made [13] and [19] is that
such a prior is often insufficient to generalize when the target function
is highly varying in input space.

The limitations of a fixed generic kernel such as the Gaussian ker-
nel have motivated a lot of research in designing kernels based on prior
knowledge about the task [38, 56, 89, 167]. However, if we lack suffi-
cient prior knowledge for designing an appropriate kernel, can we learn
it? This question also motivated much research [40, 96, 196], and deep
architectures can be viewed as a promising development in this direc-
tion. It has been shown that a Gaussian Process kernel machine can be
improved using a Deep Belief Network to learn a feature space [160]:
after training the Deep Belief Network, its parameters are used to

!In the Gaussian Process case, as in kernel regression, f(x) in Equation (3.1) is the condi-
tional expectation of the target variable Y to predict, given the input x.
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initialize a deterministic non-linear transformation (a multi-layer neu-
ral network) that computes a feature vector (a new feature space for the
data), and that transformation can be tuned to minimize the prediction
error made by the Gaussian process, using a gradient-based optimiza-
tion. The feature space can be seen as a learned representation of the
data. Good representations bring close to each other examples which
share abstract characteristics that are relevant factors of variation of
the data distribution. Learning algorithms for deep architectures can
be seen as ways to learn a good feature space for kernel machines.

Consider one direction v in which a target function f (what the
learner should ideally capture) goes up and down (i.e., as « increases,
f(x + av) — bcrosses 0, becomes positive, then negative, positive, then
negative, etc.), in a series of “bumps”. Following [165], [13, 19] show
that for kernel machines with a Gaussian kernel, the required number
of examples grows linearly with the number of bumps in the target
function to be learned. They also show that for a maximally varying
function such as the parity function, the number of examples necessary
to achieve some error rate with a Gaussian kernel machine is expo-
nential in the input dimension. For a learner that only relies on the
prior that the target function is locally smooth (e.g., Gaussian kernel
machines), learning a function with many sign changes in one direc-
tion is fundamentally difficult (requiring a large VC-dimension, and a
correspondingly large number of examples). However, learning could
work with other classes of functions in which the pattern of varia-
tions is captured compactly (a trivial example is when the variations
are periodic and the class of functions includes periodic functions that
approximately match).

For complex tasks in high dimension, the complexity of the decision
surface could quickly make learning impractical when using a local
kernel method. It could also be argued that if the curve has many
variations and these variations are not related to each other through an
underlying regularity, then no learning algorithm will do much better
than estimators that are local in input space. However, it might be
worth looking for more compact representations of these variations,
because if one could be found, it would be likely to lead to better
generalization, especially for variations not seen in the training set.
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Of course this could only happen if there were underlying regularities
to be captured in the target function; we expect this property to hold
in AT tasks.

Estimators that are local in input space are found not only in super-
vised learning algorithms such as those discussed above, but also in
unsupervised and semi-supervised learning algorithms, e.g., Locally
Linear Embedding [155], Isomap [185], kernel Principal Component
Analysis [168] (or kernel PCA) Laplacian Eigenmaps [10], Manifold
Charting [26], spectral clustering algorithms [199], and kernel-based
non-parametric semi-supervised algorithms [9, 44, 209, 210]. Most of
these unsupervised and semi-supervised algorithms rely on the neigh-
borhood graph: a graph with one node per example and arcs between
near neighbors. With these algorithms, one can get a geometric intu-
ition of what they are doing, as well as how being local estimators can
hinder them. This is illustrated with the example in Figure 3.1 in the
case of manifold learning. Here again, it was found that in order to

" [shrinking
transformation

4

e
raw input vector space

Fig. 3.1 The set of images associated with the same object class forms a manifold or a set
of disjoint manifolds, i.e., regions of lower dimension than the original space of images. By
rotating or shrinking, e.g., a digit 4, we get other images of the same class, i.e., on the
same manifold. Since the manifold is locally smooth, it can in principle be approximated
locally by linear patches, each being tangent to the manifold. Unfortunately, if the manifold
is highly curved, the patches are required to be small, and exponentially many might be
needed with respect to manifold dimension. Graph graciously provided by Pascal Vincent.
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cover the many possible variations in the function to be learned, one
needs a number of examples proportional to the number of variations
to be covered [21].

Finally let us consider the case of semi-supervised learning algo-
rithms based on the neighborhood graph [9, 44, 209, 210]. These algo-
rithms partition the neighborhood graph in regions of constant label.
It can be shown that the number of regions with constant label cannot
be greater than the number of labeled examples [13]. Hence one needs
at least as many labeled examples as there are variations of interest
for the classification. This can be prohibitive if the decision surface of
interest has a very large number of variations.

Decision trees [28] are among the best studied learning algorithms.
Because they can focus on specific subsets of input variables, at first
blush they seem non-local. However, they are also local estimators in
the sense of relying on a partition of the input space and using separate
parameters for each region [14], with each region associated with a leaf
of the decision tree. This means that they also suffer from the limita-
tion discussed above for other non-parametric learning algorithms: they
need at least as many training examples as there are variations of inter-
est in the target function, and they cannot generalize to new variations
not covered in the training set. Theoretical analysis [14] shows specific
classes of functions for which the number of training examples neces-
sary to achieve a given error rate is exponential in the input dimension.
This analysis is built along lines similar to ideas exploited previously
in the computational complexity literature [41]. These results are also
in line with previous empirical results [143, 194] showing that the gen-
eralization performance of decision trees degrades when the number of
variations in the target function increases.

Ensembles of trees (like boosted trees [52], and forests [80, 27]) are
more powerful than a single tree. They add a third level to the archi-
tecture which allows the model to discriminate among a number of
regions exponential in the number of parameters [14]. As illustrated in
Figure 3.2, they implicitly form a distributed representation (a notion
discussed further in Section 3.2) with the output of all the trees in
the forest. Each tree in an ensemble can be associated with a discrete
symbol identifying the leaf/region in which the input example falls for
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Fig. 3.2 Whereas a single decision tree (here just a two-way partition) can discriminate
among a number of regions linear in the number of parameters (leaves), an ensemble of
trees (left) can discriminate among a number of regions exponential in the number of trees,
i.e., exponential in the total number of parameters (at least as long as the number of trees
does not exceed the number of inputs, which is not quite the case here). Each distinguishable
region is associated with one of the leaves of each tree (here there are three 2-way trees, each
defining two regions, for a total of seven regions). This is equivalent to a multi-clustering,
here three clusterings each associated with two regions. A binomial RBM with three hidden
units (right) is a multi-clustering with 2 linearly separated regions per partition (each
associated with one of the three binomial hidden units). A multi-clustering is therefore a
distributed representation of the input pattern.

that tree. The identity of the leaf node in which the input pattern is
associated for each tree forms a tuple that is a very rich description of
the input pattern: it can represent a very large number of possible pat-
terns, because the number of intersections of the leaf regions associated
with the n trees can be exponential in n.

3.2 Learning Distributed Representations

In Section 1.2, we argued that deep architectures call for making choices
about the kind of representation at the interface between levels of the
system, and we introduced the basic notion of local representation (dis-
cussed further in the previous section), of distributed representation,
and of sparse distributed representation. The idea of distributed rep-
resentation is an old idea in machine learning and neural networks
research [15, 68, 128, 157, 170], and it may be of help in dealing with
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the curse of dimensionality and the limitations of local generalization.
A cartoon local representation for integers ¢ € {1,2,..., N} is a vector
r(i) of N bits with a single 1 and N — 1 zeros, i.e., with jth element
rj(i) = 1,—;, called the one-hot representation of i. A distributed rep-
resentation for the same integer could be a vector of logy N bits, which
is a much more compact way to represent i. For the same number
of possible configurations, a distributed representation can potentially
be exponentially more compact than a very local one. Introducing the
notion of sparsity (e.g., encouraging many units to take the value 0)
allows for representations that are in between being fully local (i.e.,
maximally sparse) and non-sparse (i.e., dense) distributed representa-
tions. Neurons in the cortex are believed to have a distributed and
sparse representation [139], with around 1-4% of the neurons active at
any one time [5, 113]. In practice, we often take advantage of represen-
tations which are continuous-valued, which increases their expressive
power. An example of continuous-valued local representation is one
where the ith element varies according to some distance between the
input and a prototype or region center, as with the Gaussian kernel dis-
cussed in Section 3.1. In a distributed representation the input pattern
is represented by a set of features that are not mutually exclusive, and
might even be statistically independent. For example, clustering algo-
rithms do not build a distributed representation since the clusters are
essentially mutually exclusive, whereas Independent Component Anal-
ysis (ICA) [11, 142] and Principal Component Analysis (PCA) [82]
build a distributed representation.

Consider a discrete distributed representation r(x) for an input pat-
tern x, where r;(x) € {1,... M}, i€ {1,...,N}. Each r;(x) can be seen
as a classification of x into M classes. As illustrated in Figure 3.2 (with
M = 2), each r;(x) partitions the x-space in M regions, but the differ-
ent partitions can be combined to give rise to a potentially exponential
number of possible intersection regions in xX-space, corresponding to
different configurations of r(x). Note that when representing a particu-
lar input distribution, some configurations may be impossible because
they are incompatible. For example, in language modeling, a local rep-
resentation of a word could directly encode its identity by an index
in the vocabulary table, or equivalently a one-hot code with as many
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entries as the vocabulary size. On the other hand, a distributed repre-
sentation could represent the word by concatenating in one vector indi-
cators for syntactic features (e.g., distribution over parts of speech it
can have), morphological features (which suffix or prefix does it have?),
and semantic features (is it the name of a kind of animal? etc). Like in
clustering, we construct discrete classes, but the potential number of
combined classes is huge: we obtain what we call a multi-clustering and
that is similar to the idea of overlapping clusters and partial member-
ships [65, 66] in the sense that cluster memberships are not mutually
exclusive. Whereas clustering forms a single partition and generally
involves a heavy loss of information about the input, a multi-clustering
provides a set of separate partitions of the input space. Identifying
which region of each partition the input example belongs to forms a
description of the input pattern which might be very rich, possibly not
losing any information. The tuple of symbols specifying which region
of each partition the input belongs to can be seen as a transformation
of the input into a new space, where the statistical structure of the
data and the factors of variation in it could be disentangled. This cor-
responds to the kind of partition of x-space that an ensemble of trees
can represent, as discussed in the previous section. This is also what we
would like a deep architecture to capture, but with multiple levels of
representation, the higher levels being more abstract and representing
more complex regions of input space.

In the realm of supervised learning, multi-layer neural net-
works [157, 156] and in the realm of unsupervised learning, Boltzmann
machines [1] have been introduced with the goal of learning distributed
internal representations in the hidden layers. Unlike in the linguistic
example above, the objective is to let learning algorithms discover the
features that compose the distributed representation. In a multi-layer
neural network with more than one hidden layer, there are several repre-
sentations, one at each layer. Learning multiple levels of distributed rep-
resentations involves a challenging training problem, which we discuss
next.
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Neural Networks for Deep Architectures

4.1 Multi-Layer Neural Networks

A typical set of equations for multi-layer neural networks [156] is the
following. As illustrated in Figure 4.1, layer k computes an output
vector h* using the output h*~! of the previous layer, starting with
the input x = h°,

h* = tanh(b® + W h*~1) (4.1)

with parameters b¥ (a vector of offsets) and W* (a matrix of weights).
The tanh is applied element-wise and can be replaced by sigm(u) =
1/(1 + e ) = J(tanh(u) + 1) or other saturating non-linearities. The
top layer output h’ is used for making a prediction and is combined
with a supervised target y into a loss function L(h’,y), typically convex
in b’ + W*'h"!. The output layer might have a non-linearity different
from the one used in other layers, e.g., the softmax

ebi+Wint—t

h!

= 4.2
1 Z] eb§+W7zh€71 ( )

where W/ is the ith row of W* h{ is positive and S;hf=1. The

1
softmax output h! can be used as estimator of P(Y = i|x), with the
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Fig. 4.1 Multi-layer neural network, typically used in supervised learning to make a predic-
tion or classification, through a series of layers, each of which combines an affine operation
and a non-linearity. Deterministic transformations are computed in a feedforward way from
the input x, through the hidden layers h*, to the network output h’, which gets compared
with a label y to obtain the loss L(h?,y) to be minimized.

interpretation that Y is the class associated with input pattern x.
In this case one often uses the negative conditional log-likelihood
L(h',y) = —log P(Y = y|x) = —loghi as a loss, whose expected value
over (x,y) pairs is to be minimized.

4.2 The Challenge of Training Deep Neural Networks

After having motivated the need for deep architectures that are non-
local estimators, we now turn to the difficult problem of training them.
Experimental evidence suggests that training deep architectures is more
difficult than training shallow architectures [17, 50].

Until 2006, deep architectures have not been discussed much in the
machine learning literature, because of poor training and generalization
errors generally obtained [17] using the standard random initialization
of the parameters. Note that deep convolutional neural networks [104,
101, 175, 153] were found easier to train, as discussed in Section 4.5,
for reasons that have yet to be really clarified.
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Many unreported negative observations as well as the experimental
results in [17, 50] suggest that gradient-based training of deep super-
vised multi-layer neural networks (starting from random initialization)
gets stuck in “apparent local minima or plateaus”,' and that as the
architecture gets deeper, it becomes more difficult to obtain good gen-
eralization. When starting from random initialization, the solutions
obtained with deeper neural networks appear to correspond to poor
solutions that perform worse than the solutions obtained for networks
with 1 or 2 hidden layers [17, 98]. This happens even though k + 1-
layer nets can easily represent what a k-layer net can represent (with-
out much added capacity), whereas the converse is not true. However,
it was discovered [73] that much better results could be achieved when
pre-training each layer with an unsupervised learning algorithm, one
layer after the other, starting with the first layer (that directly takes in
input the observed x). The initial experiments used the RBM genera-
tive model for each layer [73], and were followed by experiments yield-
ing similar results using variations of auto-encoders for training each
layer [17, 153, 195]. Most of these papers exploit the idea of greedy
layer-wise unsupervised learning (developed in more detail in the next
section): first train the lower layer with an unsupervised learning algo-
rithm (such as one for the RBM or some auto-encoder), giving rise to
an initial set of parameter values for the first layer of a neural net-
work. Then use the output of the first layer (a new representation for
the raw input) as input for another layer, and similarly initialize that
layer with an unsupervised learning algorithm. After having thus ini-
tialized a number of layers, the whole neural network can be fine-tuned
with respect to a supervised training criterion as usual. The advan-
tage of unsupervised pre-training versus random initialization was
clearly demonstrated in several statistical comparisons [17, 50, 98, 99].
What principles might explain the improvement in classification error
observed in the literature when using unsupervised pre-training? One
clue may help to identify the principles behind the success of some train-
ing algorithms for deep architectures, and it comes from algorithms that

I'We call them apparent local minima in the sense that the gradient descent learning tra-
jectory is stuck there, which does not completely rule out that more powerful optimizers
could not find significantly better solutions far from these.
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exploit neither RBMs nor auto-encoders [131, 202]. What these algo-
rithms have in common with the training algorithms based on RBMs
and auto-encoders is layer-local unsupervised criteria, i.e., the idea that
injecting an unsupervised training signal at each layer may help to guide
the parameters of that layer towards better regions in parameter space.
In [202], the neural networks are trained using pairs of examples (x,%),
which are either supposed to be “neighbors” (or of the same class)
or not. Consider h¥(x) the level-k representation of x in the model.
A local training criterion is defined at each layer that pushes the inter-
mediate representations h*(x) and h*(x) either towards each other or
away from each other, according to whether x and x are supposed to be
neighbors or not (e.g., k-nearest neighbors in input space). The same
criterion had already been used successfully to learn a low-dimensional
embedding with an unsupervised manifold learning algorithm [59] but
is here [202] applied at one or more intermediate layer of the neural net-
work. Following the idea of slow feature analysis [23, 131, 204] exploit
the temporal constancy of high-level abstraction to provide an unsu-
pervised guide to intermediate layers: successive frames are likely to
contain the same object.

Clearly, test errors can be significantly improved with these tech-
niques, at least for the types of tasks studied, but why? One basic
question to ask is whether the improvement is basically due to better
optimization or to better regularization. As discussed below, the answer
may not fit the usual definition of optimization and regularization.

In some experiments [17, 98] it is clear that one can get training
classification error down to zero even with a deep neural network that
has no unsupervised pre-training, pointing more in the direction of a
regularization effect than an optimization effect. Experiments in [50]
also give evidence in the same direction: for the same training error
(at different points during training), test error is systematically lower
with unsupervised pre-training. As discussed in [50], unsupervised pre-
training can be seen as a form of regularizer (and prior): unsupervised
pre-training amounts to a constraint on the region in parameter space

where a solution is allowed. The constraint forces solutions “near”?

2In the same basin of attraction of the gradient descent procedure.



34  Neural Networks for Deep Architectures

ones that correspond to the unsupervised training, i.e., hopefully cor-
responding to solutions capturing significant statistical structure in the
input. On the other hand, other experiments [17, 98] suggest that poor
tuning of the lower layers might be responsible for the worse results
without pre-training: when the top hidden layer is constrained (forced
to be small) the deep networks with random initialization (no unsuper-
vised pre-training) do poorly on both training and test sets, and much
worse than pre-trained networks. In the experiments mentioned earlier
where training error goes to zero, it was always the case that the num-
ber of hidden units in each layer (a hyper-parameter) was allowed to
be as large as necessary (to minimize error on a validation set). The
explanatory hypothesis proposed in [17, 98] is that when the top hidden
layer is unconstrained, the top two layers (corresponding to a regular
1-hidden-layer neural net) are sufficient to fit the training set, using as
input the representation computed by the lower layers, even if that rep-
resentation is poor. On the other hand, with unsupervised pre-training,
the lower layers are ‘better optimized’, and a smaller top layer suffices
to get a low training error but also yields better generalization. Other
experiments described in [50] are also consistent with the explanation
that with random parameter initialization, the lower layers (closer to
the input layer) are poorly trained. These experiments show that the
effect of unsupervised pre-training is most marked for the lower layers
of a deep architecture.

We know from experience that a two-layer network (one hidden
layer) can be well trained in general, and that from the point of view of
the top two layers in a deep network, they form a shallow network whose
input is the output of the lower layers. Optimizing the last layer of a
deep neural network is a convex optimization problem for the training
criteria commonly used. Optimizing the last two layers, although not
convex, is known to be much easier than optimizing a deep network
(in fact when the number of hidden units goes to infinity, the training
criterion of a two-layer network can be cast as convex [18]).

If there are enough hidden units (i.e., enough capacity) in the top
hidden layer, training error can be brought very low even when the
lower layers are not properly trained (as long as they preserve most
of the information about the raw input), but this may bring worse
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generalization than shallow neural networks. When training error is low
and test error is high, we usually call the phenomenon overfitting. Since
unsupervised pre-training brings test error down, that would point to it
as a kind of data-dependent regularizer. Other strong evidence has been
presented suggesting that unsupervised pre-training acts like a regular-
izer [50]: in particular, when there is not enough capacity, unsupervised
pre-training tends to hurt generalization, and when the training set size
is “small” (e.g., MNIST, with less than hundred thousand examples),
although unsupervised pre-training brings improved test error, it tends
to produce larger training error.

On the other hand, for much larger training sets, with better initial-
ization of the lower hidden layers, both training and generalization error
can be made significantly lower when using unsupervised pre-training
(see Figure 4.2 and discussion below). We hypothesize that in a well-
trained deep neural network, the hidden layers form a “good” repre-
sentation of the data, which helps to make good predictions. When the
lower layers are poorly initialized, these deterministic and continuous
representations generally keep most of the information about the input,
but these representations might scramble the input and hurt rather
than help the top layers to perform classifications that generalize well.

According to this hypothesis, although replacing the top two layers
of a deep neural network by convex machinery such as a Gaussian
process or an SVM can yield some improvements [19], especially on
the training error, it would not help much in terms of generalization
if the lower layers have not been sufficiently optimized, i.e., if a good
representation of the raw input has not been discovered.

Hence, one hypothesis is that unsupervised pre-training helps gener-
alization by allowing for a ‘better’ tuning of lower layers of a deep archi-
tecture. Although training error can be reduced either by exploiting
only the top layers ability to fit the training examples, better general-
ization is achieved when all the layers are tuned appropriately. Another
source of better generalization could come from a form of regulariza-
tion: with unsupervised pre-training, the lower layers are constrained to
capture regularities of the input distribution. Consider random input-
output pairs (X,Y’). Such regularization is similar to the hypothesized
effect of unlabeled examples in semi-supervised learning [100] or the
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Fig. 4.2 Deep architecture trained online with 10 million examples of digit images, either
with pre-training (triangles) or without (circles). The classification error shown (vertical
axis, log-scale) is computed online on the next 1000 examples, plotted against the number
of examples seen from the beginning. The first 2.5 million examples are used for unsuper-
vised pre-training (of a stack of denoising auto-encoders). The oscillations near the end are
because the error rate is too close to 0, making the sampling variations appear large on the
log-scale. Whereas with a very large training set regularization effects should dissipate, one
can see that without pre-training, training converges to a poorer apparent local minimum:
unsupervised pre-training helps to find a better minimum of the online error. Experiments
were performed by Dumitru Erhan.

regularization effect achieved by maximizing the likelihood of P(X,Y)
(generative models) vs P(Y|X) (discriminant models) [118, 137]. If the
true P(X) and P(Y|X) are unrelated as functions of X (e.g., chosen
independently, so that learning about one does not inform us of the
other), then unsupervised learning of P(X) is not going to help learn-
ing P(Y|X). But if they are related,® and if the same parameters are

3 For example, the MNIST digit images form rather well-separated clusters, especially when
learning good representations, even unsupervised [192], so that the decision surfaces can
be guessed reasonably well even before seeing any label.
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involved in estimating P(X) and P(Y|X),* then each (X,Y") pair brings
information on P(Y|X) not only in the usual way but also through
P(X). For example, in a Deep Belief Net, both distributions share
essentially the same parameters, so the parameters involved in esti-
mating P(Y|X) benefit from a form of data-dependent regularization:
they have to agree to some extent with P(Y|X) as well as with P(X).

Let us return to the optimization versus regularization explanation
of the better results obtained with unsupervised pre-training. Note how
one should be careful when using the word ’optimization’ here. We
do not have an optimization difficulty in the usual sense of the word.
Indeed, from the point of view of the whole network, there is no dif-
ficulty since one can drive training error very low, by relying mostly
on the top two layers. However, if one considers the problem of tun-
ing the lower layers (while keeping small either the number of hidden
units of the penultimate layer (i.e., top hidden layer) or the magnitude
of the weights of the top two layers), then one can maybe talk about
an optimization difficulty. One way to reconcile the optimization and
regularization viewpoints might be to consider the truly online setting
(where examples come from an infinite stream and one does not cycle
back through a training set). In that case, online gradient descent is
performing a stochastic optimization of the generalization error. If the
effect of unsupervised pre-training was purely one of regularization, one
would expect that with a virtually infinite training set, online error with
or without pre-training would converge to the same level. On the other
hand, if the explanatory hypothesis presented here is correct, we would
expect that unsupervised pre-training would bring clear benefits even in
the online setting. To explore that question, we have used the ‘infinite
MNIST’ dataset [120], i.e., a virtually infinite stream of MNIST-like
digit images (obtained by random translations, rotations, scaling, etc.
defined in [176]). As illustrated in Figure 4.2, a 3-hidden layer neural
network trained online converges to significantly lower error when it is
pre-trained (as a Stacked Denoising Auto-Encoder, see Section 7.2).
The figure shows progress with the online error (on the next 1000

4For example, all the lower layers of a multi-layer neural net estimating P(Y|X) can be
initialized with the parameters from a Deep Belief Net estimating P(X).
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examples), an unbiased Monte-Carlo estimate of generalization error.
The first 2.5 million updates are used for unsupervised pre-training.
The figure strongly suggests that unsupervised pre-training converges
to a lower error, i.e., that it acts not only as a regularizer but also to
find better minima of the optimized criterion. In spite of appearances,
this does not contradict the regularization hypothesis: because of local
minima, the regularization effect persists even as the number of exam-
ples goes to infinity. The flip side of this interpretation is that once
the dynamics are trapped near some apparent local minimum, more
labeled examples do not provide a lot more new information.

To explain that lower layers would be more difficult to optimize,
the above clues suggest that the gradient propagated backwards into
the lower layer might not be sufficient to move the parameters into
regions corresponding to good solutions. According to that hypothe-
sis, the optimization with respect to the lower level parameters gets
stuck in a poor apparent local minimum or plateau (i.e., small gradi-
ent). Since gradient-based training of the top layers works reasonably
well, it would mean that the gradient becomes less informative about
the required changes in the parameters as we move back towards the
lower layers, or that the error function becomes too ill-conditioned for
gradient descent to escape these apparent local minima. As argued in
Section 4.5, this might be connected with the observation that deep con-
volutional neural networks are easier to train, maybe because they have
a very special sparse connectivity in each layer. There might also be a
link between this difficulty in exploiting the gradient in deep networks
and the difficulty in training recurrent neural networks through long
sequences, analyzed in [22, 81, 119]. A recurrent neural network can be
“unfolded in time” by considering the output of each neuron at differ-
ent time steps as different variables, making the unfolded network over
a long input sequence a very deep architecture. In recurrent neural net-
works, the training difficulty can be traced to a vanishing (or sometimes
exploding) gradient propagated through many non-linearities. There is
an additional difficulty in the case of recurrent neural networks, due to
a mismatch between short-term (i.e., shorter paths in unfolded graph of
computations) and long-term components of the gradient (associated
with longer paths in that graph).
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4.3 Unsupervised Learning for Deep Architectures

As we have seen above, layer-wise unsupervised learning has been a
crucial component of all the successful learning algorithms for deep
architectures up to now. If gradients of a criterion defined at the out-
put layer become less useful as they are propagated backwards to lower
layers, it is reasonable to believe that an unsupervised learning criterion
defined at the level of a single layer could be used to move its param-
eters in a favorable direction. It would be reasonable to expect this if
the single-layer learning algorithm discovered a representation that cap-
tures statistical regularities of the layer’s input. PCA and the standard
variants of ICA requiring as many causes as signals seem inappropriate
because they generally do not make sense in the so-called overcom-
plete case, where the number of outputs of the layer is greater than the
number of its inputs. This suggests looking in the direction of exten-
sions of ICA to deal with the overcomplete case [78, 87, 115, 184, as
well as algorithms related to PCA and ICA, such as auto-encoders and
RBMs, which can be applied in the overcomplete case. Indeed, experi-
ments performed with these one-layer unsupervised learning algorithms
in the context of a multi-layer system confirm this idea [17, 73, 153].
Furthermore, stacking linear projections (e.g., two layers of PCA) is
still a linear transformation, i.e., not building deeper architectures.

In addition to the motivation that unsupervised learning could help
reduce the dependency on the unreliable update direction given by the
gradient of a supervised criterion, we have already introduced another
motivation for using unsupervised learning at each level of a deep archi-
tecture. It could be a way to naturally decompose the problem into
sub-problems associated with different levels of abstraction. We know
that unsupervised learning algorithms can extract salient information
about the input distribution. This information can be captured in a dis-
tributed representation, i.e., a set of features which encode the salient
factors of variation in the input. A one-layer unsupervised learning
algorithm could extract such salient features, but because of the lim-
ited capacity of that layer, the features extracted on the first level of
the architecture can be seen as low-level features. It is conceivable that
learning a second layer based on the same principle but taking as input
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the features learned with the first layer could extract slightly higher-
level features. In this way, one could imagine that higher-level abstrac-
tions that characterize the input could emerge. Note how in this process
all learning could remain local to each layer, therefore side-stepping the
issue of gradient diffusion that might be hurting gradient-based learn-
ing of deep neural networks, when we try to optimize a single global
criterion. This motivates the next section, where we discuss deep gen-
erative architectures and introduce Deep Belief Networks formally.

4.4 Deep Generative Architectures

Besides being useful for pre-training a supervised predictor, unsuper-
vised learning in deep architectures can be of interest to learn a distri-
bution and generate samples from it. Generative models can often be
represented as graphical models [91]: these are visualized as graphs in
which nodes represent random variables and arcs say something about
the type of dependency existing between the random variables. The
joint distribution of all the variables can be written in terms of prod-
ucts involving only a node and its neighbors in the graph. With directed
arcs (defining parenthood), a node is conditionally independent of its
ancestors, given its parents. Some of the random variables in a graphi-
cal model can be observed, and others cannot (called hidden variables).
Sigmoid belief networks are generative multi-layer neural networks that
were proposed and studied before 2006, and trained using variational
approximations [42, 72, 164, 189]. In a sigmoid belief network, the units
(typically binary random variables) in each layer are independent given
the values of the units in the layer above, as illustrated in Figure 4.3.
The typical parametrization of these conditional distributions (going
downwards instead of upwards in ordinary neural nets) is similar to
the neuron activation equation of Equation (4.1):

P(hf = 1[b**!) = sigm(bf + > W hht) (4.3)

J

where hf is the binary activation of hidden node i in layer k, h* is
the vector (h},h%,...), and we denote the input vector x = h’. Note
how the notation P(...) always represents a probability distribution
associated with our model, whereas P is the training distribution (the
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Fig. 4.3 Example of a generative multi-layer neural network, here a sigmoid belief network,
represented as a directed graphical model (with one node per random variable, and directed
arcs indicating direct dependence). The observed data is x and the hidden factors at level
k are the elements of vector h*. The top layer h3 has a factorized prior.

empirical distribution of the training set, or the generating distribution
for our training examples). The bottom layer generates a vector x in
the input space, and we would like the model to give high probability
to the training data. Considering multiple levels, the generative model
is thus decomposed as follows:

-1

P(x,h',... ,h") = P(h") (H P(hk|hk+1)> P(xh')  (4.4)

k=1

and marginalization yields P(x), but this is intractable in practice
except for tiny models. In a sigmoid belief network, the top level
prior P(h?) is generally chosen to be factorized, i.e., very simple:
P(h*) =[], P(h?), and a single Bernoulli parameter is required for each
P(h{ = 1) in the case of binary units.

Deep Belief Networks are similar to sigmoid belief networks, but
with a slightly different parametrization for the top two layers, as illus-
trated in Figure 4.4:

0—2
P(x,h',... h') = P(h‘" h?) <H P(h’“\h’““)) P(x|h').  (4.5)
k=1
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Fig. 4.4 Graphical model of a Deep Belief Network with observed vector x and hidden
layers h',h? and h®. Notation is as in Figure 4.3. The structure is similar to a sigmoid
belief network, except for the top two layers. Instead of having a factorized prior for P(h3),
the joint of the top two layers, P(h? h?), is a Restricted Boltzmann Machine. The model
is mixed, with double arrows on the arcs between the top two layers because an RBM is an
undirected graphical model rather than a directed one.

Fig. 4.5 Undirected graphical model of a Restricted Boltzmann Machine (RBM). There
are no links between units of the same layer, only between input (or visible) units x; and
hidden units h;, making the conditionals P(h|x) and P(x|h) factorize conveniently.

The joint distribution of the top two layers is a Restricted Boltzmann
Machine (RBM),

P(h~ hf) o PR R WR (4.6)

illustrated in Figure 4.5, and whose inference and training algorithms
are described in more detail in Sections 5.3 and 5.4, respectively. This
apparently slight change from sigmoidal belief networks to DBNs comes
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with a different learning algorithm, which exploits the notion of train-
ing greedily one layer at a time, building up gradually more abstract
representations of the raw input into the posteriors P(h¥|x). A detailed
description of RBMs and of the greedy layer-wise training algorithms
for deep architectures follows in Sections 5 and 6.

4.5 Convolutional Neural Networks

Although deep supervised neural networks were generally found too
difficult to train before the use of unsupervised pre-training, there is
one notable exception: convolutional neural networks. Convolutional
nets were inspired by the visual system’s structure, and in particular
by the models of it proposed by [83]. The first computational models
based on these local connectivities between neurons and on hierarchi-
cally organized transformations of the image are found in Fukushima’s
Neocognitron [54]. As he recognized, when neurons with the same
parameters are applied on patches of the previous layer at different
locations, a form of translational invariance is obtained. Later, LeCun
and collaborators, following up on this idea, designed and trained con-
volutional networks using the error gradient, obtaining state-of-the-art
performance [101, 104] on several pattern recognition tasks. Modern
understanding of the physiology of the visual system is consistent with
the processing style found in convolutional networks [173], at least for
the quick recognition of objects, i.e., without the benefit of attention
and top-down feedback connections. To this day, pattern recognition
systems based on convolutional neural networks are among the best per-
forming systems. This has been shown clearly for handwritten character
recognition [101], which has served as a machine learning benchmark
for many years.’?

Concerning our discussion of training deep architectures, the exam-
ple of convolutional neural networks [101, 104, 153, 175] is interesting
because they typically have five, six or seven layers, a number of lay-
ers which makes fully connected neural networks almost impossible to
train properly when initialized randomly. What is particular in their

5Maybe too many years? It is good that the field is moving towards more ambitious bench-
marks, such as those introduced by [108, 99].
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architecture that might explain their good generalization performance
in vision tasks?

LeCun’s convolutional neural networks are organized in layers of
two types: convolutional layers and subsampling layers. Each layer has
a topographic structure, i.e., each neuron is associated with a fixed two-
dimensional position that corresponds to a location in the input image,
along with a receptive field (the region of the input image that influ-
ences the response of the neuron). At each location of each layer, there
are a number of different neurons, each with its set of input weights,
associated with neurons in a rectangular patch in the previous layer.
The same set of weights, but a different input rectangular patch, are
associated with neurons at different locations.

One untested hypothesis is that the small fan-in of these neurons
(few inputs per neuron) helps gradients to propagate through so many
layers without diffusing so much as to become useless. Note that this
alone would not suffice to explain the success of convolutional net-
works, since random sparse connectivity is not enough to yield good
results in deep neural networks. However, an effect of the fan-in would
be consistent with the idea that gradients propagated through many
paths gradually become too diffuse, i.e., the credit or blame for the
output error is distributed too widely and thinly. Another hypothesis
(which does not necessarily exclude the first) is that the hierarchical
local connectivity structure is a very strong prior that is particularly
appropriate for vision tasks, and sets the parameters of the whole net-
work in a favorable region (with all non-connections corresponding to
zero weight) from which gradient-based optimization works well. The
fact is that even with random weights in the first layers, a convolutional
neural network performs well [151], i.e., better than a trained fully con-
nected neural network but worse than a fully optimized convolutional
neural network.

Very recently, the convolutional structure has been imported into
RBMs [45] and DBNs [111]. An important innovation in [111] is the
design of a generative version of the pooling / subsampling units, which
worked beautifully in the experiments reported, yielding state-of-the-
art results not only on MNIST digits but also on the Caltech-101 object
classification benchmark. In addition, visualizing the features obtained
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at each level (the patterns most liked by hidden units) clearly con-
firms the notion of multiple levels of composition which motivated deep
architectures in the first place, moving up from edges to object parts
to objects in a natural way.

4.6 Auto-Encoders

Some of the deep architectures discussed below (Deep Belief Nets and
Stacked Auto-Encoders) exploit as component or monitoring device a
particular type of neural network: the auto-encoder, also called auto-
associator, or Diabolo network [25, 79, 90, 156, 172]. There are also
connections between the auto-encoder and RBMs discussed in Sec-
tion 5.4.3, showing that auto-encoder training approximates RBM
training by Contrastive Divergence. Because training an auto-encoder
seems easier than training an RBM, they have been used as building
blocks to train deep networks, where each level is associated with an
auto-encoder that can be trained separately [17, 99, 153, 195].

An auto-encoder is trained to encode the input x into some represen-
tation c(x) so that the input can be reconstructed from that represen-
tation. Hence the target output of the auto-encoder is the auto-encoder
input itself. If there is one linear hidden layer and the mean squared
error criterion is used to train the network, then the k& hidden units
learn to project the input in the span of the first k& principal compo-
nents of the data [25]. If the hidden layer is non-linear, the auto-encoder
behaves differently from PCA, with the ability to capture multi-modal
aspects of the input distribution [90]. The formulation that we prefer
generalizes the mean squared error criterion to the minimization of the
negative log-likelihood of the reconstruction, given the encoding c(x):

RE = —log P(x|c(x)). (4.7)

If x|c(x) is Gaussian, we recover the familiar squared error. If the inputs
x; are either binary or considered to be binomial probabilities, then the
loss function would be

—log P(x|c(x)) = —inlogfi(c(x)) + (1 — x;)log(1 — fi(c(x)))
' (4.8)
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where f(-) is called the decoder, and f(c(x)) is the reconstruction pro-
duced by the network, and in this case should be a vector of numbers
in (0,1), e.g., obtained with a sigmoid. The hope is that the code c(x)
is a distributed representation that captures the main factors of vari-
ation in the data: because c(x) is viewed as a lossy compression of x,
it cannot be a good compression (with small loss) for all x, so learning
drives it to be one that is a good compression in particular for training
examples, and hopefully for others as well (and that is the sense in
which an auto-encoder generalizes), but not for arbitrary inputs.

One serious issue with this approach is that if there is no other con-
straint, then an auto-encoder with n-dimensional input and an encod-
ing of dimension at least n could potentially just learn the identity
function, for which many encodings would be useless (e.g., just copy-
ing the input). Surprisingly, experiments reported in [17] suggest that
in practice, when trained with stochastic gradient descent, non-linear
auto-encoders with more hidden units than inputs (called overcom-
plete) yield useful representations (in the sense of classification error
measured on a network taking this representation in input). A sim-
ple explanation is based on the observation that stochastic gradient
descent with early stopping is similar to an /o regularization of the
parameters [211, 36]. To achieve perfect reconstruction of continuous
inputs, a one-hidden layer auto-encoder with non-linear hidden units
needs very small weights in the first layer (to bring the non-linearity of
the hidden units in their linear regime) and very large weights in the
second layer. With binary inputs, very large weights are also needed
to completely minimize the reconstruction error. Since the implicit or
explicit regularization makes it difficult to reach large-weight solutions,
the optimization algorithm finds encodings which only work well for
examples similar to those in the training set, which is what we want.
It means that the representation is exploiting statistical regularities
present in the training set, rather than learning to replicate the iden-
tity function.

There are different ways that an auto-encoder with more hidden
units than inputs could be prevented from learning the identity, and still
capture something useful about the input in its hidden representation.
Instead or in addition to constraining the encoder by explicit or implicit
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regularization of the weights, one strategy is to add noise in the encod-
ing. This is essentially what RBMs do, as we will see later. Another
strategy, which was found very successful [46, 121, 139, 150, 152, 153],
is based on a sparsity constraint on the code. Interestingly, these
approaches give rise to weight vectors that match well qualitatively the
observed receptive fields of neurons in V1 and V2 [110], major areas
of the mammal visual system. The question of sparsity is discussed
further in Section 7.1.

Whereas sparsity and regularization reduce representational capac-
ity in order to avoid learning the identity, RBMs can have a very large
capacity and still not learn the identity, because they are not (only)
trying to encode the input but also to capture the statistical structure
in the input, by approximately maximizing the likelihood of a gen-
erative model. There is a variant of auto-encoder which shares that
property with RBMs, called denoising auto-encoder [195]. The denois-
ing auto-encoder minimizes the error in reconstructing the input from
a stochastically corrupted transformation of the input. It can be shown
that it maximizes a lower bound on the log-likelihood of a generative
model. See Section 7.2 for more details.
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Energy-Based Models and Boltzmann Machines

Because Deep Belief Networks (DBNs) are based on Restricted Boltz-
mann Machines (RBMs), which are particular energy-based models, we
introduce here the main mathematical concepts helpful to understand
them, including Contrastive Divergence (CD).

5.1 Energy-Based Models and Products of Experts

Energy-based models associate a scalar energy to each configuration of
the variables of interest [107, 106, 149]. Learning corresponds to mod-
ifying that energy function so that its shape has desirable properties.
For example, we would like plausible or desirable configurations to have
low energy. Energy-based probabilistic models may define a probability
distribution through an energy function, as follows:

e—Energy(x)

Z )
i.e., energies operate in the log-probability domain. Th above gener-
alizes exponential family models [29], for which the energy function

Energy(x) has the form 7(0) - ¢(x). We will see below that the condi-
tional distribution of one layer given another, in the RBM, can be taken

P(x) = (5.1)

48
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from any of the exponential family distributions [200]. Whereas any
probability distribution can be cast as an energy-based models, many
more specialized distribution families, such as the exponential family,
can benefit from particular inference and learning procedures. Some
instead have explored rather general-purpose approaches to learning in
energy-based models [84, 106, 149].

The normalizing factor Z is called the partition function by analogy
with physical systems,

7 — ZefEnergy(x) (52)

with a sum running over the input space, or an appropriate integral
when x is continuous. Some energy-based models can be defined even
when the sum or integral for Z does not exist (see Section 5.1.2).

In the product of experts formulation [69, 70], the energy function
is a sum of terms, each one associated with an “expert” f;:

Energy(x) = Zﬁ(x), (5.3)

P(x) o HPi(X) x He_fi(x). (5.4)

Each expert P;(x) can thus be seen as a detector of implausible con-
figurations of x, or equivalently, as enforcing constraints on x. This is
clearer if we consider the special case where f;(x) can only take two
values, one (small) corresponding to the case where the constraint is
satisfied, and one (large) corresponding to the case where it is not.
[69] explains the advantages of a product of experts by opposition to
a mizture of experts where the product of probabilities is replaced by
a weighted sum of probabilities. To simplify, assume that each expert
corresponds to a constraint that can either be satisfied or not. In a
mixture model, the constraint associated with an expert is an indica-
tion of belonging to a region which excludes the other regions. One
advantage of the product of experts formulation is therefore that the
set of f;(x) forms a distributed representation: instead of trying to par-
tition the space with one region per expert as in mixture models, they
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partition the space according to all the possible configurations (where
each expert can have its constraint violated or not). [69] proposed an
algorithm for estimating the gradient of log P(x) in Equation (5.4)
with respect to parameters associated with each expert, using the first
instantiation [70] of the Contrastive Divergence algorithm (Section 5.4).

5.1.1 Introducing Hidden Variables

In many cases of interest, x has many component variables x;, and
we do not observe of these components simultaneously, or we want to
introduce some non-observed variables to increase the expressive power
of the model. So we consider an observed part (still denoted x here)
and a hidden part h

e—Energy(x,h)

Z
and because only x is observed, we care about the marginal

P(x,h) = (5.5)

efEnergy(x,h)
P(x) = Eh: — (5.6)
In such cases, to map this formulation to one similar to Equation (5.1),
we introduce the notation (inspired from physics) of free energy, defined
as follows:

e—FreeEnergy(x)

P = 5.7
With Z = 3 e~ FrecPnersy()_j o
FreeEnergy(x) = —logZe*EnergY(x’h). (5.8)
h

So the free energy is just a marginalization of energies in the log-
domain. The data log-likelihood gradient then has a particularly inter-
esting form. Let us introduce 6 to represent parameters of the model.
Starting from Equation (5.7), we obtain

dlog P(x)  OFreeEnergy(x) n 1 Z o—FrecEnergy (%) OFreeEnergy (x)

00 B 00 00

_ 8FreeEnergy Z P(x 8FreeEnergy(§c) ‘

= (5.9)



5.1 Energy-Based Models and Products of Experts 51

Hence the average log-likelihood gradient over the training set is

Olog P(x)] OFreeEnergy(x) OFreeEnergy(x)
Ep { 06 ] =—Fp [ 26 + Ep 26
(5.10)

where expectations are over x, with P the training set empirical dis-
tribution and Ep the expectation under the model’s distribution P.

Therefore, if we could sample from P and compute the free energy
tractably, we would have a Monte-Carlo method to obtain a stochastic
estimator of the log-likelihood gradient.

If the energy can be written as a sum of terms associated with at
most one hidden unit

Energy(x,h) )+ Z% x, h;) (5.11)

a condition satisfied in the case of the RBM, then the free energy and
numerator of the likelihood can be computed tractably (even though
it involves a sum with an exponential number of terms):

P(X) — %e—FreeEnergy(x) — %Ze—Energy(x,h)

:722 Z B(x)—22;7i(x,hi)

h; hp
sy Zemx Te et
z hl hy i
= Z —m0eh) Y7 emrnbeba) LY e Ghe)
Z ho hy,
= o) (5.12)

In the above, }; is a sum over all the values that h; can take (e.g.,
two values in the usual binomial units case); note how that sum is much
easier to carry out than the sum ), over all values of h. Note that
all sums can be replaced by integrals if h is continuous, and the same
principles apply. In many cases of interest, the sum or integral (over a
single hidden unit’s values) is easy to compute. The numerator of the
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likelihood (i.e., also the free energy) can be computed exactly in the
above case, where Energy(x,h) = —#(x) + >, vi(x,h;), and we have

FreeEnergy(x) = —log P(x) — log Z = —3(x) — Z]nge—%(&hi).
1 h;

(5.13)

5.1.2 Conditional Energy-Based Models

Whereas computing the partition function is difficult in general, if our
ultimate goal is to make a decision concerning a variable y given a
variable x, instead of considering all configurations (x,y), it is enough
to consider the configurations of y for each given x. A common case is
one where y can only take values in a small discrete set, i.e.,

¢~ Energy(x,y)

S, e B )’

P(y|x) = (5.14)
In this case the gradient of the conditional log-likelihood with respect
to parameters of the energy function can be computed efficiently. This
formulation applies to a discriminant variant of the RBM called Dis-
criminative RBM [97]. Such conditional energy-based models have also
been exploited in a series of probabilistic language models based on
neural networks [15, 16, 130, 169, 170, 171, 207]. That formulation
(or generally when it is easy to sum or maximize over the set of
values of the terms of the partition function) has been explored at
length [37, 106, 107, 149, 153]. An important and interesting element
in the latter work is that it shows that such energy-based models can
be optimized not just with respect to log-likelihood but with respect
to more general criteria whose gradient has the property of making
the energy of “correct” responses decrease while making the energy
of competing responses increase. These energy functions do not nec-
essarily give rise to a probabilistic model (because the exponential of
the negated energy function is not required to be integrable), but they
may nonetheless give rise to a function that can be used to choose
y given x, which is often the ultimate goal in applications. Indeed
when y takes a finite number of values, P(y|x) can always be com-
puted since the energy function needs to be normalized only over the
possible values of .
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5.2 Boltzmann Machines

The Boltzmann machine is a particular type of energy-based model
with hidden variables, and RBMs are special forms of Boltzmann
machines in which P(h|x) and P(x|h) are both tractable because they
factorize. In a Boltzmann machine [1, 76, 77|, the energy function is a
general second-order polynomial:

Energy(x,h) = —b’x — ¢’h — h'Wx — x'Ux — h’'Vh. (5.15)

There are two types of parameters, which we collectively denote by 6:
the offsets b; and ¢; (each associated with a single element of the vector
x or of the vector h), and the weights Wj;, U;; and Vj; (each associated
with a pair of units). Matrices U and V are assumed to be symmetric,!
and in most models with zeros in the diagonal. Non-zeros in the diag-
onal can be used to obtain other variants, e.g., with Gaussian instead
of binomial units [200].

Because of the quadratic interaction terms in h, the trick to analyti-
cally compute the free energy (Equation (5.12)) cannot be applied here.
However, an MCMC (Monte Carlo Markov Chain [4]) sampling proce-
dure can be applied in order to obtain a stochastic estimator of the
gradient. The gradient of the log-likelihood can be written as follows,
starting from Equation (5.6):

8 10g P(X) a lOg Zh e—Energy(x,h) a log Zf{,h eiEnergY(izh)
00 00 00

- _ 1 —Energy(x,h) aEnergY(Xv h)
B Zh e—Energy(x,h) Z € 00

1 —Energy (x,h) 8Energy (iv h)

+ Zf{,h e—Energy(%,h) ; € 00

8Energy (x,h) 8Energy(>~c,h)

=—>» P(h P(x,h)———"—=.
2 Pl "2 56

(5.16)

L For example, if U was not symmetric, the extra degrees of freedom would be wasted since
XiUinj + XjUjiXi can be rewritten Xi(UZ‘j + Uji)Xj = %xi(Uij + Uji)Xj + %Xj(Uij +
Uji)xi, i.e., in a symmetric-matrix form.
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Note that (OEnergy(x,h)/00) is easy to compute. Hence if we have
a procedure to sample from P(h|x) and one to sample from P(x,h),
we can obtain an unbiased stochastic estimator of the log-likelihood
gradient. [1, 76, 77] introduced the following terminology: in the posi-
tive phase, x is clamped to the observed input vector, and we sample
h given x; in the negative phase both x and h are sampled, ideally
from the model itself. In general, only approximate sampling can be
achieved tractably, e.g., using an iterative procedure that constructs
an MCMC. The MCMC sampling approach introduced in [1, 76, 77]
is based on Gibbs sampling [4, 57]. Gibbs sampling of the joint of N
random variables S = (S1,...,Sy) is done through a sequence of N
sampling sub-steps of the form

SZ' ~ P(SZ‘S_Z = S_Z‘) (5.17)

where S_; contains the N — 1 other random variables in .5, excluding
S;. After these N samples have been obtained, a step of the chain is
completed, yielding a sample of S whose distribution converges to P(.5)
as the number of steps goes to co, under some conditions. A sufficient
condition for convergence of a finite-state Markov Chain is that it is
aperiodic? and irreducible.?

How can we perform Gibbs sampling in a Boltzmann machine? Let
s = (x,h) denote all the units in the Boltzmann machine, and s_; the
set of values associated with all units except the ith one. The Boltz-
mann machine energy function can be rewritten by putting all the
parameters in a vector d and a symmetric matrix A,

Energy(s) = —d's — s 4s. (5.18)

Let d_; denote the vector d without the element d;, A_; the matrix
A without the 7th row and column, and a_; the vector that is the ith
row (or column) of A, without the ith element. Using this notation, we
obtain that P(s;|s_;) can be computed and sampled from easily in a
Boltzmann machine. For example, if s; € {0,1} and the diagonal of A

2 Aperiodic: no state is periodic with period k > 1; a state has period k if one can only
return to it at times t + k, t + 2k, etc.
3 Irreducible: one can reach any state from any state in finite time with non-zero probability.
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is null:

exp(d; +d" ;s_; +2a’ ;s_; +s A ;s )

exp(d; +d" ;s_; +2a’ ;s_; +s A ;s )
+exp(d._;s_; +s ,;A_;s_)

P(Si = 1‘571') =

_exp(d; +2al;s;) 1
~ exp(d; + 2a’ s ;) +1 1+ exp(—d; — 2a’ s_;)
= sigm(d; + 2a’ ;s_;) (5.19)

which is essentially the usual equation for computing a neuron’s output
in terms of other neurons s_;, in artificial neural networks.

Since two MCMC chains (one for the positive phase and one for
the negative phase) are needed for each example x, the computation
of the gradient can be very expensive, and training time very long.
This is essentially why the Boltzmann machine was replaced in the
late 1980’s by the back-propagation algorithm for multi-layer neural
networks as the dominant learning approach. However, recent work
has shown that short chains can sometimes be used successfully, and
this is the principle of Contrastive Divergence, discussed in Section 5.4
to train RBMs. Note also that the negative phase chain does not have
to be restarted for each new example x (since it does not depend on
the training data), and this observation has been exploited in persistent
MCMC estimators [161, 187] discussed in Section 5.4.2.

5.3 Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is the building block of a
Deep Belief Network (DBN) because it shares parametrization with
individual layers of a DBN, and because efficient learning algorithms
were found to train it. The undirected graphical model of an RBM
is illustrated in Figure 4.5, showing that the h; are independent of
each other when conditioning on x and the x; are independent of each
other when conditioning on h. In an RBM, U =0 and V = 0 in Equa-
tion (5.15), i.e., the only interaction terms are between a hidden unit
and a visible unit, but not between units of the same layer. This form of
model was first introduced under the name of Harmonium [178], and
learning algorithms (beyond the ones for Boltzmann Machines) were
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discussed in [51]. Empirically demonstrated and efficient learning algo-
rithms and variants were proposed more recently [31, 70, 200]. As a
consequence of the lack of input—input and hidden-hidden interactions,
the energy function is bilinear,

Energy(x,h) = —b'x — ¢’h — h'Wx (5.20)

and the factorization of the free energy of the input, introduced
with Equations (5.11) and (5.13) can be applied with 8(x) = b’x and
vi(x,h;) = —h;(c; + W;x), where W; is the row vector corresponding
to the ith row of W. Therefore the free energy of the input (i.e., its
unnormalized log-probability) can be computed efficiently:

FreeEnergy(x) b'x — Zlogz i(eitWix) (5.21)

Using the same factorization trick (in Equation (5.12)) due to the
affine form of Energy(x,h) with respect to h, we readily obtain a
tractable expression for the conditional probability P(h|x):

exp(b’x + ¢h + h'Wx)
> opexp(b’x + c'h + h'Wx)
[[;exp(cih; + h;Wix)
B HZ}] exp(c;h; 4+ h;W;x)
H exp(h c, + Wix))
Zh exp( i(ci + Wix))

i

In the commonly studied case where h; € {0,1}, we obtain the usual
neuron equation for a neuron’s output given its input:

P(h|x) =

€C¢+W¢X

1 _I_ eci+Wix

Since x and h play a symmetric role in the energy function, a similar
derivation allows to efficiently compute and sample P(x|h):

P(x|h) = HP (x;|h) (5.23)
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and in the binary case
P(x; =1|h) = sigm(b; + W’Jh) (5.24)

where W.; is the jth column of W.

In [73], binomial input units are used to encode pixel gray levels
in input images as if they were the probability of a binary event. In
the case of handwritten character images this approximation works
well, but in other cases it does not. Experiments showing the advan-
tage of using Gaussian input units rather than binomial units when
the inputs are continuous-valued are described in [17]. See [200] for a
general formulation where x and h (given the other) can be in any of
the exponential family distributions (discrete and continuous).

Although RBMs might not be able to represent efficiently some
distributions that could be represented compactly with an unrestricted
Boltzmann machine, RBMs can represent any discrete distribution [51,
102], if enough hidden units are used. In addition, it can be shown
that unless the RBM already perfectly models the training distribution,
adding a hidden unit (and properly choosing its weights and offset) can
always improve the log-likelihood [102].

An RBM can also be seen as forming a multi-clustering (see Sec-
tion 3.2), as illustrated in Figure 3.2. Each hidden unit creates a two-
region partition of the input space (with a linear separation). When we
consider the configurations of say three hidden units, there are eight
corresponding possible intersections of three half-planes (by choosing
each half-plane among the two half-planes associated with the linear
separation performed by a hidden unit). Each of these eight inter-
sections corresponds to a region in input space associated with the
same hidden configuration (i.e., code). The binary setting of the hid-
den units thus identifies one region in input space. For all x in one of
these regions, P(h|x) is maximal for the corresponding h configura-
tion. Note that not all configurations of the hidden units correspond
to a non-empty region in input space. As illustrated in Figure 3.2, this
representation is similar to what an ensemble of two-leaf trees would
create.

The sum over the exponential number of possible hidden-layer con-
figurations of an RBM can also be seen as a particularly interesting form
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of mixture, with an exponential number of components (with respect
to the number of hidden units and of parameters):

P(x) =) _P(x/h)P(h) (5.25)
h

where P(x|h) is the model associated with the component indexed
by configuration h. For example, if P(x|h) is chosen to be Gaussian
(see [200, 17]), this is a Gaussian mixture with 2" components when h
has n bits. Of course, these 2" components cannot be tuned indepen-
dently because they depend on shared parameters (the RBM parame-
ters), and that is also the strength of the model, since it can generalize
to configurations (regions of input space) for which no training exam-
ple was seen. We can see that the Gaussian mean (in the Gaussian
case) associated with component h is obtained as a linear combination
b + W'h, i.e., each hidden unit bit h; contributes (or not) a vector W;
in the mean.

5.3.1 Gibbs Sampling in RBMs

Sampling from an RBM is useful for several reasons. First of all it is use-
ful in learning algorithms, to obtain an estimator of the log-likelihood
gradient. Second, inspection of examples generated from the model is
useful to get an idea of what the model has captured or not captured
about the data distribution. Since the joint distribution of the top two
layers of a DBN is an RBM, sampling from an RBM enables us to
sample from a DBN, as elaborated in Section 6.1.

Gibbs sampling in fully connected Boltzmann Machines is slow
because there are as many sub-steps in the Gibbs chain as there are
units in the network. On the other hand, the factorization enjoyed
by RBMs brings two benefits: first we do not need to sample in the
positive phase because the free energy (and therefore its gradient) is
computed analytically; second, the set of variables in (x,h) can be sam-
pled in two sub-steps in each step of the Gibbs chain. First we sample h
given x, and then a new x given h. In general product of experts models,
an alternative to Gibbs sampling is hybrid Monte-Carlo [48, 136], an
MCMC method involving a number of free-energy gradient computa-
tion sub-steps for each step of the Markov chain. The RBM structure
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is therefore a special case of product of experts model: the ith term
logzhie(CiJrWix)hi in Equation (5.21) corresponds to an expert, i.e.,
there is one expert per hidden neuron and one for the input offset.
With that special structure, a very efficient Gibbs sampling can be
performed. For k Gibbs steps, starting from a training example (i.e.,
sampling from P):

(5.26)

Xk4+1 ™~ P(X|hk)

It makes sense to start the chain from a training example because as
the model becomes better at capturing the structure in the training
data, the model distribution P and the training distribution P become
more similar (having similar statistics). Note that if we started the
chain from P itself, it would have converged in one step, so starting
from P is a good way to ensure that only a few steps are necessary for
convergence.

5.4 Contrastive Divergence

Contrastive Divergence is an approximation of the log-likelihood gra-
dient that has been found to be a successful update rule for training
RBMs [31]. A pseudo-code is shown in Algorithm 1, with the particular
equations for the conditional distributions for the case of binary input
and hidden units.

5.4.1 Justifying Contrastive Divergence

To obtain this algorithm, the first approximation we are going to
make is replace the average over all possible inputs (in the second term
of Equation (5.10)) by a single sample. Since we update the parameters
often (e.g., with stochastic or mini-batch gradient updates after one or a
few training examples), there is already some averaging going on across
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Algorithm 1

RBMupdate(xi,¢,W,b,c)

This is the RBM wupdate procedure for binomial units. It can easily
adapted to other types of units.

x1 is a sample from the training distribution for the RBM

€ is a learning rate for the stochastic gradient descent in Contrastive
Divergence

W is the RBM weight matrix, of dimension (number of hidden units,
number of inputs)

b is the RBM offset vector for input units

c is the RBM offset vector for hidden units

Notation: Q(hg. = 1|x2) is the vector with elements Q(hy; = 1|x2)

for all hidden units ¢ do
e compute Q(hy; =1[x1) (for binomial units, sigm(c; + >_; Wi;x1;))
e sample hy; € {0,1} from Q(hy;|x7)
end for
for all visible units j do
e compute P(xa;=1|h;) (for binomial units, sigm(b; 4+ >, W;;hy;))
e sample xo; € {0,1} from P(x2; = 1/h;)
end for
for all hidden units ¢ do
e compute ) (hy; =1[x2) (for binomial units, sigm(c; + >_; Wi;xa;))
end for
o W+ W + e(h1x] — Q(ha. = 1]x2)%})
eb Db+ e(x; —x2)
eC<C+ 6(1’11 — Q(hz = 1|X2))

updates (which we know to work well [105]), and the extra variance
introduced by taking one or a few MCMC samples instead of doing
the complete sum might be partially canceled in the process of online
gradient updates, over consecutive parameter updates. We introduce
additional variance with this approximation of the gradient, but it does
not hurt much if it is comparable or smaller than the variance due to
online gradient descent.
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Running a long MCMC chain is still very expensive. The idea of
k-step Contrastive Divergence (CD-k) [69, 70] is simple, and involves a
second approximation, which introduces some bias in the gradient:
run the MCMC chain x1,x2,...,Xx11 for only k steps starting from the
observed example x; = x. The CD-k update (i.e., not the log-likelihood
gradient) after seeing example x is, therefore,

OFreeEnergy(x)  OFreeEnergy(x)
> 00 00

where X = X1 is the last sample from our Markov chain, obtained
after k steps. We know that when k — oo, the bias goes away. We also

Af

(5.27)

know that when the model distribution is very close to the empirical
distribution, i.e., P &~ P, then when we start the chain from x (a sample
from ]5) the MCMC has already converged, and we need only one
step to obtain an unbiased sample from P (although it would still be
correlated with x).

The surprising empirical result is that even k=1 (CD-1) often
gives good results. An extensive numerical comparison of training with
CD-k versus exact log-likelihood gradient has been presented in [31].
In these experiments, taking k larger than 1 gives more precise results,
although very good approximations of the solution can be obtained
even with k£ = 1. Theoretical results [12] discussed in Section 5.4.3 help
to understand why small values of k£ can work: CD-k corresponds to
keeping the first k terms of a series that converges to the log-likelihood
gradient.

One way to interpret Contrastive Divergence is that it is approxi-
mating the log-likelihood gradient locally around the training point x;.
The stochastic reconstruction x = xj41 (for CD-k) has a distribution
(given x7) which is in some sense centered around x; and becomes
more spread out around it as k increases, until it becomes the model
distribution. The CD-k update will decrease the free energy of the
training point x; (which would increase its likelihood if all the other
free energies were kept constant), and increase the free energy of x,
which is in the neighborhood of x;. Note that X is in the neighborhood
of x1, but at the same time more likely to be in regions of high prob-
ability under the model (especially for k larger). As argued by [106],
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what is mostly needed from the training algorithm for an energy-based
model is that it makes the energy (free energy, here, to marginalize
hidden variables) of observed inputs smaller, shoveling “energy” else-
where, and most importantly in areas of low energy. The Contrastive
Divergence algorithm is fueled by the contrast between the statistics
collected when the input is a real training example and when the input
is a chain sample. As further argued in the next section, one can think
of the unsupervised learning problem as discovering a decision sur-
face that can roughly separate the regions of high probability (where
there are many observed training examples) from the rest. Therefore,
we want to penalize the model when it generates examples on the
wrong side of that divide, and a good way to identify where that divide
should be moved is to compare training examples with samples from the
model.

5.4.2 Alternatives to Contrastive Divergence

An exciting recent development in the research on learning algorithms
for RBMs is use of a so-called persistent MCMC for the negative
phase [161, 187], following an approach already introduced in [135]. The
idea is simple: keep a background MCMC chain ...x; — hy — %441 —
h;;1... to obtain the negative phase samples (which should be from the
model). Instead of running a short chain as in CD-k, the approxima-
tion made is that we ignore the fact that parameters are changing as we
move along the chain, i.e., we do not run a separate chain for each value
of the parameters (as in the traditional Boltzmann Machine learning
algorithm). Maybe because the parameters move slowly, the approxi-
mation works very well, usually giving rise to better log-likelihood than
CD-k (experiments were against k = 1 and k = 10). The trade-off with
CD-1 is that the variance is larger but the bias is smaller. Something
interesting also happens [188]: the model systematically moves away
from the samples obtained in the negative phase, and this interacts
with the chain itself, preventing it from staying in the same region
very long, substantially improving the mixing rate of the chain. This
is a very desirable and unforeseen effect, which helps to explore more
quickly the space of RBM configurations.
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Another alternative to Contrastive Divergence is Score Match-
ing (84, 85, 86], a general approach to train energy-based models in
which the energy can be computed tractably, but not the normal-
ization constant Z. The score function of a density p(x) = q(x)/Z
is 1 = (Ologp(x))/0x, and we exploit the fact that the score func-
tion of our model does not depend on its normalization constant, i.e.,
1 = (0logq(x))/0x. The basic idea is to match the score function of
the model with the score function of the empirical density. The aver-
age (under the empirical density) of the squared norm of the difference
between the two score functions can be written in terms of squares
of the model score function and second derivatives (0?logq(x))/0x>.
Score matching has been shown to be locally consistent [84], i.e.,
converging if the model family matches the data generating process,
and it has been used for unsupervised models of image and audio
data [94].

5.4.3 Truncations of the Log-Likelihood Gradient in
Gibbs-Chain Models

Here, we approach the Contrastive Divergence update rule from a dif-
ferent perspective, which gives rise to possible generalizations of it and
links it to the reconstruction error often used to monitor its perfor-
mance and that is used to optimize auto-encoders (Equation (4.7)).
The inspiration for this derivation comes from [73]: first from the idea
(explained in Section 8.1) that the Gibbs chain can be associated with
an infinite directed graphical model (which here we associate with an
expansion of the log-likelihood gradient), and second that the conver-
gence of the chain justifies Contrastive Divergence (since the expected
value of Equation (5.27) becomes equivalent to Equation (5.9) when the
chain sample x comes from the model). In particular, we are interested
in clarifying and understanding the bias in the Contrastive Divergence
update rule, compared to using the true (intractable) gradient of the
log-likelihood.

Consider a converging Markov chain x; = h; = x;11 = -+ defined
by conditional distributions P(h¢|x;) and P(x¢41/h:), with x; sampled
from the training data empirical distribution. The following theorem,
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demonstrated by [12], shows how one can expand the log-likelihood
gradient for any ¢ > 1.

Theorem 5.1. Consider the converging Gibbs chain x; = h; = x93 =
hy--- starting at data point x;. The log-likelihood gradient can be
written

OlogP(x1)  OFreeEnergy(x) B OFreeEnergy(x;)
06 B 00 00

B [8logP(xt)]

i (5.28)

and the final term converges to zero as ¢ goes to infinity.

Since the final term becomes small as t increases, that justifies trun-
cating the chain to k steps in the Markov chain, using the approxima-
tion

Olog P(x1)  OFreeEnergy(x) B OFreeEnergy (xj41)

00 00 00

which is exactly the CD-k update (Equation (5.27)) when we replace
the expectation with a single sample x = xj1. This tells us that the
bias of CD-k is E[(0log P(xx+1))/060]. Experiments and theory support
the idea that CD-k yields better and faster convergence (in terms of
number of iterations) than CD-(k — 1), due to smaller bias (though
the computational overhead might not always be worth it). However,
although experiments show that the CD-k bias can indeed be large
when k is small, empirically the update rule of CD-£ still mostly moves
the model’s parameters in the same quadrant as log-likelihood gradi-
ent [12]. This is in agreement with the good results can be obtained
even with £ =1. An intuitive picture that may help to understand
the phenomenon is the following: when the input example x; is used
to initialize the chain, even the first Markov chain step (to x2) tends
to be in the right direction compared to xi, i.e., roughly going down
the energy landscape from x;. Since the gradient depends on the
change between xo and x1, we tend to get the direction of the gradient
right.
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So CD-1 corresponds to truncating the chain after two samples (one
from hj|x;, and one from xs|h;). What about stopping after the first
one (i.e., hi|x;)? It can be analyzed from the following log-likelihood
gradient expansion [12]:

Olog P(x1) 0log P(x1|h;) Olog P(hy)
T :E{ o 1]_E[ 09 1} 529

Let us consider a mean-field approximation of the first expectation, in
which instead of the average over all h; configurations according to
P(hy|x;) one replaces h; by its average configuration hy = E[hy|x1],
yielding:

. (5.30)

g |2lgPlafhy)] dlog P(xi|hy)
00 - 00

If, as in CD, we then ignore the second expectation in Equation (5.29)
(incurring an additional bias in the estimation of the log-likelihood
gradient), we then obtain the right-hand side of Equation (5.30) as
an update direction, which is minus the gradient of the reconstruction
error,

—logP(xl\}All)

typically used to train auto-encoders (see Equation (4.7) with ¢(x) =
E[h|x]).4

So we have found that the truncation of the Gibbs chain gives
rise to first approximation (one sample) to roughly reconstruction
error (through a biased mean-field approximation), with slightly better
approximation (two samples) to CD-1 (approximating the expectation
by a sample), and with more terms to CD-k (still approximating expec-
tations by samples). Note that reconstruction error is deterministically
computed and is correlated with log-likelihood, which is why it has
been used to track progress when training RBMs with CD.

41t is debatable whether or not one would take into account the fact that ﬂl depends on 6
when computing the gradient in the mean-field approximation of Equation (5.30), but it
must be the case to draw a direct link with auto-encoders.
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5.4.4 Model Samples Are Negative Examples

Here, we argue that training an energy-based model can be achieved
by solving a series of classification problems in which one tries to dis-
criminate training examples from samples generated by the model.
In the Boltzmann machine learning algorithms, as well as in Con-
trastive Divergence, an important element is the ability to sample from
the model, maybe approximately. An elegant way to understand the
value of these samples in improving the log-likelihood was introduced
in [201], using a connection with boosting. We start by explaining the
idea informally and then formalize it, justifying algorithms based on
training the generative model with a classification criterion separating
model samples from training examples. The maximum likelihood cri-
terion wants the likelihood to be high on the training examples and
low elsewhere. If we already have a model and we want to increase
its likelihood, the contrast between where the model puts high prob-
ability (represented by samples) and where the training examples are
indicates how to change the model. If we were able to approximately
separate training examples from model samples with a decision sur-
face, we could increase likelihood by reducing the value of the energy
function on one side of the decision surface (the side where there are
more training examples) and increasing it on the other side (the side
where there are more samples from the model). Mathematically, con-
sider the gradient of the log-likelihood with respect to the parameters
of the FreeEnergy(x) (or Energy(x) if we do not introduce explicit
hidden variables), given in Equation (5.10). Now consider a highly reg-
ularized two-class probabilistic classifier that will attempt to separate
training samples of P(x) from model samples of P(x), and which is
only able to produce an output probability ¢(x) = P(y = 1|x) barely
different from % (hopefully on the right side more often than not).
Let g(x) = sigm(—a(x)), i.e., —a(x) is the discriminant function or an
unnormalized conditional log-probability, just like the free energy. Let
P denote the empirical distribution over (x,%) pairs, and P; the distri-
bution over x when y = 4. Assume that P(y =1) = P(y =0) = 1/2, so
that Vf, Ep[f(x,y)] = Ep [f(x, DIP(y = 1) + Ep [f(x,0]P(y = 0) =
(Ep [f(x,1)] + Ep [f(x,0)]). Using this, the average conditional
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log-likelihood gradient for this probabilistic classifier is written

dlog P(ylx)| _ ., [Od(yloggq(x) + (1 —y)log(l — ¢(x)))
g |05 = | 7 |

(1, [tab0 ~ 1229+ 1y, [ 2209

<—EF~,1 [86(;(;)} +Ep [a%(HX)D (5.31)

where the last equality is when the classifier is highly regularized: when
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the output weights are small, a(x) is close to 0 and ¢(x) ~ 1/2, so that
(1 — g(x)) ~ q(x). This expression for the log-likelihood gradient corre-
sponds exactly to the one obtained for energy-based models where the
likelihood is expressed in terms of a free energy (Equation (5.10)), when
we interpret training examples from Py as positive examples (y = 1)
(i.e., P = P) and model samples as negative examples (y =0, i.e.,
Py = P). The gradient is also similar in structure to the Contrastive
Divergence gradient estimator (Equation (5.27)). One way to interpret
this result is that if we could improve a classifier that separated train-
ing samples from model samples, we could improve the log-likelihood
of the model, by putting more probability mass on the side of training
samples. Practically, this could be achieved with a classifier whose dis-
criminant function was defined as the free energy of a generative model
(up to a multiplicative factor), and assuming one could obtain samples
(possibly approximate) from the model. A particular variant of this
idea has been used to justify a boosting-like incremental algorithm for
adding experts in products of experts [201].



6

Greedy Layer-Wise Training of Deep
Architectures

6.1 Layer-Wise Training of Deep Belief Networks

A Deep Belief Network [73] with ¢ layers models the joint distribution
between observed vector x and £ hidden layers h* as follows:
-2
P(x,h',... ,h') = (H P(hk|hk+1)> P(h*1 h), (6.1)
k=0
where x = h?, P(h*~!|h*) is a visible-given-hidden conditional distri-
bution in an RBM associated with level k of the DBN, and P(h‘~!, h?)
is the joint distribution in the top-level RBM. This is illustrated in
Figure 6.1.

The conditional distributions P(h*/h**1) and the top-level joint
(an RBM) P(h‘~!,h?) define the generative model. In the following
we introduce the letter () for exact or approximate posteriors of that
model, which are used for inference and training. The Q) posteriors
are all approximate except for the top level Q(h’|h‘~1) which is equal
to the true P(h‘/h’~1) because (h’,h’~!) form an RBM, where exact
inference is possible.

When we train the DBN in a greedy layer-wise fashion, as illus-
trated with the pseudo-code of Algorithm 2, each layer is initialized
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Algorithm 2

TrainUnsupervisedDBN(ﬁ, €,0,WW,b,c, mean field computation)

Train a DBN in a purely unsupervised way, with the greedy layer-wise
procedure in which each added layer is trained as an RBM (e.g., by
Contrastive Divergence).

P is the input training distribution for the network

€ is a learning rate for the RBM training

£ is the number of layers to train

WP is the weight matrix for level k, for k from 1 to ¢

b* is the visible units offset vector for RBM at level k, for k from
1to/

c® is the hidden units offset vector for RBM at level k, for k from
1tol

mean field computation is a Boolean that is true iff training data
at each additional level is obtained by a mean-field approximation
instead of stochastic sampling

for k=1 to ¢ do
e initialize W* =0, b¥ =0, c* =0
while not stopping criterion do
e sample h” = x from P
fort=1tok—1do
if mean field computation then
e assign h; to Q(hg =1/h*"!), for all elements j
of h'
else
e sample h;- from Q(h;l\hifl) , for all elements j
of h'
end if
end for
e RBMupdate(h*~1 ¢, WW* bF c*) {thus providing Q(h*|h*~!) for
future use}
end while
end for
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Fig. 6.1 Deep Belief Network as a generative model (generative path with P distributions,
full arcs) and a means to extract multiple levels of representation of the input (recognition
path with @ distributions, dashed arcs). The top two layers h? and h® form an RBM (for
their joint distribution). The lower layers form a directed graphical model (sigmoid belief
net h? = h'! = x) and the prior for the penultimate layer h? is provided by the top-level
RBM. Q(h*t!|h*) approximates P(h**+1|h*) but can be computed easily.

as an RBM, and we denote Q(h*,h*~1) the k-th RBM trained in this
way, whereas P(...) denotes probabilities according to the DBN. We
will use Q(h*|h*~1) as an approximation of P(h*|/h*~1), because it is
easy to compute and sample from Q(h*/h*~1) (which factorizes), and
not from P(h¥|h*~1) (which does not). These Q(h*|h*~1) can also be
used to construct a representation of the input vector x. To obtain
an approximate posterior or representation for all the levels, we use
the following procedure. First sample h! ~ Q(h!|x) from the first-level
RBM, or alternatively with a mean-field approach use h! = E[h![x]
instead of a sample of h', where the expectation is over the RBM
distribution @Q(h'|x). This is just the vector of output probabilities
of the hidden units, in the common case where they are binomial
units: Flzl = sigm(b! + W}lx). Taking either the mean-field vector h!
or the sample h' as input for the second-level RBM, compute h? or
a sample h?, etc. until the last layer. Once a DBN is trained as per
Algorithm 2, the parameters W* (RBM weights) and ¢’ (RBM hidden
unit offsets) for each layer can be used to initialize a deep multi-layer
neural network. These parameters can then be fine-tuned with respect
to another criterion (typically a supervised learning criterion).
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A sample of the DBN generative model for x can be obtained as
follows:

1. Sample a visible vector h=! from the top-level RBM. This
can be achieved approximately by running a Gibbs chain in
that RBM alternating between h® ~ P(h‘/h~!) and h*~! ~
P(h‘"!h?), as outlined in Section 5.3.1. By starting the
chain from a representation h’~! obtained from a training
set example (through the @’'s as above), fewer Gibbs steps
might be required.

2. For k=¢—1 down to 1, sample h*~! given h* accord-
ing to the level-k hidden-to-visible conditional distribution
P(h*=1h").

3. x =hY is the DBN sample.

6.2 Training Stacked Auto-Encoders

Auto-Encoders have been used as building blocks to build and initial-
ize a deep multi-layer neural network [17, 99, 153, 195]. The training
procedure is similar to the one for Deep Belief Networks:

1. Train the first layer as an auto-encoder to minimize some
form of reconstruction error of the raw input. This is purely
unsupervised.

2. The hidden units’ outputs (i.e., the codes) of the auto-
encoder are now used as input for another layer, also trained
to be an auto-encoder. Again, we only need unlabeled exam-
ples.

3. Iterate as in step (2) to initialize the desired number of addi-
tional layers.

4. Take the last hidden layer output as input to a supervised
layer and initialize its parameters (either randomly or by
supervised training, keeping the rest of the network fixed).

5. Fine-tune all the parameters of this deep architecture with
respect to the supervised criterion. Alternately, unfold all
the auto-encoders into a very deep auto-encoder and fine-
tune the global reconstruction error, as in [75].
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The hope is that the unsupervised pre-training in this greedy layer-
wise fashion has put the parameters of all the layers in a region of
parameter space from which a good! local optimum can be reached by
local descent. This indeed appears to happen in a number of tasks [17,
99, 153, 195].

The principle is exactly the same as the one previously proposed for
training DBNs, but using auto-encoders instead of RBMs. Comparative
experimental results suggest that Deep Belief Networks typically have
an edge over Stacked Auto-Encoders [17, 99, 195]. This may be because
CD-k is closer to the log-likelihood gradient than the reconstruction
error gradient. However, since the reconstruction error gradient has
less variance than CD-k (because no sampling is involved), it might be
interesting to combine the two criteria, at least in the initial phases of
learning. Note also that the DBN advantage disappeared in experiments
where the ordinary auto-encoder was replaced by a denoising auto-
encoder [195], which is stochastic (see Section 7.2).

An advantage of using auto-encoders instead of RBMs as the unsu-
pervised building block of a deep architecture is that almost any
parametrization of the layers is possible, as long as the training criterion
is continuous in the parameters. On the other hand, the class of proba-
bilistic models for which CD or other known tractable estimators of the
log-likelihood gradient can be applied is currently more limited. A dis-
advantage of Stacked Auto-Encoders is that they do not correspond to
a generative model: with generative models such as RBMs and DBNs,
samples can be drawn to check qualitatively what has been learned,
e.g., by visualizing the images or word sequences that the model sees
as plausible.

6.3 Semi-Supervised and Partially Supervised Training

With DBNs and Stacked Auto-Encoders two kinds of training sig-
nals are available, and can be combined: the local layer-wise unsu-
pervised training signal (from the RBM or auto-encoder associated
with the layer), and a global supervised training signal (from the

L Good at least in the sense of generalization.
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deep multi-layer network sharing the same parameters as the DBN
or Stacked Auto-Encoder). In the algorithms presented above, the two
training signals are used in sequence: first an unsupervised training
phase, and second a supervised fine-tuning phase. Other combinations
are possible.

One possibility is to combine both signals during training, and this is
called partially supervised training in [17]. It has been found useful [17]
when the true input distribution P(X) is believed to be not strongly
related to P(Y|X). To make sure that an RBM preserves information
relevant to Y in its hidden representation, the CD update is combined
with the classification log-probability gradient, and for some distribu-
tions better predictions are thus obtained.

An appealing generalization of semi-supervised learning, especially
in the context of deep architectures, is self-taught learning [109, 148],
in which the unlabeled examples potentially come from classes other
than the labeled classes. This is more realistic than the standard semi-
supervised setting, e.g., even if we are only interested in some specific
object classes, one can much more easily obtain unlabeled examples of
arbitrary objects from the web (whereas it would be expensive to select
only those pertaining to those selected classes of interest).



7

Variants of RBMs and Auto-Encoders

We review here some of the variations that have been proposed on the
basic RBM and auto-encoder models to extend and improve them.

We have already mentioned that it is straightforward to general-
ize the conditional distributions associated with visible or hidden units
in RBMs, e.g., to any member of the exponential family [200]. Gaus-
sian units and exponential or truncated exponential units have been
proposed or used in [17, 51, 99, 201]. With respect to the analysis pre-
sented here, the equations can be easily adapted by simply changing the
domain of the sum (or integral) for the h; and x;. Diagonal quadratic
terms (e.g., to yield Gaussian or truncated Gaussian distributions) can
also be added in the energy function without losing the property that
the free energy factorizes.

7.1 Sparse Representations in Auto-Encoders and RBMs

Sparsity has become a concept of great interest recently, not only in
machine learning but also in statistics and signal processing, in particu-
lar with the work on compressed sensing [30, 47], but it was introduced
earlier in computational neuroscience in the context of sparse coding in

74



7.1 Sparse Representations in Auto-Encoders and RBMs 75

the visual system [139], and has been a key element deep convolutional
networks exploiting of a variant of auto-encoders [121, 150, 151, 152,
153] with a sparse distributed representation, and has become a key
ingredient in Deep Belief Networks [110].

7.1.1 Why a Sparse Representation?

We argue here that if one is going to have fixed-size representations,
then sparse representations are more efficient (than non-sparse ones) in
an information-theoretic sense, allowing for varying the effective num-
ber of bits per example. According to learning theory [117, 193], to
obtain good generalization it is enough that the total number of bits
needed to encode the whole training set be small, compared to the
size of the training set. In many domains of interest different examples
require different number of bits when compressed.

On the other hand, dimensionality reduction algorithms, whether
linear such as PCA and ICA, or non-linear such as LLE and Isomap,
map each example to the same low-dimensional space. In light of the
above argument, it would be more efficient to map each example to a
variable-length representation. To simplify the argument, assume this
representation is a binary vector. If we are required to map each exam-
ple to a fixed-length representation, a good solution would be to choose
that representation to have enough degrees of freedom to represent the
vast majority of the examples, while at the same allowing to com-
press that fixed-length bit vector to a smaller variable-size code for
most of the examples. We now have two representations: the fixed-
length one, which we might use as input to make predictions and make
decisions, and a smaller, variable-size one, which can in principle be
obtained from the fixed-length one through a compression step. For
example, if the bits in our fixed-length representation vector have a
high probability of being 0 (i.e., a sparsity condition), then for most
examples it is easy to compress the fixed-length vector (in average by
the amount of sparsity). For a given level of sparsity, the number of
configurations of sparse vectors is much smaller than when less spar-
sity (or none at all) is imposed, so the entropy of sparser codes is
smaller.
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Another argument in favor of sparsity is that the fixed-length rep-
resentation is going to be used as input for further processing, so that
it should be easy to interpret. A highly compressed encoding is usually
highly entangled, so that no subset of bits in the code can really be
interpreted unless all the other bits are taken into account. Instead, we
would like our fixed-length sparse representation to have the property
that individual bits or small subsets of these bits can be interpreted,
i.e., correspond to meaningful aspects of the input, and capture factors
of variation in the data. For example, with a speech signal as input,
if some bits encode the speaker characteristics and other bits encode
generic features of the phoneme being pronounced, we have disentan-
gled some of the factors of variation in the data, and some subset of
the factors might be sufficient for some particular prediction tasks.

Another way to justify sparsity of the representation was proposed
in [150], in the context of models based on auto-encoders. This view
actually explains how one might get good models even though the par-
tition function is not explicitly minimized, or only minimized approxi-
mately, as long as other constraints (such as sparsity) are used on the
learned representation. Suppose that the representation learned by an
auto-encoder is sparse, then the auto-encoder cannot reconstruct well
every possible input pattern, because the number of sparse configura-
tions is necessarily smaller than the number of dense configurations.
To minimize the average reconstruction error on the training set, the
auto-encoder then has to find a representation which captures statis-
tical regularities of the data distribution. First of all, [150] connect
the free energy with a form of reconstruction error (when one replaces
summing over hidden unit configurations by maximizing over them).
Minimizing reconstruction error on the training set therefore amounts
to minimizing free energy, i.e., maximizing the numerator of an energy-
based model likelihood (Equation (5.7)). Since the denominator (the
partition function) is just a sum of the numerator over all possible
input configurations, maximizing likelihood roughly amounts to mak-
ing reconstruction error high for most possible input configurations,
while making it low for those in the training set. This can be achieved
if the encoder (which maps an input to its representation) is constrained
in such a way that it cannot represent well most of the possible input
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patterns (i.e., the reconstruction error must be high for most of the pos-
sible input configurations). Note how this is already achieved when the
code is much smaller than the input. Another approach is to impose a
sparsity penalty on the representation [150], which can be incorporated
in the training criterion. In this way, the term of the log-likelihood gra-
dient associated with the partition function is completely avoided, and
replaced by a sparsity penalty on the hidden unit code. Interestingly,
this idea could potentially be used to improve CD-k RBM training,
which only uses an approzimate estimator of the gradient of the log
of the partition function. If we add a sparsity penalty to the hidden
representation, we may compensate for the weaknesses of that approx-
imation, by making sure we increase the free energy of most possible
input configurations, and not only of the reconstructed neighbors of the
input example that are obtained in the negative phase of Contrastive
Divergence.

7.1.2 Sparse Auto-Encoders and Sparse Coding

There are many ways to enforce some form of sparsity on the hidden
layer representation. The first successful deep architectures exploiting
sparsity of representation involved auto-encoders [153]. Sparsity was
achieved with a so-called sparsifying logistic, by which the codes are
obtained with a nearly saturating logistic whose offset is adapted to
maintain a low average number of times the code is significantly non-
zero. One year later the same group introduced a somewhat simpler
variant [150] based on a Student-t prior on the codes. The Student-t
prior has been used in the past to obtain sparsity of the MAP estimates
of the codes generating an input [139] in computational neuroscience
models of the V1 visual cortex area. Another approach also connected
to computational neuroscience involves two levels of sparse RBMs [110].
Sparsity is achieved with a regularization term that penalizes a devi-
ation of the expected activation of the hidden units from a fixed low
level. Whereas [139] had already shown that one level of sparse coding
of images led to filters very similar to those seen in V1, [110] find that
when training a sparse Deep Belief Network (i.e., two sparse RBMs on
top of each other), the second level appears to learn to detect visual
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features similar to those observed in area V2 of visual cortex (i.e., the
area that follows area V1 in the main chain of processing of the visual
cortex of primates).

In the compressed sensing literature sparsity is achieved with the
/1 penalty on the codes, i.e., given bases in matrix W (each column of
W is a basis) we typically look for codes h such that the input signal
X is reconstructed with low ¢ reconstruction error while h is sparse:

m}jon — Wh||g + Allhl]4, (7.1)

where [|h||; = ), |h;|. The actual number of non-zero components of h
would be given by the £y norm, but minimizing with it is combinatori-
ally difficult, and the ¢; norm is the closest p-norm that is also convex,
making the overall minimization in Equation (7.1) convex. As is now
well understood [30, 47], the ¢; norm is a very good proxy for the £,
norm and naturally induces sparse results, and it can even be shown to
recover ezactly the true sparse code (if there is one), under mild con-
ditions. Note that the ¢; penalty corresponds to a Laplace prior, and
that the posterior does not have a point mass at 0, but because of the
above properties, the mode of the posterior (which is recovered when
minimizing Equation (7.1)) is often at 0. Although minimizing Equa-
tion (7.1) is convex, minimizing jointly the codes and the decoder bases
W is not convex, but has been done successfully with many different
algorithms [46, 58, 116, 121, 139, 148].

Like directed graphical models (such as the sigmoid belief networks
discussed in Section 4.4), sparse coding performs a kind of ezplaining
away: it chooses one configuration (among many) of the hidden codes
that could explain the input. These different configurations compete,
and when one is selected, the others are completely turned off. This can
be seen both as an advantage and as a disadvantage. The advantage is
that if a cause is much more probable than the other, than it is the one
that we want to highlight. The disadvantage is that it makes the result-
ing codes somewhat unstable, in the sense that small perturbations of
the input x could give rise to very different values of the optimal code h.
This instability could spell trouble for higher levels of learned trans-
formations or a trained classifier that would take h as input. Indeed it
could make generalization more difficult if very similar inputs can end
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up being represented very differently in the sparse code layer. There is
also a computational weakness of these approaches that some authors
have tried to address. Even though optimizing Equation (7.1) is effi-
cient it can be hundreds of time slower than the kind of computation
involved in computing the codes in ordinary auto-encoders or RBMs,
making both training and recognition very slow. Another issue con-
nected to the stability question is the joint optimization of the bases W
with higher levels of a deep architecture. This is particularly important
in view of the objective of fine-tuning the encoding so that it focuses
on the most discriminant aspects of the signal. As discussed in Sec-
tion 9.1.2, significant classification error improvements were obtained
when fine-tuning all the levels of a deep architecture with respect to
a discriminant criterion of interest. In principle one can compute gra-
dients through the optimization of the codes, but if the result of the
optimization is unstable, the gradient may not exist or be numerically
unreliable. To address both the stability issue and the above fine-tuning
issue, [6] propose to replace the ¢; penalty by a softer approximation
which only gives rise to approximately sparse coefficients (i.e., many
very small coefficients, without actually converging to 0).

Keep in mind that sparse auto-encoders and sparse RBMs do not
suffer from any of these sparse coding issues: computational complexity
(of inferring the codes), stability of the inferred codes, and numerical
stability and computational cost of computing gradients on the first
layer in the context of global fine-tuning of a deep architecture. Sparse
coding systems only parametrize the decoder: the encoder is defined
implicitly as the solution of an optimization. Instead, an ordinary auto-
encoder or an RBM has an encoder part (computing P(h|x)) and a
decoder part (computing P(x|h)). A middle ground between ordinary
auto-encoders and sparse coding is proposed in a series of papers on
sparse auto-encoders [150, 151, 152, 153] applied in pattern recognition
and machine vision tasks. They propose to let the codes h be free (as
in sparse coding algorithms), but include a parametric encoder (as in
ordinary auto-encoders and RBMs) and a penalty for the difference
between the free non-parametric codes h and the outputs of the para-
metric encoder. In this way, the optimized codes h try to satisfy two
objectives: reconstruct well the input (like in sparse coding), while not
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being too far from the output of the encoder (which is stable by con-
struction, because of the simple parametrization of the encoder). In
the experiments performed, the encoder is just an affine transforma-
tion followed by a non-linearity like the sigmoid, and the decoder is
linear as in sparse coding. Experiments show that the resulting codes
work very well in the context of a deep architecture (with supervised
fine-tuning) [150], and are more stable (e.g., with respect to slight per-
turbations of input images) than codes obtained by sparse coding [92].

7.2 Denoising Auto-Encoders

The denoising auto-encoder [195] is a stochastic version of the auto-
encoder where the input is stochastically corrupted, but the uncor-
rupted input is still used as target for the reconstruction. Intuitively, a
denoising auto-encoder does two things: try to encode the input (pre-
serve the information about the input), and try to undo the effect
of a corruption process stochastically applied to the input of the auto-
encoder. The latter can only be done by capturing the statistical depen-
dencies between the inputs. In fact, in [195], the stochastic corruption
process consists in randomly setting some of the inputs (as many as
half of them) to zero. Hence the denoising auto-encoder is trying to
predict the missing values from the non-missing values, for randomly
selected subsets of missing patterns. The training criterion for denoising
auto-encoders is expressed as a reconstruction log-likelihood,

—log P(x|c(x)), (7.2)

where x is the uncorrupted input, x is the stochastically corrupted
input, and c(X) is the code obtained from x. Hence the output of the
decoder is viewed as the parameter for the above distribution (over
the uncorrupted input). In the experiments performed [195], this dis-
tribution is factorized and binomial (one bit per pixel), and input pixel
intensities are interpreted as probabilities. Note that a recurrent ver-
sion of the denoising auto-encoder had been proposed earlier by [174],
with corruption also corresponding to a form of occlusion (setting a
rectangular region of the input image to 0). Using auto-encoders for
denoising was actually introduced much earlier [103, 55]. The main
innovation in [195] is therefore to show how this strategy is highly
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successful as unsupervised pre-training for a deep architecture, and to
link the denoising auto-encoder to a generative model.

Consider a random d-dimensional vector X, S a set of k indices,
Xs = (Xg,,...,Xg,) the sub-elements selected by S, and let X_g all
the sub-elements except those in S. Note that the set of conditional
distributions P(Xg|X_g) for some choices of S fully characterize the
joint distribution P(X), and this is exploited, for example, in Gibbs
sampling. Note that bad things can happen when |[S| =1 and some
pairs of input are perfectly correlated: the predictions can be perfect
even though the joint has not really been captured, and this would
correspond to a Gibbs chain that does not mix, i.e., does not converge.
By considering random-size subsets and also insisting on reconstructing
everything (like ordinary auto-encoders), this type of problem may be
avoided in denoising auto-encoders.

Interestingly, in a series of experimental comparisons over 8
vision tasks, stacking denoising auto-encoders into a deep architecture
fine-tuned with respect to a supervised criterion yielded general-
ization performance that was systematically better than stacking
ordinary auto-encoders, and comparable or superior to Deep Belief
Networks [195].

An interesting property of the denoising auto-encoder is that it can
be shown to correspond to a generative model. Its training criterion is
a bound on the log-likelihood of that generative model. Several possible
generative models are discussed in [195]. A simple generative model is
semi-parametric: sample a training example, corrupt it stochastically,
apply the encoder function to obtain the hidden representation, apply
the decoder function to it (obtaining parameters for a distribution over
inputs), and sample an input. This is not very satisfying because it
requires to keep the training set around (like non-parametric density
models). Other possible generative models are explored in [195].

Another interesting property of the denoising auto-encoder is that
it naturally lends itself to data with missing values or multi-modal data
(when a subset of the modalities may be available for any particular
example). This is because it is trained with inputs that have “missing”
parts (when corruption consists in randomly hiding some of the input
values).
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7.3 Lateral Connections

The RBM can be made slightly less restricted by introducing interac-
tion terms or “lateral connections” between visible units. Sampling h
from P(h|x) is still easy but sampling x from P(x|h) is now generally
more difficult, and amounts to sampling from a Markov Random Field
which is also a fully observed Boltzmann machine, in which the offsets
are dependent on the value of h. [141] propose such a model for cap-
turing image statistics and their results suggest that Deep Belief Nets
(DBNS) based on such modules generate more realistic image patches
than DBNs based on ordinary RBMs. Their results also show that
the resulting distribution has marginal and pairwise statistics for pixel
intensities that are similar to those observed on real image patches.

These lateral connections capture pairwise dependencies that can
be more easily captured this way than using hidden units, saving the
hidden units for capturing higher-order dependencies. In the case of
the first layer, it can be seen that this amounts to a form of whitening,
which has been found useful as a preprocessing step in image processing
systems [139]. The idea proposed by [141] is to use lateral connections
at all levels of a DBN (which can now be seen as a hierarchy of Markov
random fields). The generic advantage of this type of approach would be
that the higher level factors represented by the hidden units do not have
to encode all the local “details” that the lateral connections at the levels
below can capture. For example, when generating an image of a face,
the approximate locations of the mouth and nose might be specified at
a high level whereas their precise location could be selected in order to
satisfy the pairwise preferences encoded in the lateral connections at a
lower level. This appears to yield generated images with sharper edges
and generally more accuracy in the relative locations of parts, without
having to expand a large number of higher-level units.

In order to sample from P(x|h), we can start a Markov chain at the
current example (which presumably already has pixel co-dependencies
similar to those represented by the model, so that convergence should
be quick) and only run a short chain on the x’s (keeping h fixed).
Denote U the square matrix of visible-to-visible connections, as per
the general Boltzmann Machine energy function in Equation (5.15).
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To reduce sampling variance in CD for this model, [141] used five
damped mean-field steps instead of an ordinary Gibbs chain on the
x’s: X = axy—1 + (1 — a)sigm(b + Ux;—1 + W'h), with « € (0,1).

7.4 Conditional RBMs and Temporal RBMs

A Conditional RBM is an RBM where some of the parameters are
not free but are instead parametrized functions of a conditioning ran-
dom variable. For example, consider an RBM for the joint distribution
P(x,h) between observed vector x and hidden vector h, with param-
eters (b,c,W) as per Equation (5.15), respectively for input offsets
b, hidden units offsets ¢, and the weight matrix W. This idea has
been introduced by [182, 183] for context-dependent RBMs in which
the hidden units offsets c are affine functions of a context variable z.
Hence the RBM represents P(x,h|z) or, marginalizing over h, P(x|z).
In general the parameters 6 = (b,c,W) of an RBM can be written as
a parametrized function 0 = f(z;w), i.e., the actual free parameters of
the conditional RBM with conditioning variable z are denoted w. Gen-
eralizing RBMs to conditional RBMs allows building deep architectures
in which the hidden variables at each level can be conditioned on the
value of other variables (typically representing some form of context).

The Contrastive Divergence algorithm for RBMs can be easily gen-
eralized to the case of Conditional RBMs. The CD gradient estimator
Af on a parameter 6 can be simply back-propagated to obtain a gra-
dient estimator on w:

00
Aw = Af—. 7.3
“ ow (7.3)
In the affine case ¢ = § + Mz (with ¢, § and z column vectors and M a
matrix) studied by [183], the CD update on the conditional parameters

is simply

AB = Ac,

AM = AcZ/, (7.4)

where the last multiplication is an outer product (applying the chain
rule on derivatives), and Ac is the update given by CD-k on hidden
units offsets.
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This idea has been successfully applied to model conditional distri-
butions P(x¢|x;—1,X¢—2,%;—3) in sequential data of human motion [183],
where x; is a vector of joint angles and other geometric features com-
puted from motion capture data of human movements such as walk-
ing and running. Interestingly, this allows generating realistic human
motion sequences, by successively sampling the t-th frame given the
previously sampled k frames, i.e., approximating

T
P(x1,Xa,....x7) & P(x1,...,x5) [[ P(xelxio1,.... %) (T.5)
t=k+1

The initial frames can be generated by using special null values as
context or using a separate model for P(xi,...,Xg).

As demonstrated by [126], it can be useful to make not just the
offsets but also the weights conditional on a context variable. In that,
case, we greatly increase the number of degrees of freedom, introduc-
ing the capability to model three-way interactions between an input
unit x;, a hidden unit h;, and a context unit z; through interaction
parameters (;;,. This approach has been used with x an image and z
the previous image in a video, and the model learns to capture flow
fields [126].

Probabilistic models of sequential data with hidden variables hy
(called state) can gain a lot by capturing the temporal dependencies
between the hidden states at different times ¢ in the sequence. This is
what allows Hidden Markov Models (HMMs) [147] to capture depen-
dencies in a long observed sequence xi,Xo,... even if the model only
considers the hidden state sequence hy,hs,... to be a Markov chain of
order 1 (where the direct dependence is only between h; and hyyq).
Whereas the hidden state representation hy in HMMs is local (all the
possible values of h; are enumerated and specific parameters associated
with each of these values), Temporal RBMs have been proposed [180]
to construct a distributed representation of the state. The idea is an
extension of the Conditional RBM presented above, but where the con-
text includes not only past inputs but also past values of the state, e.g.,
we build a model of

P(ht,Xt|ht,1,Xt71,...,ht_k,Xt_k), (76)
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Fig. 7.1 Example of Temporal RBM for modeling sequential data, including dependencies
between the hidden states. The double-arrow full arcs indicate an undirected connection,
i.e., an RBM. The single-arrow dotted arcs indicate conditional dependency: the (x¢,hy)
RBM is conditioned by the values of the past inputs and past hidden state vectors.

where the context is z; = (hy—1,%x¢-1,...,hy_k,X;_1), as illustrated in
Figure 7.1. Although sampling of sequences generated by Temporal
RBMs can be done as in Conditional RBMs (with the same MCMC
approximation used to sample from RBMs, at each time step), exact
inference of the hidden state sequence given an input sequence is no
longer tractable. Instead, [180] propose to use a mean-field filtering
approximation of the hidden sequence posterior.

7.5 Factored RBMs

In several probabilistic language models, it has been proposed to learn
a distributed representation of each word [15, 16, 37, 43, 128, 130, 169,
170, 171, 207]. For an RBM that models a sequence of words, it would
be convenient to have a parametrization that leads to automatically
learning a distributed representation for each word in the vocabulary.
This is essentially what [129] proposed. Consider an RBM input x that
is the concatenation of one-hot vectors v; for each word w; in a fixed-
size sequence (wy,ws,...,w), i.e., v¢ contains all 0’s except for a 1 at
position wy, and x = (v{,v5,...,v})". [129] use a factorization of the
RBM weight matrix W into two factors, one that depends on the loca-
tion ¢ in the input subsequence, and one that does not. Consider the
computation of the hidden units’ probabilities given the input subse-
quence (v1,Vva,...,vt). Instead of applying directly a matrix W to x, do
the following. First, each word symbol w; is mapped through a matrix R
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to a d-dimensional vector R ,, = Rvy, for t € {1...k}; second, the con-
catenated vectors (R, , R, ,..., R, ) are multiplied by a matrix B.
Hence W = BDiag(R), where Diag(R) is a block-diagonal matrix filled
with R on the diagonal. This model has produced n-grams with better
log-likelihood [129, 130], with further improvements in generalization
performance when averaging predictions with state-of-the-art n-gram

models [129].

7.6 Generalizing RBMs and Contrastive Divergence

Let us try to generalize the definition of RBM so as to include a large
class of parametrizations for which essentially the same ideas and learn-
ing algorithms (such as Contrastive Divergence) that we have discussed
above can be applied in a straightforward way. We generalize RBMs
as follows: a Generalized RBM is an energy-based probabilistic model
with input vector x and hidden vector h whose energy function is such
that P(h|x) and P(x|h) both factorize. This definition can be formal-
ized in terms of the parametrization of the energy function, which is
also proposed by [73]:

Proposition 7.1. The energy function associated with a model of the
form of Equation (5.5) such that P(h|x) =[], P(h;[x) and P(x|h) =
[I; P(x;/h) must have the form

Energy(x,h) = Z¢j (x;) + Zfi(hi) + > mig(hex;). (7.7)

.3

This is a direct application of the Hammersley—Clifford theorem [33,
61]. [73] also showed that the above form is a necessary and sufficient
condition to obtain complementary priors. Complementary priors allow
the posterior distribution P(h|x) to factorize by a proper choice of
P(h).

In the case where the hidden and input values are binary, this new
formulation does not actually bring any additional power of represen-
tation. Indeed, 7; j(h;,x;), which can take at most four different values
according to the 2 x 2 configurations of (h;,x;) could always be rewrit-
ten as a second order polynomial in (h;,x;): a + bx; + ch; + dh;x;.
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However, b and ¢ can be folded into the offset terms and a into a global
additive constant which does not matter (because it gets cancelled by
the partition function).

On the other hand, when x or h are real vectors, one could imag-
ine higher-capacity modeling of the (h;,x;) interaction, possibly non-
parametric, e.g., gradually adding terms to 7; ; so as to better model
the interaction. Furthermore, sampling from the conditional densities
P(x;/h) or P(h;|x) would be tractable even if the 7;; are compli-
cated functions, simply because these are one-dimensional densities
from which efficient approximate sampling and numerical integration
are easy to compute (e.g., by computing cumulative sums of the density
over nested sub-intervals or bins).

This analysis also highlights the basic limitation of RBMs, which is
that its parametrization only considers pairwise interactions between
variables. It is because the h are hidden and because we can choose
the number of hidden units, that we still have full expressive power
over possible marginal distributions in x (in fact, we can represent
any discrete distribution [102]). Other variants of RBMs discussed in
Section 7.4 allow three-way interactions [126].

What would be a Contrastive Divergence update in this generalized
RBM formulation? To simplify notations we note that the ¢;’s and &;’s
in Equation (7.7) can be incorporated within the 7 ;’s, so we ignore
them in the following. Theorem 5.1 can still be applied with

FreeEnergy(x) = —log Z exp [ — Z ;.5 (hg, %)
h 1,J

The gradient of the free energy of a sample x is thus

OFrecEnergy(x) exp <_Zi,j ni’j(hi’xj)> Z Ini;(hi,x;)
00 b D_heXP (— 2oij mva‘(fliaxj)> ij o
on;.i(hy,x;
= ZP(MX)Zin ’J(89 )
h irj

on; j(hs,x;)
=B |2 |

i’j
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Thanks to Proposition 7.1, a Gibbs chain can still be run easily. Trun-
cating the log-likelihood gradient expansion (Equation (5.28)) after k
steps of the Gibbs chain, and approximating expectations with samples
from this chain, one obtains an approximation of the log-likelihood gra-
dient at training point x; that depends only on Gibbs samples hy, hy 1
and Xpy1:

Olog P(x1) _ OFreeEnergy(x1) n OFreeEnergy (x441)

00 00 00 ’

~ (-3 ani,j(hl,i7xl,j>+z i (Npi1,6, Xpe1,5) x NG,

— 00 — 00

1,] 2y)
with Af the update rule for parameters 6 of the model, corresponding
to CD-k in such a generalized RBM. Note that in most parametrizations
we would have a particular element of  depend on 7; ;’s in such a way
that no explicit sum is needed. For instance (taking expectation over
hjy; instead of sampling) we recover Algorithm 1 when

ijj Cihi

iallg) = ~Wighiey — 251
xr

where nj, and n, are, respectively, the numbers of hidden and visible
units, and we also recover the other variants described by [200, 17] for
different forms of the energy and allowed set of values for hidden and
input units.
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Stochastic Variational Bounds for Joint
Optimization of DBN Layers

In this section, we discuss mathematical underpinnings of algorithms
for training a DBN as a whole. The log-likelihood of a DBN can be
lower bounded using Jensen’s inequality, and as we discuss below, this
can justify the greedy layer-wise training strategy introduced in [73]
and described in Section 6.1. We will use Equation (6.1) for a DBN
joint distribution, writing h for h! (the first level hidden vector) to
lighten notation, and introducing an arbitrary conditional distribution
Q(h|x). First multiply log P(x) by 1= >, Q(h|x), then use P(x) =
P(x,h)/P(h|x), and multiply by 1 = Q(h|x)/Q(h|x) and expand the

terms:

log P(x) = (Z Q(h|x)> log P(x) = ZQ(h’X) log ];(();’;3
h h

) o, PB) Q(hfx)
= 2 Qb8 15 G i)

Q(h|x)
P(hfx)

= Hgmx) + ZQ(h|X) log P(x,h) + ZQ(h|X) log
h h

89
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= KL(Q(h[x)|[P(h[x)) + Hgmx)

+) " Q(h[x) (log P(h) + log P(x/|h)), (8.1)
h

where Hgmpx) is the entropy of the distribution QQ(h|x). Non-negativity
of the KL divergence gives the inequality

log P(x) > Homx) + ZQ(h\x) (log P(h) + log P(x|h)), (8.2)
h

which becomes an equality when P and @ are identical, e.g., in the
single-layer case (i.e., an RBM). Whereas we have chosen to use P
to denote probabilities under the DBN, we use ) to denote proba-
bilities under an RBM (the first level RBM), and in the equations
choose Q(h|x) to be the hidden-given-visible conditional distribu-
tion of that first level RBM. We define that first level RBM such
that Q(x|h) = P(x|h). In general P(h|x)# Q(h|x). This is because
although the marginal P(h) on the first layer hidden vector h! = h is
determined by the upper layers in the DBN, the RBM marginal Q(h)
only depends on the parameters of the RBM.

8.1 Unfolding RBMs into Infinite Directed Belief Networks

Before using the above decomposition of the likelihood to justify the
greedy training procedure for DBNs, we need to establish a connection
between P(h') in a DBN and the corresponding marginal Q(h!) given
by the first level RBM. The interesting observation is that there exists
a DBN whose h! marginal equals the first RBM’s h! marginal, i.e.,
P(h') = Q(h'), as long the dimension of h? equals the dimension of
h® = x. To see this, consider a second-level RBM whose weight matrix is
the transpose of the first-level RBM (that is why we need the matching
dimensions). Hence, by symmetry of the roles of visible and hidden
in an RBM joint distribution (when transposing the weight matrix),
the marginal distribution over the visible vector of the second RBM is
equal to the marginal distribution @(h') of the hidden vector of the
first RBM.
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Another interesting way to see this is given by [73]: consider the
infinite Gibbs sampling Markov chain starting at ¢t = —oco and ter-
minating at ¢ = 0, alternating between x and h' for the first RBM,
with visible vectors sampled on even ¢ and hidden vectors on odd t.
This chain can be seen as an infinite directed belief network with tied
parameters (all even steps use weight matrix W’ while all odd ones use
weight matrix W'). Alternatively, we can summarize any sub-chain from
t = —o0 to t =7 by an RBM with weight matrix W or W’ according
to the parity of 7, and obtain a DBN with 1 — 7 layers (not counting
the input layer), as illustrated in Figure 8.1. This argument also shows
that a two-layer DBN in which the second level has weights equal to
the transpose of the first level weights is equivalent to a single RBM.

w RBM Ws
h;
(D (G
DBN
w’ Wi
RBM X1
(G . nw
W Wy
hf,] :
D :Y: h!
w’ W
(D i) x
Xt

Fig. 8.1 An RBM can be unfolded as an infinite directed belief network with tied weights
(see text). Left, the weight matrix W or its transpose are used depending on the parity of
the layer index. This sequence of random variables corresponds to a Gibbs Markov chain
to generate x¢ (for t large). Right, the top-level RBM in a DBN can also be unfolded in
the same way, showing that a DBN is an infinite directed graphical model in which some
of the layers are tied (all except the bottom few ones).
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8.2 Variational Justification of Greedy Layer-wise Training

Here, we discuss the argument made by [73] that adding one RBM
layer improves the likelihood of a DBN. Let us suppose we have
trained an RBM to model x, which provides us with a model Q(x)
expressed through two conditionals Q(h'|x) and Q(x|h!). Exploit-
ing the argument in the previous subsection, let us now initialize
an equivalent two-layer DBN, i.e., generating P(x) = Q(x), by tak-
ing P(x|h!) = Q(x|h!) and P(h',h?) given by a second-level RBM
whose weights are the transpose of the first-level RBM. Now let us come
back to Equation (8.1) above, and the objective of improving the DBN
likelihood by changing P(h!), i.e., keeping P(x|h') and Q(h'|x) fixed
but allowing the second level RBM to change. Interestingly, increas-
ing the KL divergence term increases the likelihood. Starting from
P(h'|x) = Q(h'|x), the KL term is zero (i.e., can only increase) and
the entropy term in Equation (8.1) does not depend on the DBN P(ht),
so small improvements to the term with P(h!) guarantee an increase
in log P(x). We are also guaranteed that further improvements of the
P(h') term (i.e., further training of the second RBM, detailed below)
cannot bring the log-likelihood lower than it was before the second
RBM was added. This is simply because of the positivity of the KL
and entropy terms: further training of the second RBM increases a
lower bound on the log-likelihood (Equation (8.2)), as argued by [73].
This justifies training the second RBM to maximize the second term,
i.e., the expectation over the training set of Y, Q(h!|x)log P(h?).
The second-level RBM is thus trained to maximize

> P(x)Q(h'|x)log P(h), (8.3)

x,hl

with respect to P(h'). This is the maximum-likelihood criterion for a
model that sees examples h! obtained as marginal samples from the
joint distribution P(x)Q(h!|x). If we keep the first-level RBM fixed,
then the second-level RBM could therefore be trained as follows: sam-
ple x from the training set, then sample h! ~ Q(h'|x), and consider
that h! as a training sample for the second-level RBM (i.e., as an obser-
vation for its ‘visible’ vector). If there was no constraint on P(h'), the
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maximizer of the above training criterion would be its “empirical” or
target distribution

P*(h') =) P(x)Q(h'[x). (8.4)

The same argument can be made to justify adding a third layer,
etc. We obtain the greedy layer-wise training procedure outlined in
Section 6.1. In practice the requirement that layer sizes alternate is
not satisfied, and consequently neither is it common practice to ini-
tialize the newly added RBM with the transpose of the weights at the
previous layer [73, 17], although it would be interesting to verify exper-
imentally (in the case where the size constraint is imposed) whether the
initialization with the transpose of the previous layer helps to speed up
training.

Note that as we continue training the top part of the model (and
this includes adding extra layers), there is no guarantee that log P(x)
(in average over the training set) will monotonically increase. As our
lower bound continues to increase, the actual log-likelihood could start
decreasing. Let us examine more closely how this could happen. It
would require the K L(Q(h'|x)||P(h'|x)) term to decrease as the sec-
ond RBM continues to be trained. However, this is unlikely in general:
as the DBN’s P(h!) deviates more and more from the first RBM’s
marginal Q(h') on h!, it is likely that the posteriors P(h!|x) (from
the DBN) and Q(h!|x) (from the RBM) deviate more and more (since
P(h!'|x) oc Q(x/h!)P(h') and Q(h'|x) oc Q(x/h!)Q(h')), making the
KL term in Equation (8.1) increase. As the training likelihood for the
second RBM increases, P(h') moves smoothly from Q(h') towards
P*(h'). Consequently, it seems very plausible that continued training
of the second RBM is going to increase the DBN’s likelihood (not just
initially) and by transitivity, adding more layers will also likely increase
the DBN’s likelihood. However, it is not true that increasing the train-
ing likelihood for the second RBM starting from any parameter config-
uration guarantees that the DBN likelihood will increase, since at least
one pathological counter-example can be found (I. Sutskever, personal
communication). Consider the case where the first RBM has very large
hidden biases, so that Q(h'|x) = Q(h') =1,,_; = P*(h'), but large
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weights and small visible offsets so that P(x;|h) = 1x,—n,, i.e., the hid-
den vector is copied to the visible units. When initializing the second
RBM with the transpose of the weights of the first RBM, the training
likelihood of the second RBM cannot be improved, nor can the DBN
likelihood. However, if the second RBM was started from a “worse” con-
figuration (worse in the sense of its training likelihood, and also worse
in the sense of the DBN likelihood), then P(h') would move towards
P*(h') = Q(h'), making the second RBM likelihood improve while the
KL term would decrease and the DBN likelihood would decrease. These
conditions could not happen when initializing the second RBM prop-
erly (with a copy of the first RBM). So it remains an open question
whether we can find conditions (excluding the above) which guaran-
tee that while the likelihood of the second RBM increases, the DBN
likelihood also increases.

Another argument to explain why the greedy procedure works is
the following (Hinton, NIPS’2007 tutorial). The training distribution
for the second RBM (samples h! from P*(h')) looks more like data
generated by an RBM than the original training distribution P(x).
This is because P*(h') was obtained by applying one sub-step of an
RBM Gibbs chain on examples from P(x), and we know that applying
many Gibbs steps would yield data from that RBM.

Unfortunately, when we train within this greedy layer-wise proce-
dure an RBM that will not be the top-level level of a DBN, we are not
taking into account the fact that more capacity will be added later to
improve the prior on the hidden units. [102] have proposed considering
alternatives to Contrastive Divergence for training RBMs destined to
initialize intermediate layers of a DBN. The idea is to consider that
P(h) will be modeled with a very high capacity model (the higher lev-
els of the DBN). In the limit case of infinite capacity, one can write
down what that optimal P(h) will be: it is simply the stochastic trans-
formation of the empirical distribution through the stochastic mapping
Q(h|x) of the first RBM (or previous RBMs), i.e., P* of Equation (8.4)
in the case of the second level. Plugging this back into the expression
for log P(x), one finds that a good criterion for training the first RBM
is the KL divergence between the data distribution and the distribu-
tion of the stochastic reconstruction vectors after one step of the Gibbs
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chain. Experiments [102] confirm that this criterion yields better opti-
mization of the DBN (initialized with this RBM). Unfortunately, this
criterion is not tractable since it involves summing over all configu-
rations of the hidden vector h. Tractable approximations of it might
be considered, since this criterion looks like a form of reconstruction
error on a stochastic auto-encoder (with a generative model similar to
one proposed for denoising auto-encoders [195]). Another interesting
alternative, explored in the next section, is to directly work on joint
optimization of all the layers of a DBN.

8.3 Joint Unsupervised Training of All the Layers

We discuss here how one could train a whole deep architecture such
as a DBN in an unsupervised way, i.e., to represent well the input
distribution.

8.3.1 The Wake—Sleep Algorithm

The Wake—Sleep algorithm [72] was introduced to train sigmoidal belief
networks (i.e., where the distribution of the top layer units factorizes).
It is based on a “recognition” model Q(h|x) (along with Q(x) set to be
the training set distribution) that acts as a variational approximation
to the generative model P(h,x). Here, we denote with h all the hidden
layers together. In a DBN, Q(h|x) is as defined above (Section 6.1),
obtained by stochastically propagating samples upward (from input to
higher layers) at each layer. In the Wake—Sleep algorithm, we decouple
the recognition parameters (upward weights, used to compute Q(h|x))
from the generative parameters (downward weights, used to compute
P(x|h)). The basic idea of the algorithm is simple:

1. Wake phase: sample x from the training set, generate h ~
Q(h|x) and use this (h,x) as fully observed data for training
P(x/h) and P(h). This corresponds to doing one stochastic
gradient step with respect to

> " Q(hx)log P(x,h). (8.5)
h
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2. Sleep phase: sample (h,x) from the model P(x,h), and
use that pair as fully observed data for training Q(h|x).
This corresponds to doing one stochastic gradient step with
respect to

> P(h,x)logQ(h[x). (8.6)

h,x

The Wake—Sleep algorithm has been used for DBNs in [73], after the
weights associated with each layer have been trained as RBMs as dis-
cussed earlier. For a DBN with layers (h',... ,h?), the Wake phase
updates for the weights of the top RBM (between h‘~! and h?) is done
by considering the h~! sample (obtained from Q(h|x)) as training data
for the top RBM.

A variational approximation can be used to justify the Wake—Sleep
algorithm. The log-likelihood decomposition in Equation (8.1)

log P(x) = KL(Q(h[x)[|[P(h[x)) + Hgmx)

+ Y Q(h|x) (log P(h) + log P(x|h)), (8.7)
h

shows that the log-likelihood can be bounded from below by the oppo-
site of the Helmholtz free energy [72, 53] F":

log P(x) = KL(Q(h[x)||P(h|x)) — F(x) > —F(x),  (8.8)

where

F(x) = —Hgmx) — »_Q(h[x) (log P(h) + log P(xh)),  (8.9)
h

and the inequality is tight when ¢ = P. The variational approach is
based on maximizing the lower bound —F while trying to make the
bound tight, i.e., minimizing K L(Q(h|x)||P(h|x)). When the bound
is tight, an increase of —F'(x) is more likely to yield an increase of
log P(x). Since we decouple the parameters of () and of P, we can
now see what the two phases are doing. In the Wake phase we con-
sider @ fixed and do a stochastic gradient step towards maximizing the
expected value of F'(x) over samples x of the training set, with respect
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to parameters of P (i.e., we do not care about the entropy of @). In the
Sleep phase we would ideally like to make @) as close to P as possible
in the sense of minimizing K L(Q(h|x)||P(h|x)) (i.e., taking @ as the
reference), but instead we minimize K L(P(h,x)||Q(h,x)), taking P as
the reference, because K L(Q(h|x)||P(h|x)) is intractable.

8.3.2 Transforming the DBN into a Boltzmann Machine

Another approach was recently proposed, yielding in the evaluated
cases results superior to the use of the Wake—Sleep algorithm [161].
After initializing each layer as an RBM as already discussed in Sec-
tion 6.1, the DBN is transformed into a corresponding deep Boltzmann
machine. Because in a Boltzmann machine each unit receives input
from above as well as from below, it is proposed to halve the RBM
weights when initializing the deep Boltzmann machine from the layer-
wise RBMs. It is very interesting to note that the RBM initialization
of the deep Boltzmann machine was crucial to obtain the good results
reported. The authors then propose approximations for the positive
phase and negative phase gradients of the Boltzmann machine (see
Section 5.2 and Equation (5.16)). For the positive phase (which in prin-
ciple requires holding x fixed and sampling from P(h|x)), they propose
a variational approximation corresponding to a mean-field relaxation
(propagating probabilities associated with each unit given the others,
rather than samples, and iterating a few dozen times to let them settle).
For the negative phase (which in principle requires sampling from the
joint P(h,x)) they propose to use the idea of a persistent MCMC
chain already discussed in Section 5.4.1 and introduced in [187]. The
idea is to keep a set of (h,x) states (or particles) that are updated
by one Gibbs step according to the current model (i.e., sample each
unit according to its probability given all the others at the previous
step). Even though the parameters keep changing (very slowly), we
continue the same Markov chain instead of starting a new one (as in
the old Boltzmann machine algorithm [77, 1, 76]). This strategy seems
to work very well, and [161] report an improvement over DBNs on the
MNIST dataset, both in terms of data log-likelihood (estimated using
annealed importance sampling [163]) and in terms of classification error



98  Stochastic Variational Bounds for Joint Optimization of DBN Layers

(after supervised fine-tuning), bringing down the error rate from 1.2%
to 0.95%. More recently, [111] also transform the trained DBN into a
deep Boltzmann machine in order to generate samples from it, and here
the DBN has a convolutional structure.
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Looking Forward

9.1 Global Optimization Strategies

As discussed Section 4.2, part of the explanation for the better gen-
eralization observed with layer-local unsupervised pre-training in deep
architectures could well be that they help to better optimize the lower
layers (near the input), by initializing supervised training in regions of
parameter space associated with better unsupervised models. Similarly,
initializing each layer of a deep Boltzmann machine as an RBM was
important to achieve the good results reported [161]. In both settings,
we optimize a proxy criterion that is layer-local before fine-tuning with
respect to the whole deep architecture.

Here, we draw connections between existing work and approaches
that could help to deal with difficult optimization problems, based on
the principle of continuation methods [3]. Although they provide no
guarantee to obtain the global optimum, these methods have been par-
ticularly useful in computational chemistry to find approximate solu-
tions to difficult optimization problems involving the configurations of
molecules [35, 132, 206]. The basic idea is to first solve an easier and
smoothed version of the problem and gradually consider less smoothing,
with the intuition that a smooth version of the problem reveals the
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global picture, just like with simulated annealing [93]. One defines a
single-parameter family of cost functions C)(#) such that Cy can be
optimized more easily (maybe convex in 6), while C; is the criterion
that we actually wish to minimize. One first minimizes Cy(6) and then
gradually increases A while keeping 0 at a local minimum of C(6). Typ-
ically Cy is a highly smoothed version of C', so that 6 gradually moves
into the basin of attraction of a dominant (if not global) minimum of C}.

9.1.1 Greedy Layer-wise Training of DBNs
as a Continuation Method

The greedy layer-wise training algorithm for DBNs described in Sec-
tion 6.1 can be viewed as an approximate continuation method, as
follows. First of all recall (Section 8.1) that the top-level RBM of a
DBN can be unfolded into an infinite directed graphical model with
tied parameters. At each step of the greedy layer-wise procedure, we
untie the parameters of the top-level RBM from the parameters of
the penultimate level. So one can view the layer-wise procedure as
follows. The model structure remains the same, an infinite chain of sig-
moid belief layers, but we change the constraint on the parameters at
each step of the layer-wise procedure. Initially all the layers are tied.
After training the first RBM (i.e., optimizing under this constraint),
we untie the first level parameters from the rest. After training the
second RBM (i.e., optimizing under this slightly relaxed constraint),
we untie the second level parameters from the rest, etc. Instead of a
continuum of training criteria, we have a discrete sequence of (presum-
ably) gradually more difficult optimization problems. By making the
process greedy we fix the parameters of the first k£ levels after they
have been trained and only optimize the (k + 1)th, i.e., train an RBM.
For this analogy to be strict we would need to initialize the weights
of the newly added RBM with the transpose of the previous one. Note
also that instead of optimizing all the parameters, the greedy layer-wise
approach only optimizes the new ones. But even with these approxima-
tions, this analysis suggests an explanation for the good performance
of the layer-wise training approach in terms of reaching better
solutions.
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9.1.2 Unsupervised to Supervised Transition

The experiments reported in many papers clearly show that an unsu-
pervised pre-training followed by a supervised fine-tuning works very
well for deep architectures. Whereas previous work on combining super-
vised and unsupervised criteria [100] focus on the regularization effect of
an unsupervised criterion (and unlabeled examples, in semi-supervised
learning), the discussion of Section 4.2 suggests that part of the gain
observed with unsupervised pre-training of deep networks may arise
out of better optimization of the lower layers of the deep architecture.

Much recent work has focused on starting from an unsupervised rep-
resentation learning algorithm (such as sparse coding) and fine-tuning
the representation with a discriminant criterion or combining the dis-
criminant and unsupervised criteria [6, 97, 121].

In [97], an RBM is trained with a two-part visible vector that
includes both the input x and the target class y. Such an RBM can
either be trained to model the joint P(x,y) (e.g., by Contrastive Diver-
gence) or to model the conditional P(y|x) (the exact gradient of the
conditional log-likelihood is tractable). The best results reported [97]
combine both criteria, but the model is initialized using the non-
discriminant criterion.

In [6, 121] the task of training the decoder bases in a sparse coding
system is coupled with a task of training a classifier on to of the sparse
codes. After initializing the decoder bases using non-discriminant learn-
ing, they can be fine-tuned using a discriminant criterion that is applied
jointly on the representation parameters (i.e., the first layer bases,
that gives rise to the sparse codes) and a set of classifier parameters
(e.g., a linear classifier that takes the representation codes as input).
According to [121], trying to directly optimize the supervised criterion
without first initializing with non-discriminant training yielded very
poor results. In fact, they propose a smooth transition from the non-
discriminant criterion to the discriminant one, hence performing a kind
of continuation method to optimize the discriminant criterion.

9.1.3 Controlling Temperature

Even optimizing the log-likelihood of a single RBM might be a dif-
ficult optimization problem. It turns out that the use of stochastic
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gradient (such as the one obtained from CD-k) and small initial weights
is again close to a continuation method, and could easily be turned
into one. Consider the family of optimization problems corresponding
to the regularization path [64] for an RBM, e.g., with ¢y regulariza-
tion of the parameters, the family of training criteria parametrized by
A e (0,1]:

CA(0) = —ZlogPe(xz') — [16]*log . (9.1)

When A — 0, we have 6 — 0, and it can be shown that the RBM log-
likelihood becomes convex in 8. When A — 1, there is no regularization
(note that some intermediate value of A might be better in terms of
generalization, if the training set is small). Controlling the magnitude
of the offsets and weights in an RBM is equivalent to controlling the
temperature in a Boltzmann machine (a scaling coefficient for the energy
function). High temperature corresponds to a highly stochastic system,
and at the limit a factorial and uniform distribution over the input. Low
temperature corresponds to a more deterministic system where only a
small subset of possible configurations are plausible.

Interestingly, one observes routinely that stochastic gradient descent
starting from small weights gradually allows the weights to increase in
magnitude, thus approximately following the regularization path. Farly
stopping is a well-known and efficient capacity control technique based
on monitoring performance on a validation set during training and
keeping the best parameters in terms of validation set error. The mathe-
matical connection between early stopping and ¢ regularization (along
with margin) has already been established [36, 211]: starting from small
parameters and doing gradient descent yields gradually larger param-
eters, corresponding to a gradually less regularized training criterion.
However, with ordinary stochastic gradient descent (with no explicit
regularization term), there is no guarantee that we would be tracking
the sequence of local minima associated with a sequence of values of A
in Equation (9.1). It might be possible to slightly change the stochastic
gradient algorithm to make it track better the regularization path, (i.e.,
make it closer to a continuation method), by controlling A explicitly,
gradually increasing A when the optimization is near enough a local
minimum for the current value of A\. Note that the same technique
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might be extended for other difficult non-linear optimization problems
found in machine learning, such as training a deep supervised neural
network. We want to start from a globally optimal solution and gradu-
ally track local minima, starting from heavy regularization and moving
slowly to little or none.

9.1.4 Shaping: Training with a Curriculum

Another continuation method may be obtained by gradually trans-
forming the training task, from an easy one (maybe convex) where
examples illustrate the simpler concepts, to the target one (with more
difficult examples). Humans need about two decades to be trained as
fully functional adults of our society. That training is highly organized,
based on an education system and a curriculum which introduces dif-
ferent concepts at different times, exploiting previously learned con-
cepts to ease the learning of new abstractions. The idea of training
a learning machine with a curriculum can be traced back at least
to [49]. The basic idea is to start small, learn easier aspects of the
task or easier sub-tasks, and then gradually increase the difficulty
level. From the point of view of building representations, advocated
here, the idea is to learn representations that capture low-level abstrac-
tions first, and then exploit them and compose them to learn slightly
higher-level abstractions necessary to explain more complex structure
in the data. By choosing which examples to present and in which
order to present them to the learning system, one can guide train-
ing and remarkably increase the speed at which learning can occur.
This idea is routinely exploited in animal training and is called shaping
[95, 144, 177].

Shaping and the use of a curriculum can also be seen as continuation
methods. For this purpose, consider the learning problem of modeling
the data coming from a training distribution P. The idea is to reweigh
the probability of sampling the examples from the training distribution,
according to a given schedule that starts from the “easiest” examples
and moves gradually towards examples illustrating more abstract con-
cepts. At point ¢ in the schedule, we train from distribution P, with
Py =P and ]50 chosen to be easy to learn. Like in any continuation
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method, we move along the schedule when the learner has reached a
local minimum at the current point ¢ in the schedule, i.e., when it
has sufficiently mastered the previously presented examples (sampled
from ]5,5) Making small changes in ¢ corresponds to smooth changes
in the probability of sampling examples in the training distribution,
so we can construct a continuous path starting from an easy learn-
ing problem and ending in the desired training distribution. This idea
is developed further in [20], with experiments showing better general-
ization obtained when training with a curriculum leading to a target
distribution, compared to training only with the target distribution, on
both vision and language tasks.

There is a connection between the shaping/curriculum idea and the
greedy layer-wise idea. In both cases we want to exploit the notion that
a high level abstraction can more conveniently be learned once appro-
priate lower-level abstractions have been learned. In the case of the
layer-wise approach, this is achieved by gradually adding more capac-
ity in a way that builds upon previously learned concepts. In the case
of the curriculum, we control the training examples so as to make sure
that the simpler concepts have actually been learned before showing
many examples of the more advanced concepts. Showing complicated
illustrations of the more advanced concepts is likely to be generally a
waste of time, as suggested by the difficulty for humans to grasp a new
idea if they do not first understand the concepts necessary to express
that new idea compactly.

With the curriculum idea we introduce a teacher, in addition to
the learner and the training distribution or environment. The teacher
can use two sources of information to decide on the schedule: (a)
prior knowledge about a sequence of concepts that can more easily
be learned when presented in that order, and (b) monitoring of the
learner’s progress to decide when to move on to new material from the
curriculum. The teacher has to select a level of difficulty for new exam-
ples which is a compromise between “too easy” (the learner will not
need to change its model to account for these examples) and “too hard”
(the learner cannot make an incremental change that can account for
these examples so they will most likely be treated as outliers or special
cases, i.e., not helping generalization).
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9.2 Why Unsupervised Learning is Important

One of the claims of this monograph is that powerful unsupervised
or semi-supervised (or self-taught) learning is a crucial component in
building successful learning algorithms for deep architectures aimed
at approaching Al. We briefly cover the arguments in favor of this
hypothesis here:

e Scarcity of labeled examples and availability of many unla-
beled examples (possibly not only of the classes of interest,
as in self-taught learning [148]).

e Unknown future tasks: if a learning agent does not know what
future learning tasks it will have to deal with in the future,
but it knows that the task will be defined with respect to
a world (i.e., random variables) that it can observe now, it
would appear very rational to collect and integrate as much
information as possible about this world so as to learn what
makes it tick.

® Once a good high-level representation is learned, other learn-
ing tasks (e.g., supervised or reinforcement learning) could
be much easier. We know for example that kernel machines
can be very powerful if using an appropriate kernel, i.e., an
appropriate feature space. Similarly, we know powerful rein-
forcement learning algorithms which have guarantees in the
case where the actions are essentially obtained through linear
combination of appropriate features. We do not know what
the appropriate representation should be, but one would be
reassured if it captured the salient factors of variation in the
input data, and disentangled them.

® Layer-wise unsupervised learning: this was argued in
Section 4.3. Much of the learning could be done using infor-
mation available locally in one layer or sub-layer of the
architecture, thus avoiding the hypothesized problems with
supervised gradients propagating through long chains with
large fan-in elements.

e Connected to the two previous points is the idea that unsu-
pervised learning could put the parameters of a supervised
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or reinforcement learning machine in a region from which
gradient descent (local optimization) would yield good solu-
tions. This has been verified empirically in several set-
tings, in particular in the experiment of Figure 4.2 and in
[17, 98, 50].

® The extra constraints imposed on the optimization by
requiring the model to capture not only the input-to-target
dependency but also the statistical regularities of the input
distribution might be helpful in avoiding some poorly gener-
alizing apparent local minima (those that do not correspond
to good modeling of the input distribution). Note that in
general extra constraints may also create more local min-
ima, but we observe experimentally [17] that both training
and test error can be reduced by unsupervised pre-training,
suggesting that the unsupervised pre-training moves the
parameters in a region of space closer to local minima cor-
responding to learning better representations (in the lower
layers). It has been argued [71] (but is debatable) that unsu-
pervised learning is less prone to overfitting than super-
vised learning. Deep architectures have typically been used
to construct a supervised classifier, and in that case the
unsupervised learning component can clearly be seen as a
regularizer or a prior [137, 100, 118, 50] that forces the
resulting parameters to make sense not only to model classes
given inputs but also to capture the structure of the input
distribution.

9.3 Open Questions

Research on deep architectures is still young and many questions
remain unanswered. The following are potentially interesting.

1. Can the results pertaining to the role of computational
depth in circuits be generalized beyond logic gates and lin-
ear threshold units?
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Is there a depth that is mostly sufficient for the computa-
tions necessary to approach human-level performance of Al
tasks?

How can the theoretical results on depth of circuits with a
fixed size input be generalized to dynamical circuits oper-
ating in time, with context and the possibility of recursive
computation?

. Why is gradient-based training of deep neural networks

from random initialization often unsuccessful?

Are RBMs trained by CD doing a good job of preserving
the information in their input (since they are not trained as
auto-encoders they might lose information about the input
that may turn out to be important later), and if not how
can that be fixed?

Is the supervised training criterion for deep architectures
(and maybe the log-likelihood in deep Boltzmann machines
and DBNs) really fraught with actual poor local minima or
is it just that the criterion is too intricate for the optimiza-
tion algorithms tried (such as gradient descent and conju-
gate gradients)?

Is the presence of local minima an important issue in train-
ing RBMs?

Could we replace RBMs and auto-encoders by algorithms
that would be proficient at extracting good representations
but involving an easier optimization problem, perhaps even
a convex one?

Current training algorithms for deep architectures involves
many phases (one per layer, plus a global fine-tuning). This
is not very practical in the purely online setting since once
we have moved into fine-tuning, we might be trapped in an
apparent local minimum. Is it possible to come up with a
completely online procedure for training deep architectures
that preserves an unsupervised component all along? Note
that [202] is appealing for this reason.

Should the number of Gibbs steps in Contrastive Diver-
gence be adjusted during training?
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11.

12.

13.

14.

15.

16.

17.

18.

Can we significantly improve upon Contrastive Divergence,
taking computation time into account? New alternatives
have recently been proposed which deserve further investi-
gation [187, 188].

Besides reconstruction error, are there other more appro-
priate ways to monitor progress during training of RBMs
and DBNs? Equivalently, are there tractable approxima-
tions of the partition function in RBMs and DBNs? Recent
work in this direction [163, 133] using annealed importance
sampling is encouraging.

Could RBMs and auto-encoders be improved by imposing
some form of sparsity penalty on the representations they
learn, and what are the best ways to do so?

Without increasing the number of hidden units, can the
capacity of an RBM be increased using non-parametric
forms of its energy function?

Since we only have a generative model for single denois-
ing auto-encoders, is there a probabilistic interpretation
to models learned in Stacked Auto-Encoders or Stacked
Denoising Auto-Encoders?

How efficient is the greedy layer-wise algorithm for training
Deep Belief Networks (in terms of maximizing the training
data likelihood)? Is it too greedy?

Can we obtain low variance and low bias estimators of the
log-likelihood gradient in Deep Belief Networks and related
deep generative models, i.e., can we jointly train all the
layers (with respect to the unsupervised objective)?
Unsupervised layer-level training procedures discussed here
help training deep architectures, but experiments suggest
that training still gets stuck in apparent local minima and
cannot exploit all the information in very large datasets.
Is it true? Can we go beyond these limitations by devel-
oping more powerful optimization strategies for deep archi-
tectures?
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Can optimization strategies based on continuation meth-
ods deliver significantly improved training of deep architec-
tures?

Are there other efficiently trainable deep architectures
besides Deep Belief Networks, Stacked Auto-Encoders, and
deep Boltzmann machines?

Is a curriculum needed to learn the kinds of high-level
abstractions that humans take years or decades to learn?
Can the principles discovered to train deep architectures
be applied or generalized to train recurrent networks or
dynamical belief networks, which learn to represent context
and long-term dependencies?

How can deep architectures be generalized to represent
information that, by its nature, might seem not easily rep-
resentable by vectors, because of its variable size and struc-
ture (e.g., trees, graphs)?

Although Deep Belief Networks are in principle well suited
for the semi-supervised and self-taught learning settings,
what are the best ways to adapt the current deep learn-
ing algorithms to these setting and how would they fare
compared to existing semi-supervised algorithms?

When labeled examples are available, how should super-
vised and unsupervised criteria be combined to learn the
model’s representations of the input?

Can we find analogs of the computations necessary for Con-
trastive Divergence and Deep Belief Net learning in the
brain?

The cortex is not at all like a feedforward neural network in
that there are significant feedback connections (e.g., going
back from later stages of visual processing to earlier ones)
and these may serve a role not only in learning (as in RBMs)
but also in integrating contextual priors with visual evi-
dence [112]. What kind of models can give rise to such
interactions in deep architectures, and learn properly with
such interactions?
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Conclusion

This monograph started with a number of motivations: first to use
learning to approach AI, then on the intuitive plausibility of decom-
posing a problem into multiple levels of computation and represen-
tation, followed by theoretical results showing that a computational
architecture that does not have enough of these levels can require a
huge number of computational elements, and the observation that a
learning algorithm that relies only on local generalization is unlikely to
generalize well when trying to learn highly varying functions.

Turning to architectures and algorithms, we first motivated dis-
tributed representations of the data, in which a huge number of pos-
sible configurations of abstract features of the input are possible,
allowing a system to compactly represent each example, while open-
ing the door to a rich form of generalization. The discussion then
focused on the difficulty of successfully training deep architectures
for learning multiple levels of distributed representations. Although
the reasons for the failure of standard gradient-based methods in
this case remain to be clarified, several algorithms have been intro-
duced in recent years that demonstrate much better performance
than was previously possible with simple gradient-based optimization,
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and we have tried to focus on the underlying principles behind their
success.

Although much of this monograph has focused on deep neural net
and deep graphical model architectures, the idea of exploring learn-
ing algorithms for deep architectures should be explored beyond the
neural net framework. For example, it would be interesting to consider
extensions of decision tree and boosting algorithms to multiple levels.

Kernel-learning algorithms suggest another path which should be
explored, since a feature space that captures the abstractions relevant
to the distribution of interest would be just the right space in which to
apply the kernel machinery. Research in this direction should consider
ways in which the learned kernel would have the ability to generalize
non-locally, to avoid the curse of dimensionality issues raised in Sec-
tion 3.1 when trying to learn a highly varying function.

The monograph focused on a particular family of algorithms, the
Deep Belief Networks, and their component elements, the Restricted
Boltzmann Machine, and very near neighbors: different kinds of auto-
encoders, which can also be stacked successfully to form a deep archi-
tecture. We studied and connected together estimators of the log-
likelihood gradient in Restricted Boltzmann machines, helping to jus-
tify the use of the Contrastive Divergence update for training Restricted
Boltzmann Machines. We highlighted an optimization principle that
has worked well for Deep Belief Networks and related algorithms such
as Stacked Auto-Encoders, based on a greedy, layer-wise, unsupervised
initialization of each level of the model. We found that this optimization
principle is actually an approximation of a more general optimization
principle, exploited in so-called continuation methods, in which a series
of gradually more difficult optimization problems are solved. This sug-
gested new avenues for optimizing deep architectures, either by track-
ing solutions along a regularization path, or by presenting the system
with a sequence of selected examples illustrating gradually more com-
plicated concepts, in a way analogous to the way students or animals
are trained.
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